Features

Pin-Selectable, Hex Power-Supply Supervisory Circuit

General Description

The MAX6886 pin-selectable, multivoltage supply supervisor monitors six voltage-detector inputs and one watchdog input, asserting a RESET when inputs drop below the selected voltage thresholds or the watchdog timer expires. Manual reset and margin disable inputs offer additional flexibility.

Five logic inputs select the MAX6886 thresholds. Logic inputs select a supply tolerance (5% or 10%) and 1 of 32 factory-set threshold settings. Connect external capacitors or use the factory default setting to set the watchdog timeout periods and reset time delay.

The MAX6886 is available in a 20-pin thin QFN (5mm x 5mm x 0.8mm) package and operates over the extended -40°C to +85°C temperature range.

Applications

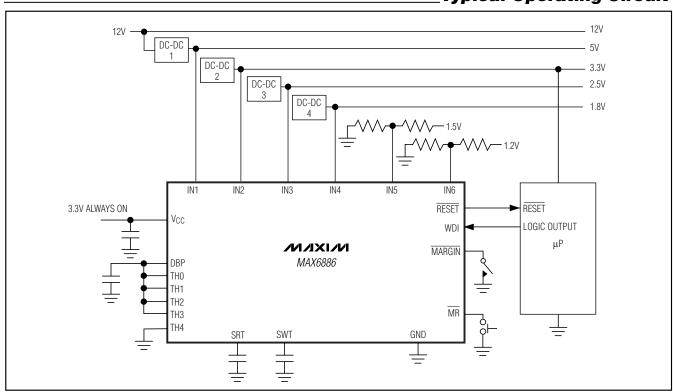
Multivoltage Systems

Telecom

Networking

Servers/Workstations/Storage Systems

♦ 32 Pin-Selectable Undervoltage Detector **Thresholds**


- ♦ Capacitor-Adjustable Reset and Watchdog **Timeout Periods**
- **♦** Factory Default Reset and Watchdog Timeout **Periods**
- **♦ Margining Disable and Manual Reset Controls**
- ♦ -40°C to +85°C Operating Temperature Range
- ♦ Small 5mm x 5mm 20-Pin Thin QFN Package
- **♦ Few External Components**
- ♦ ±1% Threshold Accuracy

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	PKG CODE
MAX6886ETP	-40°C to +85°C	20 Thin QFN	T2055-5

Pin Configuration appears at end of data sheet.

Typical Operating Circuit

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	
IN1-IN6, VCC, RESET, SRT, SWT	0.3V to +6V
TH0-TH4, WDI, MR, MARGIN	0.3V to +6V
DBP	0.3V to +3V
Input/Output Current (all pins)	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
20-Pin 5mm x 5mm Thin QFN	
(derate 21.3mW/°C above +70°C)	1702mW

+150°C
40°C to +85°C
65°C to +150°C
+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN1}-V_{IN4} \text{ or } V_{CC}=2.7V \text{ to } 5.8V, \text{WDI}=\text{GND}, \text{TH0-TH4}=\overline{\text{MARGIN}}=\overline{\text{MR}}=\text{DBP}, \text{T}_{A}=-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at T_A = +25°C.) (Notes 1, 2)

