FEATURES

- 12-Bit Resolution
- Auto Shutdown to 1nA
- Low Supply Ourrent: 320 $\mu \mathrm{A}$ Typ
- Guaranteed $\pm 3 / 4$ LSB Max DNL
- Single Supply 5V Operation
- 8-Channel Multiplexer
- Separate MUX Output and ADC Input Pins
- MUX and ADCMay Be Controlled Separately
- Sampling Rate: 16.8ksps
- I/OCompatible with SPI, MICROWIRE ${ }^{\text {™ }}$, etc.
- 24 -Pin SSOP Package

APPLICATIO NS

- Pen Screen Digitizing
- Battery-Operated Systems
- Remote Data Acquisition
- Isolated Data Acquisition
- Battery Monitoring
- Temperature Measurement

DESCRIPTIO

The LTC ${ }^{\text {® }} 1598$ is an 8 -channel, 5 V micropower, 12 -bit sampling A/D converter. It typically draws only 320 A of supply current when converting and automatically powers down to typically 1nA between conversions. The LTC1598 is available in a 24 -pin SSOP package and operates on a 5 V supply. The 12-bit, switched-capacitor, successive approximation ADC includes an 8-channel MUX and a sample-and-hold.

On-chip serial ports allow efficient data transfer to a wide rangeof microprocessors and microcontrollers over three or four wires. This, coupled with micropower consumption, makes remotelocation possibleand facilitates transmitting data through isolation barriers.
The circuit can be used in ratiometric applications or with an external reference. The high impedance analog inputs and the ability to operate with reduced spans (to 1.5 V full scale) allow direct connectionto sensors and transducers inmany applications, eliminating theneed for gain stages.
©T, LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a trademark of National Semiconductor Corporation.

TYPICAL APPLICATIO \cap

$24 \mu \mathrm{~W}, 8$-Channel, 12 -Bit ADC Samples at 200 Hz and Runs Off a 5 V Supply

Supply Current vs Sample Rate

1598 TA02

ABSO LUTE MAXIMUM RATInG S

(Notes 1, 2)
Supply Voltage ($\mathrm{V}_{\bigcirc \subset}$) to GND.................................. 12V
Voltage
Analog Reference -0.3 V to $\left(\mathrm{V}_{\propto}+0.3 \mathrm{~V}\right)$
Analog Inputs -0.3 V to $\left(\mathrm{V}_{\propto}+0.3 \mathrm{~V}\right)$
Digital Inputs \qquad
Digital Output -0.3 V to $\left(\mathrm{V}_{\propto}+0.3 \mathrm{~V}\right)$
Power Dissipation
500 mW
Operating Temperature Range
LTC1598CG.. $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1598IG.. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range............. $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)............... $300^{\circ} \mathrm{C}$

PACKAG E/ORDER INFO RMATIO

Consult factory for Military grade parts.

RECO MMEnDED OPERATING CO NDITIO NS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
V_{∞}	Supply Voltage (Note 3)		4.5	5.5	V
fak	Cock Frequency	$\mathrm{V}_{\bigcirc C}=5 \mathrm{~V}$	(Note 4)	320	kHz
t ${ }_{\text {CYC }}$	Total Oycle Time	$\mathrm{f}_{\text {aKk }}=320 \mathrm{kHz}$	60		$\mu \mathrm{s}$
$t_{\text {hDI }}$	Hold Time, $\mathrm{D}_{\text {IN }}$ After CLK \uparrow	$\mathrm{V}_{\bigcirc C}=5 \mathrm{~V}$	150		ns
$\mathrm{t}_{\underline{s u} \bar{C}}$	Setup Time $\overline{\mathrm{C}} \downarrow$ Before Frst CLK\uparrow (See Operating Sequence)	$\mathrm{V}_{\subseteq}=5 \mathrm{~V}$	1		$\mu \mathrm{s}$
$\mathrm{t}_{\text {sudl }}$	Setup Time, Dİ Stable Before CLK \uparrow	$V_{C C}=5 \mathrm{~V}$	400		ns
twha_k	OLK High Time	$V_{C C}=5 \mathrm{~V}$	1		$\mu \mathrm{s}$
tmak	OLK Low Time	$\mathrm{V}_{\subseteq}=5 \mathrm{~V}$	1		$\mu \mathrm{s}$
$\mathrm{t}_{\text {WH- }}$	$\overline{\text { CS }}$ High Time Between Data Transfer Oycles	$\mathrm{f}_{\text {akk }}=320 \mathrm{kHz}$	16		$\mu \mathrm{S}$
$\mathrm{t}_{\underline{\text { L }} \text { MS }}$	$\overline{\text { CS }}$ Low Time During Data Transfer	$\mathrm{f}_{\text {akk }}=320 \mathrm{kHz}$	44		$\mu \mathrm{S}$

