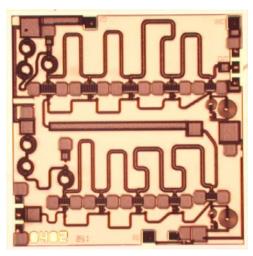


MAAPGM0052-DIE 903210 — Preliminary Information

Features


- ♦ 0.5 Watt Saturated Output Power Level
- ♦ Variable Drain Voltage (5-10V) Operation
- **♦** GaAs MSAG™ Process
- Proven Manufacturability and Reliability
 - □ No Airbridges
 - □ Polyimide Scratch Protection
 - □ No Hydrogen Poisoning Susceptibility

Description

The MAAPGM0052-Die is a 2-stage distributed power amplifier with on-chip bias networks. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Fabricated using M/A-COM's repeatable, high performance and highly reliable GaAs Multifunction Self-Aligned Gate (MSAG™) Process, each device is 100% RF tested on wafer to ensure performance compliance.

M/A-COM's MSAG™ process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors, multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip, and polyimide scratch protection for ease of use with automated manufacturing processes. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Primary Applications

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50\Omega$, $V_{DD} = 8V$, $I_{DQ} \approx 500$ mA², $P_{in} = 17$ dBm, $Rg \approx 100\Omega$

Parameter	Symbol	Typical	Units
Bandwidth	f	4.0-18.0	GHz
Output Power	P _{OUT}	26.0	dBm
1dB Compression Point	P1dB	25	dBm
Small Signal Gain	G	13	dB
Noise Figure	NF	6.0	dB
Input VSWR	VSWR	1.4:1	
Output VSWR	VSWR	1.5:1	
Gate Supply Current	I _{GG}	4	mA
Drain Supply Current	I _{DD}	600	mA

- 1. T_B = MMIC Base Temperature
- 2. Adjust V_{GG} between -2.4 and -1.0V to achieve I_{DQ} indicated.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

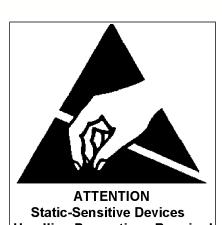
MAAPGM0052-DIE 903210 — Preliminary Information

Maximum Operating Conditions ³

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	22.0	dBm
Drain Supply Voltage	V_{DD}	+12.0	V
Gate Supply Voltage	V_{GG}	-3.0	V
Quiescent Drain Current (No RF, 40% Idss)	I _{DQ}	630	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	4.8	W
Junction Temperature	T _J	180	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Die Attach Temperature		310	°C

^{3.} Operation outside of these ranges may reduce product reliability. Operation at other than the typical values may result in performance outside the guaranteed limits.

Recommended Operating Conditions


Characteristic	Symbol	Min	Тур	Max	Unit
Drain Supply Voltage	V_{DD}	4.0	8.0	10.0	V
Gate Supply Voltage	V_{GG}	-2.4	-1.8	-1.0	V
Input Power	P _{IN}		17.0	20.0	dBm
Junction Temperature	TJ			150	°C
Thermal Resistance	Θ _{JC}		18.6		°C/W
MMIC Base Temperature	T _B			Note 4	°C

^{4.} Maximum MMIC Base Temperature = 150°C - O_{JC}* V_{DD} * I_{DQ}

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} = -2 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage, typically 8 V.
- 3. Adjust V_{GG} to set I_{DQ} .
- 4. Set RF input.
- Power down sequence in reverse. Turn V_{GG} off last.

Handling Precautions Required

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0052-DIE

903210 — Preliminary Information

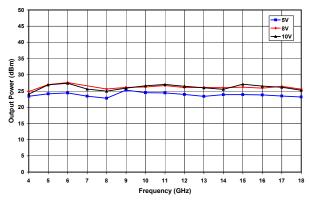
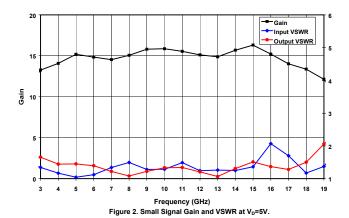



Figure 1. Output Power vs. Frequency and Drain Voltage at $P_{\rm in}$ =15dBm.