PARAMETER	SYMBOL	CONE	MIN	TYP	MAX	UNITS	
Operating Voltage Range (Note 3)		Voltage on either one guarantee the part is	2.7		5.8	V	
Supply Current	Icc	$V_{IN1} = 5.8V$, $IN2-IN6$	= GND, no load		0.9	1.2	mA
Digital Bypass Voltage	V_{DBP}			2.48	2.55	2.67	V
Threshold Accuracy (Table 2)	V _{TH}	IN1-IN6, IN_ falling	$T_A = +25^{\circ}C \text{ to } +85^{\circ}C$	-1		+1	% V _{TH}
Threshold Hysteresis	V _{TH-H} YS		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-1.5	0.3	+1.5	% V _{TH}
Threshold Tempco	ΔV _{TH} /°C				10		ppm/°C
IN_ Input Impedance	RIN	For V _{IN_} < highest V _{II} (not ADJ), thresholds adjustable	130	200	300	kΩ	
IN_ Input Leakage Current	I _{IN}	IN5, IN6 IN1-IN4 set as adjust	-150		+150	nA	
Power-Up Delay	t _{D-PO}	V _{CC} ≥ 2.5V			2.5	ms	
IN_ to RESET Delay	t _{D-R}	IN_ falling/rising, 100		20		μs	
Reset Default Timeout Period	t _{RP}	V _{SRT} = V _{CC}		180	200	220	ms
Reset Adjustable Timeout Period	t _{RP-ADJ}	C _{SRT} = 47nF		135	207	280	ms
SRT Adjustable Timeout Current	ISRT	V _{SRT} = GND		180	230	280	nA
SRT Default Timeout Threshold	V _{SRT-DEF}	V _{SRT} ≥ V _{SRT-DEF} , sele	ects reset default	1.1	1.25	1.5	V
SRT Adjustable Timeout Threshold	VSRT-ADJ	(Note 4)		0.95	1.00	1.05	V
SRT Adjustable Timeout Discharge Threshold	V _{SRT-DIS}	(Note 5)		100		mV	
SRT Adjustable Timeout Output- Low Discharge Current	I _{SRT-DIS}	V _{SRT} = 0.3V	0.7			mA	
RESET Output Low	Volreset	ISINK = 4mA, output a	asserted			0.4	V
RESET Output Open-Drain Leakage Current	ILKG	Output tri-stated		-1		+1	μΑ

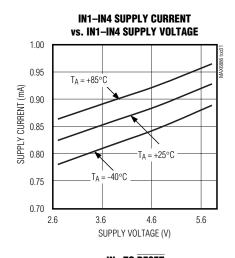
ELECTRICAL CHARACTERISTICS (continued)

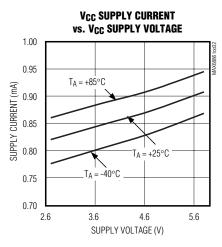
(V_{IN1} - V_{IN4} or V_{CC} = 2.7V to 5.8V, WDI = GND, TH0-TH4 = \overline{MARGIN} = \overline{MR} = DBP, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 1, 2)

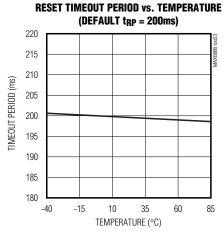
PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
MR, MARGIN, TH0-TH4, WDI	V _I L					0.6	V
Input Voltage	V _{IH}						V
MR Input Pulse Width	tMR			1			μs
MR Glitch Rejection					100		ns
MR to RESET Delay	t _{D-MR}				200		ns
MR to Internal DBP Pullup Current	IMR	V _{MR} = 1.4V		5	10	15	μΑ
MARGIN to Internal DBP Pullup Current	IMARGIN	V _{MARGIN} = 1.4V	5	10	15	μΑ	
TH0-TH4 Input Current				-100		+100	nA
WDI Pulldown Current	I _{WDI}	V _{WDI} = 0.6V		5	10	15	μΑ
WDI Input Pulse Width	twDI			50			ns
Watahdag Dafault Timeout Pariod	t	Vous Voe	Initial mode	92.16	102.4	112.64	s
Watchdog Default Timeout Period	tw□	$V_{SWT} = V_{CC}$	Normal mode	1.44	1.6	1.76	S
Watchdog Adjustable Timeout	two-adj	Court - 0.22UE	Initial mode	53.7	82.5	111.9	
Period		CswT = 0.33µF Normal mode		0.93	1.43	1.94	S
SWT Adjustable Timeout Current	Iswt	SWT = GND		180	230	280	nA
SWT Default Timeout Threshold	V _{SWT-DEF}	V _{SWT} ≥ V _{SWT-DEF} , set timeout	elects watchdog default	1.1	1.25	1.5	V
SWT Adjustable Timeout Threshold	Vswt-adj	(Note 4)	0.95	1.00	1.05	V	
SWT Adjustable Timeout Discharge Threshold	Vswt-dis	(Note 5)		100		mV	
SWT Adjustable Timeout Output- Low Discharge Current	I _{SWT-DIS}	V _{SWT} = 0.3V		0.7			mA

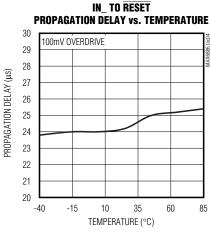
Note 1: Device may be supplied from IN1-IN4 or V_{CC}.