CO NVERTER AND MULTIPLEXER CHARACTERISTICS (Noe 5)

PARAMETER	CONDITIONS		LTC1598CG		LTC1598IG		UNITS
			MIN	TYP MAX	MIN	TYP MAX	
Resolution (No Missing Codes)		\bullet	12		12		Bits
Integral Linearity Eror	(Note6)	\bullet		± 3		± 3	LSB
Differential Linearity Error		\bullet		$\pm 3 / 4$		± 1	LSB
Offset Eror		\bullet		± 3		± 3	LSB
Gain Eror		\bullet		± 8		± 8	LSB
REF Input Range	(Notes 7, 8)			1.5 V to	0.05V		V
Analog Input Range	(Notes 7, 8)			-0.05 V to	+ 0.05 V		V
MUX Channel Input Leakage Current	Channel On or Off (Note 9)	\bullet		± 200		± 200	nA
MUX OUT Leakage Ourrent	All Channels Off	\bullet		± 200		± 200	nA
ADCIN Input Leakage Ourrent		\bullet		± 1		± 1	$\mu \mathrm{A}$

DYחAMIC ACCURACY
 (Note 5) f $_{\text {SMPL }}=16.8 \mathrm{kHz}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
U/(N+D)	Signal-to-Noise Plus Distortion Ratio	1 kHz Input Signal	71	dB	
THD	Total Harmonic Distortion (Up to 5th Harmonic)	1 kHz Input Signal	-78	dB	
SFDR	Spurious-Free Dynamic Range	1 kHz Input Signal	80	dB	
	Peak Harmonic or Spurious Noise	1 kHz Input Signal	-80	dB	

DIG ITAL AnD DC ELECTRICAL CHARACTERISTICS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS	
V_{IH}	High Level Input Voltage	$\mathrm{V}_{\text {OC }}=5.25 \mathrm{~V}$	\bullet	2.6			V	
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	$\mathrm{V}_{\bigcirc C}=4.75 \mathrm{~V}$	\bullet			0.8	V	
$\mathrm{I}_{\mathbf{H}}$	High Level Input Current	$\mathrm{V}_{1 \mathrm{~N}}=\mathrm{V}_{\text {OC }}$	\bullet			2.5	$\mu \mathrm{A}$	
ILL	Low Level Input Ourrent	$\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$	
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{O C}=4.75 \mathrm{~V}, I_{O}=10 \mu \mathrm{~A} \\ & V_{O C}=4.75 \mathrm{~V}, I_{O}=360 \mu \mathrm{~A} \\ & \hline \end{aligned}$		4.0 2.4	$\begin{aligned} & 4.64 \\ & 4.62 \end{aligned}$		V	
V_{a}	Low Level Output Voltage	$\mathrm{V}_{\mathrm{OC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~mA}$	\bullet			0.4	V	
loz	Hi-Z Output Leakage	$\overline{\mathrm{C}}=$ = High	\bullet			± 3	$\mu \mathrm{A}$	
ISOURCE	Otput Source Ourrent	$\mathrm{V}_{\text {Our }}=0 \mathrm{~V}$			-25		mA	
ISINK	Output Sink Ourrent	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {OC }}$			45		mA	
RREF	Reference Input Resistance	$\begin{aligned} & \overline{\overline{\mathrm{S}}}=V_{1 H} \\ & \overline{\mathrm{CS}}=\mathrm{V}_{\\| \mathrm{L}} \end{aligned}$			$\begin{gathered} 5000 \\ 55 \end{gathered}$		$\begin{gathered} \bar{M} \Omega \\ \mathrm{k} \Omega \end{gathered}$	
$I_{\text {RGF }}$	Reference Ourrent		\bullet		$\begin{gathered} 0.001 \\ 90 \\ 90 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.5 \\ & 140 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
1∞	Supply Ourrent		\bullet		$\begin{aligned} & 0.001 \\ & 320 \\ & 320 \end{aligned}$	± 5 640	μA μA μA	

