

Voltage Transducer LV 25-1200

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$V_{PN} = 1200 \text{ V}$

Electrical data

$egin{aligned} \mathbf{V}_{PN} \ \mathbf{V}_{P} \ \mathbf{I}_{PN} \ \mathbf{R}_{M} \end{aligned}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		1200 0 ± 1 6.7 R _{M min}	800 R _{Mmax}	V V mA
	with ± 12 V	@ ±1200 V max	30	200	Ω
		@ ±1800 V _{max}	30	100	Ω
	with ± 15 V	@ ±1200 V _{max}	100	320	Ω
		$@ \pm 1800 \text{ V}_{max}$	100	180	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
K _N	Conversion ratio		1200 V / 25 mA		
v _c	Supply voltage (± 5 %)		± 12	15	V
I _c	Current consumption		10 (@±	15V)+ I _s	mΑ
$\dot{\mathbf{V}}_{d}$	R.m.s. voltage for AC is	4.1	J	kV	

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{\scriptscriptstyle G}}{\boldsymbol{e}_{\scriptscriptstyle L}}$	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$ Linearity		± 0.8 < 0.2	% %
I _o	Offset current @ $\mathbf{I}_{\mathrm{P}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	- 25°C + 25°C + 25°C + 70°C	Typ Max ± 0.15 ± 0.10 ± 0.60 ± 0.10 ± 0.35	mA mA mA
t,	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		60	μs

General data

\mathbf{T}_{A}	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	3700 : 1000	
Р	Total primary power loss	8	W
R,	Primary resistance @ T _a = 25°C	180	$k\Omega$
R _s	Secondary coil resistance @ T _A = 70°C	110	Ω
m	Mass	60	g
	Standards 2)	EN 50178	

Notes: 1) Between primary and secondary

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

990823/3

²⁾ A list of corresponding tests is available

Dimensions LV 25-1200 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

Fastening

Connection of primaryConnection of secondary

± 0.3 mm

4 holes Ø 4.2 mm

Faston 6.3 x 0.8 mm

Faston 6.3 x 0.8 mm

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.