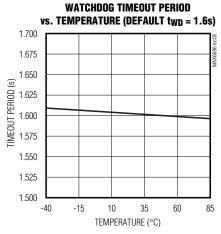
Note 2: 100% production tested at $T_A = +25^{\circ}C$ and $T_A = +85^{\circ}C$. Specifications at $T_A = -40^{\circ}C$ are guaranteed by design.

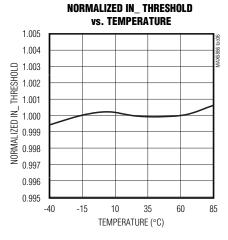

Note 3: The internal supply voltage, measured at V_{CC}, equals the maximum of IN1–IN4.

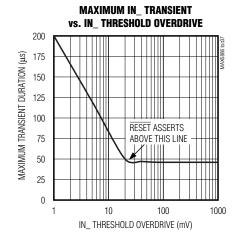

Note 4: External capacitor is charged by I_S T when V_S T-DIS < V_S T < V_S T-ADJ.

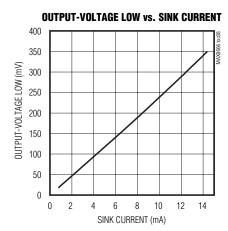

Note 5: External capacitor is discharged by Is T-DIS down to Vs T-DIS after Vs T reaches Vs T-ADJ.

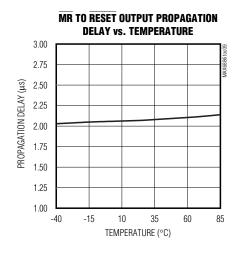

Typical Operating Characteristics

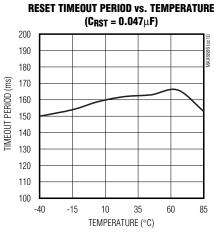

 $(V_{IN1}-V_{IN4} \text{ or } V_{CC} = 5V, WDI = GND, TH0-TH4 = \overline{MARGIN} = \overline{MR} = DBP, T_A = +25^{\circ}C, unless otherwise noted.)$

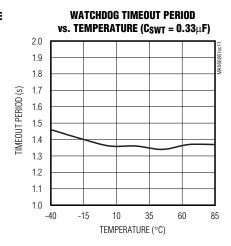


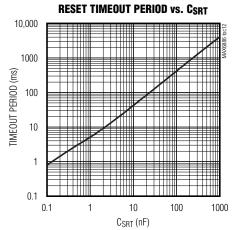


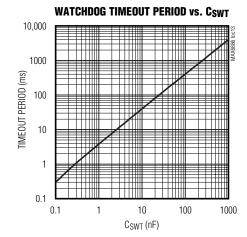


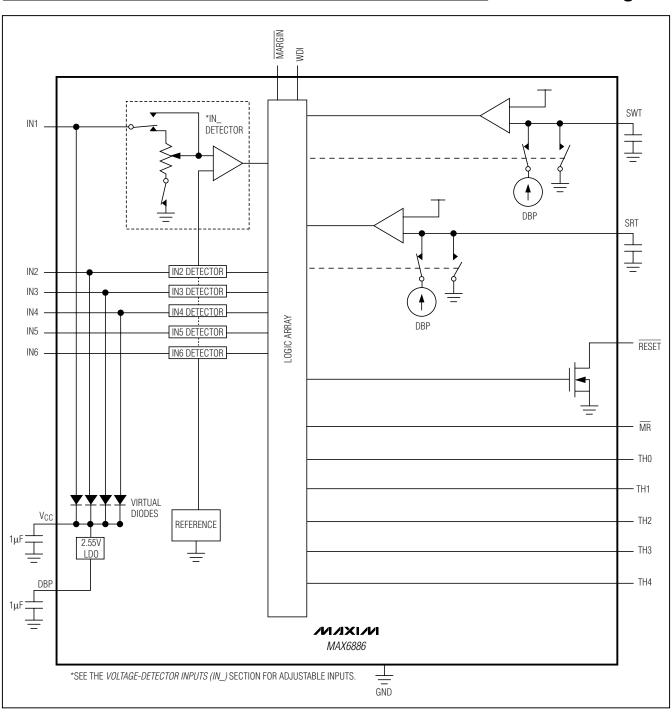







Typical Operating Characteristics (continued)