AC CHARACTERISTICS (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$t_{\text {SMPL }}$	Analog Input Sample Time	See Operating Sequence 1			1.5		CLK Oycles
$\mathrm{f}_{\text {SMPL(MAX }}$	Maximum Sampling Frequency	See Operating Sequence 1	\bullet	16.8			kHz
toonv	Conversion Time	See Operating Sequence 1			12		Q_K Oycles
$\mathrm{t}_{\text {dDO }}$	Delay Time, CLK \downarrow to Dour Data Valid	See Test Circuits	\bullet		250	600	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, $\overline{\mathrm{CS}} \uparrow$ to Dor Hi-Z	See Test Oircuits	\bullet		135	300	ns
$\mathrm{t}_{\text {en }}$	Delay Time, $\mathrm{CLK} \downarrow$ to Dour Enabled	See Test Circuits	\bullet		75	200	ns
$t_{\text {tho }}$	Time Output Data Remains Valid After CLK \downarrow	Goad $=100 \mathrm{pF}$			230		ns
t_{f}	Dorr Fall Time	See Test Oircuits	\bullet		50	150	ns
t_{r}	Dour Rise Time	See Test Circuits	\bullet		50	150	ns
ton	Enable Turn-On Time	See Operating Sequence 1	\bullet		260	700	ns
tor	Enable Turn-Off Time	See Operating Sequence 2	\bullet		100	300	ns
$\mathrm{t}_{\text {OPEV }}$	Break-Before-Make Interval		\bullet	35	160		ns
G_{N}	Input Capacitance	Analog Inputs On-Channel Off-Channel Digital Input			20 5 5		pF pF pF

AC CHARACTERISTICS

The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND.
Note 3: This device is specified at 5V. Consult factory for 3V specified devices.
Note 4: Increased leakage currents at elevated temperatures cause the S/H to droop, therefore it is recommended that $\mathrm{f}_{\mathrm{a}} \mathrm{K}=200 \mathrm{kHz}$ at $85^{\circ} \mathrm{C}$,
$f_{\alpha \ldots k} \geq 120 \mathrm{kHz}$ at $70^{\circ} \mathrm{C}$ and $\mathrm{f}_{\alpha \mathrm{k}} \geq 1 \mathrm{kHz}$ at $25^{\circ} \mathrm{C}$.
Note 5: $\mathrm{V}_{\propto C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RFF}}=5 \mathrm{~V}$ and $\mathrm{QK}=320 \mathrm{kHz}$ unless otherwise specified.

Note 6: Linearity error is specified between the actual end points of the AD transfer curve.
Note 7: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop below $G N D$ or one diode drop above $V_{\propto C}$. This spec allows 50 mV forward bias of either diode for $4.5 \mathrm{~V} \leq \mathrm{V}_{\propto \subset} \leq 5.5 \mathrm{~V}$. This means that as long as the reference or analog input does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute 0 V to 5 V input voltage range, it will therefore require a minimum supply voltage of 4.950 V over initial tolerance, temperature variations and loading.

Note 8: Recommended operating condition.
Note 9: Channel leakage current is measured after the channel selection.