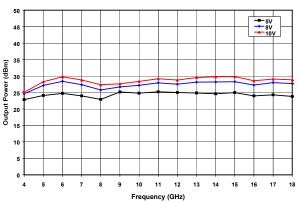


Figure 3. Saturated Output Power vs. Frequency and Drain Voltage.

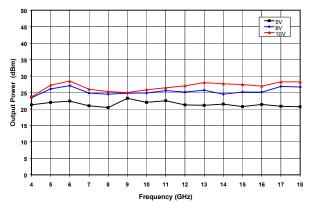


Figure 4. 1dB Compression Point vs. Frequency and Drain Voltage.

MAAPGM0052-DIE 903210 — Preliminary Information

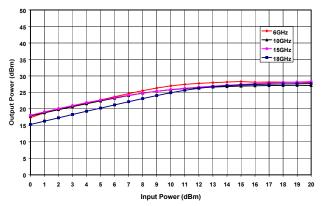


Figure 5. Output Power vs. Input Power and Frequency at V_D =8V.

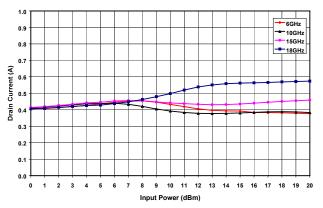


Figure 6. RF Drain Current vs. Input Power and Frequency at VD=8V.

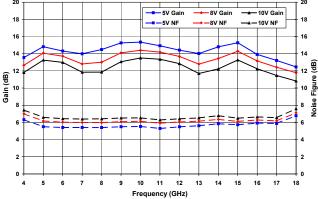


Figure 7. Gain and Noise Figure vs. Frequency and Drain Voltage at 25% I_{DSS}.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

MAAPGM0052-DIE 903210 — Preliminary Information

Mechanical Information

Chip Size: 3.000 x 3.000 x 0.075 mm (118 x 118 x 3 mils)

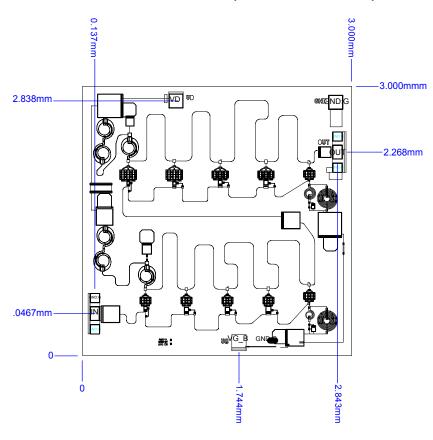
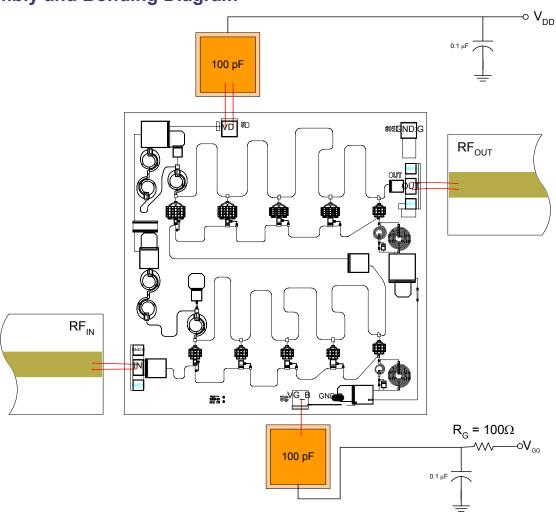


Figure 8. Die Layout

Chip edge to bond pad dimensions are shown to the center of the bond pad.

Bond Pad Dimensions


Pad	Size (μm)	Size (mils)
RF In and Out	100 x 150	4 x 6
DC Drain Supply Voltage VDD	150 x 150	6 x 6
DC Gate Supply Voltage VG_B	150 x 150	6 x 6

MAAPGM0052-DIE 903210 — Preliminary Information

Assembly and Bonding Diagram

Figure 9. Recommended bonding diagram for pedestal mount. Support circuitry typical of MMIC characterization fixture for CW testing.

Assembly Instructions:

Die attach: Use AuSn (80/20) 1 mil. preform solder. Limit time @ 300 °C to less than 5 minutes.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

[•] Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298