 $(V_{IN1}-V_{IN4} \text{ or } V_{CC} = 5V, WDI = GND, TH0-TH4 = \overline{MARGIN} = \overline{MR} = DBP, T_A = +25^{\circ}C, unless otherwise noted.)$


Pin Description

PIN	NAME	FUNCTION
1	RESET	Open-Drain, Active-Low Reset Output. RESET asserts when any input voltage falls below the selected threshold, the watchdog timer expires, or when MR is pulled low. RESET remains asserted for default (200ms) or adjustable reset timeout period after all assertion-causing conditions are cleared. An external pullup resister is required.
2	SRT	Reset Timeout Adjust Input. Connect an external capacitor between SRT and GND to set the reset timeout period. The timeout period is calculated by $t_{RP} = 4.348E6 \times C_{SRT}$ (t_{RP} in seconds and t_{SRT} in Farads). To use the factory default period of 200ms connect SRT to t_{CC} .
3	SWT	Watchdog Timeout Adjust Input. Connect an external capacitor between SWT and GND to set the watchdog timeout period. The adjustable timeout period is calculated by $t_{WD} = 4.348E6 \times C_{SWT}$ ($t_{WD} = 4.348E6 \times C_{SWT}$) in Seconds and $t_{SWT} = 4.348E6 \times C_{SWT}$ (two in seconds and $t_{SWT} = 4.348E6 \times C_{SWT}$). Disable the watchdog timer by connecting SWT to GND. Connect SWT to $t_{CC} = 4.348E6 \times C_{SWT}$ (two in seconds and 102.4s, respectively.

Pin Description (continued)

PIN	NAME	FUNCTION
4	GND	Ground
5	WDI	Watchdog Timer Input. Logic input for the watchdog timer function. If WDI is not strobed with a valid low-to-high or high-to-low transition within the selected timeout period, RESET asserts. WDI is internally pulled down to GND through a 10µA current sink.
6	MR	Active-Low Manual Reset Input. Pull $\overline{\text{MR}}$ low to assert $\overline{\text{RESET}}$. $\overline{\text{RESET}}$ will remain asserted for its preset/adjustable reset timeout period when $\overline{\text{MR}}$ is driven high. Leave $\overline{\text{MR}}$ unconnected or connect to DBP if unused. $\overline{\text{MR}}$ is internally pulled up to DBP through a 10 μ A current source.
7	MARGIN	Margin Input. When MARGIN is pulled low, RESET is held in its existing state independent of subsequent changes in monitored input voltages or the watchdog timer expiration. MARGIN is internally pulled up to DBP through a 10μA current source. MARGIN overrides MR if both are asserted at the same time.
8	TH4	Threshold Selection Input 4. Logic input to select desired threshold. Connect TH4 to GND or DBP. See Table 2 for available thresholds. Input has no internal pullup or pulldown.
9	TH3	Threshold Selection Input 3. Logic input to select desired threshold. Connect TH3 to GND or DBP. See Table 2 for available thresholds. Input has no internal pullup or pulldown.
10	TH2	Threshold Selection Input 2. Logic input to select desired threshold. Connect TH2 to GND or DBP. See Table 2 for available thresholds. Input has no internal pullup or pulldown.
11	TH1	Threshold Selection Input 1. Logic input to select desired threshold. Connect TH1 to GND or DBP. See Table 2 for available thresholds. Input has no internal pullup or pulldown.
12	TH0	Threshold Selection Input 0. Logic input to select desired threshold. Connect TH0 to GND or DBP. See Table 2 for available thresholds. Input has no internal pullup or pulldown.
13	Vcc	Internal Power-Supply Voltage. Bypass V _{CC} to GND with a 1µF ceramic capacitor as close to the device as possible. V _{CC} supplies power to the internal circuitry. V _{CC} is internally powered from the highest of the monitored IN1–IN4 voltages. Do not use V _{CC} to supply power to external circuitry. To externally supply V _{CC} , see the <i>Powering the MAX6886</i> section.
14	DBP	Digital Bypass Voltage. The internally generated voltage at DBP supplies power to internal logic and output RESET. Connect a 1µF capacitor from DBP to GND as close to the device as possible. Do not use DBP to supply power to external circuitry.
15	IN6	Input Voltage Detector 6. Select the undervoltage threshold using TH0–TH4. See Table 2. IN6 cannot supply power to the device. For improved noise immunity, bypass IN6 to GND with a 0.1µF capacitor installed as close to the device as possible.
16	IN5	Input Voltage Detector 5. Select the undervoltage threshold using TH0–TH4. See Table 2. IN5 cannot supply power to the device. For improved noise immunity, bypass IN5 to GND with a 0.1µF capacitor installed as close to the device as possible.
17	IN4	Input Voltage Detector 4. Select the undervoltage threshold using TH0–TH4. See Table 2. For improved noise immunity, bypass IN4 to GND with a 0.1µF capacitor installed as close to the device as possible. Power the device through IN1–IN4 or V _{CC} (see the <i>Powering the MAX6886</i> section).
18	IN3	Input Voltage Detector 3. Select the undervoltage threshold using TH0–TH4. See Table 2. For improved noise immunity, bypass IN3 to GND with a 0.1µF capacitor installed as close to the device as possible. Power the device through IN1–IN4 or V _{CC} (see the <i>Powering the MAX6886</i> section).
19	IN2	Input Voltage Detector 2. Select the undervoltage threshold using TH0–TH4. See Table 2. For improved noise immunity, bypass IN2 to GND with a 0.1µF capacitor installed as close to the device as possible. Power the device through IN1–IN4 or V _{CC} (see the <i>Powering the MAX6886</i> section).
20	IN1	Input Voltage Detector 1. Select the undervoltage threshold using TH0–TH4. See Table 2. For improved noise immunity, bypass IN1 to GND with a 0.1µF capacitor installed as close to the device as possible. Power the device through IN1–IN4 or V _{CC} (see the <i>Powering the MAX6886</i> section).
_	EP	Exposed Paddle. Internally connected to GND. Connect EP to GND or leave floating.