PIn FUNCTIO NS

CH5 (Pin 1): Analog Multiplexer Input.
CH6 (Pin 2): Analog Multiplexer Input.
CH7 (Pin 3): Analog Multiplexer Input.
GND (Pin 4): Analog Ground. GND should betied directly to an analog ground plane.
CLK(Pin5): Shift Cock. This clock synchronizes theserial datatransfer to both MUX and ADC. It also determines the conversion speed of the ADC.
$\overline{\text { CS }}$ MUX (Pin 6): MUX Chip Select Input. A logic high on this input allows the MUX to receive achannel address. A logic low enables the selected MUX channel and connects it to the MUX OTT pin for AD conversion. For normal operation, drive this pin in parallel with $\overline{\mathrm{CS}}$ ADC.
D_{IN} (Pin 7): Digital Data Input. Themultiplexer address is shifted into this input.
COM (Pin 8): Negative Analog Input. This input is the negativeanalog input to the ADCand must befreeof noise with respect to GND.
GND (Pin 9): Analog Ground. GND should betied directly to an analog ground plane.
$\overline{C S}$ ADC (Pin 10): ADCChip Select Input. A logic high on this input deselects and powers down the ADC and three states Dor. A logic low on this input enables the ADCto samplethe selected channel and start the conversion. For normal operation drive this pin in parallel with $\overline{\mathrm{CS}}$ MUX.
$D_{\text {OUT }}$ (Pin 11): Digital Data Output. The A/D conversion result is shifted out of this output.

NC (Pin 12): No Connection.
NC (Pin 13): No Connection.
CLK (Pin 14): Shift Cock. This input should betied to Pin 5.
VCC (Pin 15): Power Supply Voltage. This pin provides power to the A/D Converter. It must bebypassed directly to the analog ground plane.
$\mathrm{V}_{\text {REF }}$ (Pin 16): Reference Input. The reference input defines the span of the ADC.
ADC IN (Pin 17): ADC Input. This input is the positive anal og input to the ADC. Connect this pinto MUXOUT for normal operation.
MUX OUT (Pin 18): MUX Output. This pin is theoutput of the multiplexer. Tie to ADCIN for normal operation.
$\mathrm{V}_{\text {cC }}$ (Pin 19): Power Supply Voltage. This pin should be tied to Pin 15.

CHO (Pin 20): Analog Multiplexer Input.
CH1 (Pin 21): Analog Multiplexer Input.
CH2 (Pin 22): Analog Multiplexer Input.
CH3 (Pin 23): Analog Multiplexer Input.
CH4 (Pin 24): Analog Multiplexer Input.

TEST CIRCUITS

Load Circuit for $\mathrm{t}_{\mathrm{dDO}}, \mathrm{t}_{\mathrm{r}}$ and t_{f}

Voltage Waveforms for Dout Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

Voltage Waveforms for $\mathrm{t}_{\text {dis }}$

NOTE 1: WAVEORRM 1 IS FOR AN OUTPUT WITH INIERNAL OONDITIONS SUCH THAT THEOUTPUT IS HIGH UNLESS DISABLED BY THEOUTPUT OONTROL. NOTE2: WAVEORM 2 IS FOR AN OUTPUT WITH INIERNAL OONDITIONS SUCH THAT THEOUTPUT IS LOW UNLESS DISABLED BY THEOUTPUT OONTROL.

5

APPLICATIO NS INFO RMATIO

INPUT DATA WORD

The LTC1598 uses its Chip Select and $D_{\text {IN }}$ pins to select one of its eight channels as shown in the operating sequencefigures and Table 1. For this discussion we will assumethat $\overline{\mathrm{CS}} M U X$ and $\overline{\mathrm{SS}}$ ADCaretiedtogether and will refer to them as simply, $\overline{\mathrm{CS}}$.
When $\overline{C S}$ is high, the input data on the $D_{\text {IN }}$ pin is latched into the 4-bit shift register on the rising edge of the clock. Theinput data word consists of an "日N" bit and astring of threebits for channel selection. If the "BN" bit is logic high as illustrated in Operating Sequence 1, it enables the selected channel. To ensure correct operation, the CS must bepulled low beforethenext rising edgeof theclock. More than four input bits can be sent to the ADC without problems. The channel will be determined by the last four bits clocked in before $\overline{\mathrm{CS}}$ falls.

