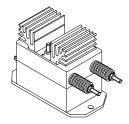
Voltage Transducer LV 100-2500

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

V _{PN}	Primary nominal r.m.s	s. voltage	2500		V			
V _P	Primary voltage, measuring range 0 ± 375		750	V				
I _{PN}	Primary nominal r.m.s	s. current	4		mΑ			
R _M	Measuring resistance		$\mathbf{R}_{M \min}$	$\mathbf{R}_{_{Mma}}$	x			
	with ± 15 V	@ ± 2500 V _{max}	0	170	Ω			
		@ ± 3750 V _{max}	0	90	Ω			
I _{SN}	Secondary nominal r.	m.s. current	50		mA			
κ _N	Conversion ratio		2500 V / 50 mA					
v _c	Supply voltage (± 5 %	6)	± 15		V			
I _c	Current consumption		10 + I _s		mA			
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		9	•	kV			


Accuracy - Dynamic performance data

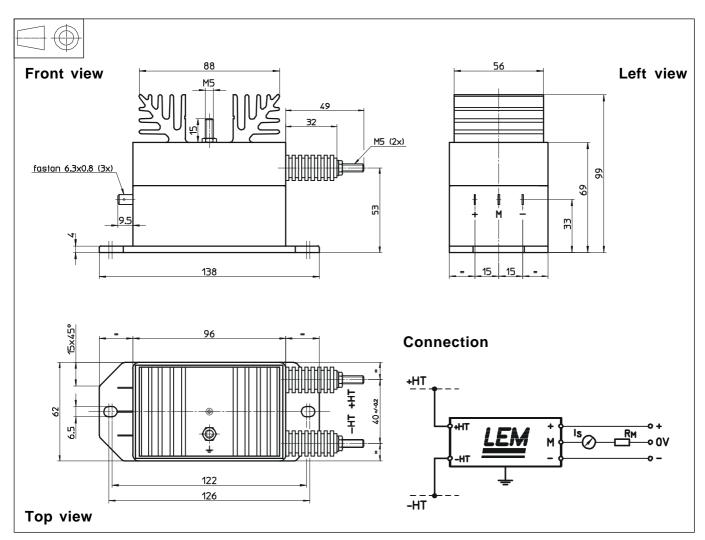
X _G	Overall Accuracy @ $V_{_{PN}}$, $T_{_{A}} = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
I _o	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	0°C + 70°C	Тур	Max	mA
I _{o⊤}	Thermal drift of I_o		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of V_{PN}		170	± 0.3	µs

General data

T _A	Ambient operating temperature	0+70	°C
T _s	Ambient storage temperature	- 25 + 85	°Č
Ň	Turns ratio	25000 : 2000	
Р	Total primary power loss	10	W
R ₁	Primary resistance @ $T_{A} = 25^{\circ}C$	625	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R , incorporated into the housing.


Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.

Dimensions LV 100-2500 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
 - Fastening torque max
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max

 \pm 0.3 mm 2 holes \oslash 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\mathbf{I}_{_{\! \mathrm{S}}}$ is positive when $\mathbf{V}_{_{\! \mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.