Functional Diagram

Detailed Description

The MAX6886 pin-selectable, multivoltage supply supervisor monitors six voltage-detector inputs and one watchdog input. RESET asserts when any of the configured input thresholds have been reached, MR is asserted, or the watchdog timer expires. MARGIN allows a system to be tested without RESET being asserted.

Logic inputs TH0-TH4 select 1 of 32 threshold sets for inputs IN1-IN6 (see Table 2, Threshold Options). Inputs in Table 2 that contain ADJ for inputs allow external resistor voltage-dividers to be connected to create additional thresholds.

RESET is an open-drain acitve-low output and asserts when MR is low, the watchdog timer expires, or any voltage at IN1–IN6 falls below its respective threshold. The default RESET time delay is 200ms and custom timeout periods are set by connecting an external capacitor from SRT to GND. The default watchdog normal and initial timeout periods are 1.6s and 102.4s, respectively. The normal and initial watchdog timeout periods can be adjusted by connecting an external capacitor from SWT to GND.

Powering the MAX6886

The MAX6886 derives power from the voltage-detector inputs IN1–IN4 or through an externally supplied V $_{\rm CC}$. A virtual diode-ORing scheme selects the positive input that supplies power to the device (see the *Functional Diagram*). The highest input voltage on IN1–IN4 supplies power to the device. One of IN1–IN4 must be at least 2.7V to ensure proper operation.

Internal hysteresis ensures that the supply input that initially powered the device continues to power the device when multiple input voltages are within 50mV of each other.

VCC powers the analog circuitry and is the bypass connection for the MAX6886 internal supply. Bypass VCC to GND with a 1µF ceramic capacitor installed as close to the device as possible. The internal supply voltage, measured at VCC, equals the maximum of IN1-IN4. If VCC is externally supplied, VCC must be at least 200mV higher than any voltage applied to IN1-IN4 and VCC must be brought up first. VCC always powers the device when all IN_ are factory set as "ADJ." Do not use the internally generated VCC to provide power to external circuitry.

The MAX6886 generates a digital supply voltage at DBP for the internal logic circuitry and $\overline{\text{RESET}}.$ Bypass DBP to GND with a 1µF ceramic capacitor installed as close to the device as possible. The nominal DBP output voltage is 2.55V. Do not use DBP to provide power to external circuitry.

Inputs

The MAX6886 contains multiple logic and voltagedetector inputs. Each voltage-detector input is monitored for undervoltage thresholds.