Once the $\overline{\mathrm{CS}}$ is pulled low, all channels are simultaneously switched off to ensure a break-before-make interval. After a delay of toN, the selected channel is switched on, allowing signal transmission. The selected channel remains on, until thenext falling edgeof $\overline{\mathrm{CS}}$. After a delay of tom it terminates the analog signal transmission and switches to the next selected channel. If the "EN" bit is logic low, as illustrated in Operating Sequence 2 , it disables all channels. Table 1 shows the various bit combinations for channel selection.

Table 1. Logic Table for Channel Selection

CHANNEL STATUS	EN	D2	D1	D0
All Off	0	X	X	X
CH 0	1	0	0	0
CH 1	1	0	0	1
CH 2	1	0	1	0
CH 3	1	0	1	1
CH 4	1	1	0	0
CH 5	1	1	0	1
CH 6	1	1	1	0
CH 7	1	1	1	1

ANALOG CONSIDERATIONS

Grounding

The LTC1598 should beused with an analog ground plane and single-point grounding techniques. To achieve the optimum performance use a printed circuit board. The Ground pins (Pins 4 and 9) should be tied directly to the ground plane with minimum lead length.

Bypassing

For good performance, the LTC1598 $\mathrm{V}_{\propto C}$ and V_{RE} pins must be free of noise and ripple. Any changes in the V_{\propto} and V_{RE} voltages with respect to ground during the conversion cycle can induceerrors or noise in the output code. Bypass the V_{C} and V_{R} pins directly to the analog ground plane with minimum of 0.1μ Fcapacitors and lead lengths as short as possible.

Analog Inputs

Because of the capacitive redistribution A/D conversion techniques used, the analog inputs of the LTC1598 have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem. But if large source resistances are used, or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins.

APPLICATIO NS INFO RMATIO

Operating Sequence 1
Example: (CH2, GND)

COM = GND

Operating Sequence 2
Example: (ALL Channels Off)

TYPICAL APPLICATIO NS

Microprocessor Interfaces

TheLTC1598 caninterfacedirectly (without external hardware) to most popular microprocessors' (MPU) synchronous serial formats including MICROWIRE ${ }^{\text {M }}$, SPI and QSPI. If an MPU without a dedicated serial port is used, then three of the MPU's parallel port lines can be programmed to form the serial link to the LTC1598. Included here is one serial interface example.

MICROWIRE is a trademark of National Semiconductor Corp.

Motorola SPI (MC68HCO5)

TheMC68HC05hasbeenchosen as an exampleof an MPU with adedicated serial port. This MPUtransfers dataMSBfirst and in 8 -bit increments. The Din word sent to the data register starts the SPI process. With three 8 -bit transfers the AD result is read into the MPU. The second 8 -bit transfer clocks B11 through B7 of the AD conversion result into the processor. The third 8 -bit transfer clocks the remaining bits B 6 through BO into the MPU. ANDing the second byte with $1^{1} \mathrm{H}_{\text {EX }}$ clears the three most significant bits and ANDing the third byte with Fr|ex $^{\text {clears the }}$ least significant bit. Shifting the datato the right by onebit results in a right justified word.

MC68HC05 CODE		
	LDA \#\$52	Configuration data for serial peripheral control register (Interrupts disabled, output enabled, master, Norm $=0, \mathrm{Ph}=0, \mathrm{ak} 16$)
	STA \$0A	Load configuration datainto location \$0A (SPCR)
	LDA \#\$干	Configuration data for I/Oports (all bits are set as outputs)
	STA \$04	Load configuration data into Port A DDR (\$04)
	STA \$05	Load configuration data into Port B DDR (\$05)
	STA \$06	Load configuration datainto Port CDDR (\$06)
	LDA \#\$08	Put $D_{\text {IN }}$ word for LTC1598 into Accumulator (OH 0 with respect to GND)
	STA \$50	Load Din word into memory location \$50
START	BSET 0,\$02	Bit 0 Port C (\$02) goes high (¢¢ goes high)
	LDA \$50	Load $\mathrm{DiN}_{\text {IN }}$ word at $\$ 50$ into Accumulator
	STA \$0C	Load Din word into SPI data register ($\$ 0 \mathrm{C}$) and start clocking data
LOOP1	TST \$0B	Test status of SPIFbit in SPI staus register (\$0B)
	BPL LOOP1	Loop if not done with transfer to previous instruction
	BCRO,\$02	Bit 0 Port C(\$02) goes low (¢) goes low)
	LDA \$0C	Load contents of SPI data register into Accumulator
	STA \$0C	Start next SPI cycle
LOOP2	TST \$0B	Test status of SPIF
	BPL LOOP2	Loop if not done
	LDA \$0C	Load contents of SPI dataregister into Accumulator
	STA \$0C	Start next SPI cycle
	AND \#\$1F	Cear 3 MSBs of first Dour word
	STA \$00	Load Port A (\$00) with MSBs
LOOP3	TST \$0B	Test status of SPIF
	BPL LOOP3	Loop if not done
	LDA \$0C	Load contents of SPI data register into Accumulator
	AND \#\$E	dear LSB of second Dorr word
	STA \$01	Load Port B (\$01) with LSBs
	JMP START	Go back to start and repeat program

