Voltage Transducer LV 25-1200 For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit). # $V_{PN} = 1200 \text{ V}$ #### **Electrical data** | $egin{aligned} \mathbf{V}_{PN} \ \mathbf{V}_{P} \ \mathbf{I}_{PN} \ \mathbf{R}_{M} \end{aligned}$ | Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance | | 1200
0 ± 1
6.7
R _{M min} | 800
R _{Mmax} | V
V
mA | |---|---|------------------------------|---|---------------------------------|--------------| | | with ± 12 V | @ ±1200 V max | 30 | 200 | Ω | | | | @ ±1800 V _{max} | 30 | 100 | Ω | | | with ± 15 V | @ ±1200 V _{max} | 100 | 320 | Ω | | | | $@ \pm 1800 \text{ V}_{max}$ | 100 | 180 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 25 | | mΑ | | K _N | Conversion ratio | | 1200 V / 25 mA | | | | v _c | Supply voltage (± 5 %) | | ± 12 | 15 | V | | I _c | Current consumption | | 10 (@± | 15V)+ I _s | mΑ | | $\dot{\mathbf{V}}_{d}$ | R.m.s. voltage for AC is | 4.1 | J | kV | | ### **Accuracy - Dynamic performance data** | $\overset{\boldsymbol{x}_{\scriptscriptstyle G}}{\boldsymbol{e}_{\scriptscriptstyle L}}$ | Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$
Linearity | | ± 0.8 < 0.2 | %
% | |--|---|--------------------------------|--|----------------| | I _o | Offset current @ $\mathbf{I}_{\mathrm{P}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$
Thermal drift of \mathbf{I}_{O} | - 25°C + 25°C
+ 25°C + 70°C | Typ Max ± 0.15 ± 0.10 ± 0.60 ± 0.10 ± 0.35 | mA
mA
mA | | t, | Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$ | | 60 | μs | #### General data | \mathbf{T}_{A} | Ambient operating temperature | - 25 + 70 | °C | |------------------|---|-------------|-----------| | T _s | Ambient storage temperature | - 40 + 85 | °C | | N | Turns ratio | 3700 : 1000 | | | Р | Total primary power loss | 8 | W | | R, | Primary resistance @ T _a = 25°C | 180 | $k\Omega$ | | R _s | Secondary coil resistance @ T _A = 70°C | 110 | Ω | | m | Mass | 60 | g | | | Standards 2) | EN 50178 | | | | | | | Notes: 1) Between primary and secondary #### **Features** - Closed loop (compensated) voltage transducer using the Hall effect - Transducer with insulated plastic case recognized according to UL 94-V0 - Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm. #### **Advantages** - Excellent accuracy - Very good linearity - Low thermal drift - High immunity to external interference. ## **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Uninterruptible Power Supplies (UPS) - Power supplies for welding applications. 990823/3 ²⁾ A list of corresponding tests is available # **Dimensions LV 25-1200** (in mm. 1 mm = 0.0394 inch) ## **Mechanical characteristics** General tolerance Fastening Connection of primaryConnection of secondary ± 0.3 mm 4 holes Ø 4.2 mm Faston 6.3 x 0.8 mm Faston 6.3 x 0.8 mm ## **Remarks** - \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT. - The primary circuit of the transducer must be linked to the connections where the voltage has to be measured. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.