Voltage-Detector Inputs (IN_)

The MAX6886 offers several monitor options with both pin-selectable and adjustable reset thresholds. The threshold voltage at each adjustable IN_ input is typically 0.6V. To monitor a voltage >0.6V, connect a resistor-divider network to the circuit as shown in Figure 1.

$$V_{IN} T_H = V_{TH} (R_1 + R_2) / R_2$$
 (Equation 1)

where V_{IN_TH} is the desired reset threshold voltage for the respective IN_ and V_{TH} is the input threshold (0.6V).

Resistors R₁ and R₂ can have very high values to minimize current consumption due to low-leakage currents. Set R₂ to some conveniently high value ($10k\Omega$, for example) and calculate R₁ based on the desired reset threshold voltage, using the following formula:

$$R_1 = R_2 \times (V_{IN_TH}/V_{TH} - 1)$$

Threshold Logic Inputs (TH0-TH4)

The TH0-TH4 logic inputs select the undervoltage thresholds and tolerance of the IN1-IN6 voltage-detector inputs. TH0-TH4 define 32 unique options for the supervisor functionality. Connect the respective TH_ to GND for a logic 0 or to DBP for a logic 1. Tables 1 and 2 show the 32 unique threshold options available. TH4 sets the threshold tolerance of the undervoltage threshold. A logic 1 selects a 5% supply tolerance and a logic 0 selects a 10% supply tolerance. The MAX6886 logic determines which thresholds should be used for

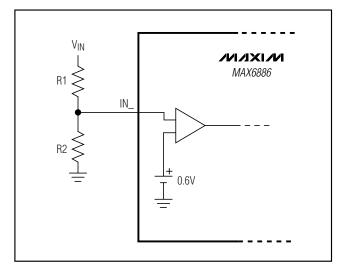


Figure 1. Adjusting the Monitored Threshold

the IN inputs only at power-up. Use the voltage-divider circuit of Figure 1 and Equation 1 to set the threshold for the user-adjustable inputs as described in the *Voltage-Detector Inputs (IN_)* section.

Manual Reset (MR)

Many microprocessor-based (μP) products require manual reset capability to allow an operator or external logic circuitry to initiate a reset. The manual reset input

 (\overline{MR}) can be connected directly to a switch without an external pullup resistor or debouncing network. \overline{MR} is internally pulled up to DBP. Leave unconnected if not used. \overline{MR} is internally pulled up to DBP through a $10\mu A$ current source. \overline{MR} is designed to reject fast, falling transients (typically 100ns pulses) and must be held low for a minimum of $1\mu s$ to assert \overline{RESET} . After \overline{MR} transitions from low to high, \overline{RESET} remains asserted for the duration of its timeout period.

Table 1. Nominal Monitored Supply Voltages

CEL ECTION	THA THOS		NOI	MINAL SUPPI	LY VOLTAGE	S (V)		SUPPLY
SELECTION	TH4-TH0* -	IN1	IN2	IN3	IN4	IN5	IN6	TOLERANCE (%)
1	11111	5.0	3.3	2.5	1.8	ADJ	ADJ	5
2	11110	5.0	3.0	2.5	1.8	ADJ	ADJ	5
3	11101	5.0	3.3	2.5	ADJ	ADJ	ADJ	5
4	11100	5.0	3.0	2.5	ADJ	ADJ	ADJ	5
5	11011	5.0	3.3	1.8	ADJ	ADJ	ADJ	5
6	11010	5.0	3.0	1.8	ADJ	ADJ	ADJ	5
7	11001	5.0	3.3	ADJ	ADJ	ADJ	ADJ	5
8	11000	5.0	3.0	ADJ	ADJ	ADJ	ADJ	5
9	10111	3.3	2.5	1.8	ADJ	ADJ	ADJ	5
10	10110	3.0	2.5	1.8	ADJ	ADJ	ADJ	5
11	10101	3.3	2.5	ADJ	ADJ	ADJ	ADJ	5
12	10100	3.0	2.5	ADJ	ADJ	ADJ	ADJ	5
13	10011	3.3	1.8	ADJ	ADJ	ADJ	ADJ	5
14	10010	3.0	1.8	ADJ	ADJ	ADJ	ADJ	5
15	10001	3.3	2.5	1.8	1.5	ADJ	ADJ	5
16	10000	3.0	2.5	1.8	1.5	ADJ	ADJ	5
17	01111	5.0	3.3	2.5	1.8	ADJ	ADJ	10
18	01110	5.0	3.0	2.5	1.8	ADJ	ADJ	10
19	01101	5.0	3.3	2.5	ADJ	ADJ	ADJ	10
20	01100	5.0	3.0	2.5	ADJ	ADJ	ADJ	10
21	01011	5.0	3.3	1.8	ADJ	ADJ	ADJ	10
22	01010	5.0	3.0	1.8	ADJ	ADJ	ADJ	10
23	01001	5.0	3.3	ADJ	ADJ	ADJ	ADJ	10
24	01000	5.0	3.0	ADJ	ADJ	ADJ	ADJ	10
25	00111	3.3	2.5	1.8	ADJ	ADJ	ADJ	10
26	00110	3.0	2.5	1.8	ADJ	ADJ	ADJ	10
27	00101	3.3	2.5	ADJ	ADJ	ADJ	ADJ	10
28	00100	3.0	2.5	ADJ	ADJ	ADJ	ADJ	10
29	00011	3.3	1.8	ADJ	ADJ	ADJ	ADJ	10
30	00010	3.0	1.8	ADJ	ADJ	ADJ	ADJ	10
31	00001	3.3	2.5	1.8	1.5	ADJ	ADJ	10
32	00000	ADJ	ADJ	ADJ	ADJ	ADJ	ADJ	_