TYPICAL APPLICATIO NS

Data Exchange Between LTC1598 and MC68HC05

Hardware and Software Interface to Motorola MC68HCO5

TYPICAL APPLICATIO NS

MULTICHANNEL AID USES A SINGLE ANTIALIASING FILTER

This circuit demonstrates how the LTC1598's independent analog multiplexer can simplify design of a 12-bit dataacquisition system. All eight channels areMUXedinto a single 1 kHz , fourth-order Sallen-Key antialiasing filter, which is designed for single-supply operation. Since the LTC1598's data converter accepts inputs from ground to the positive supply, rail-to-rail op amps were chosen for thefilter to maximizedynamic range. TheLT1368 dual rail-to-rail op amp is designed to operate with $0.1 \mu \mathrm{~F}$ load capacitors (C1 and C2). These capacitors provide frequency compensation for the amplifiers and help reduce the amplifier's output impedance and improve supply rejection at high frequencies. The filter contributes less than 1LSB of error due to offsets and bias currents. The
filter's noise and distortion are less than -72 dB for a $100 \mathrm{~Hz}, 2 V_{\text {P-p }}$ offset sine input.

The combined MUX and A/D errors result in an integral nonlinearity error of ± 3 LSB (maximum) and a differential nonlinearity error of $\pm 3 / 4 \mathrm{LSB}$ (maximum). The typical signal-to-noiseplus distortion ratio is 71 dB , with approximately -78dB of total harmonic distortion. The LTC1598 is programmed through a 4 -wire serial interface that is compatable with MICROWIRE, SPI and QSPI. Maximum serial clock speed is 320 kHz , which corresponds to a 16.8 kHz sampling rate.

The complete circuit consumes approximately $800 \mu \mathrm{~A}$ from a single 5 V supply.

> Simple Data Acquisition System Takes Advantage of the LTC1598's MUXOUT/ADCIN Pins-to-Filter Analog Signals Prior to A/D Conversion

PACKAGEDESCRIPTO \cap Dimensions in inches (millimeters) unless otherwise noted.

G Package
24-Lead Plastic SSOP (0.209)
(LTCDWG\# 05-08-1640)

TYPICAL APPLICATIO n

Digitally Linearized Platinum RTD Signal Conditioner

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1096/LTC1098	8-Pin SO, Micropower 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1096LLTC1098L	8-Pin SO, 2.65V Micropower 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1196/LTC1198	8-Pin SO, 1Msps 8-Bit ADC	Low Power, Small Size, Low Cost
LTC1282	3V High Speed Parallel 12-Bit ADC	140ksps, Complete with V RE, CLK, Sample-and-Hold
LTC1285/LTC1288	8-Pin SO, 3V, Micropower	1- or 2-Channel, Auto Shutdown
LTC1289	Multiplexed 3V, 1A, 12-Bit ADC	8-Channel 12-Bit Serial I/O
LTC1594	4-Channel, 5V Micropower 12-Bit ADC	Low Power, Small Size, Low Cost
LTC1594L	4-Channel, 3V Micropower 12-Bit ADC	Low Power, Small Size, Low Cost