Table 2. Threshold Options

CEL ECTION	T114 T110*	THRESHOLD VOLTAGES (V)							
SELECTION	TH4-TH0*	IN1	IN2	IN3	IN4	IN5	IN6		
1	11111	4.62	3.06	2.31	1.67	0.60	0.60		
2	11110	4.62	2.78	2.31	1.67	0.60	0.60		
3	11101	4.62	3.06	2.31	0.60	0.60	0.60		
4	11100	4.62	2.78	2.31	0.60	0.60	0.60		
5	11011	4.62	3.06	1.67	0.60	0.60	0.60		
6	11010	4.62	2.78	1.67	0.60	0.60	0.60		
7	11001	4.62	3.06	0.60	0.60	0.60	0.60		
8	11000	4.62	2.78	0.60	0.60	0.60	0.60		
9	10111	3.06	2.31	1.80	0.60	0.60	0.60		
10	10110	2.78	2.31	1.80	0.60	0.60	0.60		
11	10101	3.06	2.31	0.60	0.60	0.60	0.60		
12	10100	2.78	2.31	0.60	0.60	0.60	0.60		
13	10011	3.06	1.67	0.60	0.60	0.60	0.60		
14	10010	2.78	1.67	0.60	0.60	0.60	0.60		
15	10001	3.06	2.31	1.67	1.39	0.60	0.60		
16	10000	2.78	2.31	1.67	1.39	0.60	0.60		
17	01111	4.38	2.88	2.19	1.58	0.60	0.60		
18	01110	4.38	2.62	2.19	1.58	0.60	0.60		
19	01101	4.38	2.88	2.19	0.60	0.60	0.60		
20	01100	4.38	2.62	2.19	0.60	0.60	0.60		
21	01011	4.38	2.88	1.58	0.60	0.60	0.60		
22	01010	4.38	2.62	1.58	0.60	0.60	0.60		
23	01001	4.38	2.88	0.60	0.60	0.60	0.60		
24	01000	4.38	2.62	0.60	0.60	0.60	0.60		
25	00111	2.88	2.19	1.80	0.60	0.60	0.60		
26	00110	2.62	2.19	1.80	0.60	0.60	0.60		
27	00101	2.88	2.19	0.60	0.60	0.60	0.60		
28	00100	2.62	2.19	0.60	0.60	0.60	0.60		
29	00011	2.88	1.58	0.60	0.60	0.60	0.60		
30	00010	2.62	1.58	0.60	0.60	0.60	0.60		
31	00001	2.88	2.19	1.58	1.31	0.60	0.60		
32	00000	0.60	0.60	0.60	0.60	0.60	0.60		

^{*}TH4 = '1' selects 7.5% threshold tolerance, TH4 = '0' selects 12.5% threshold tolerance.

Contact factory for alternative thresholds.

Margin Output Disable (MARGIN)

MARGIN allows system-level testing while power supplies exceed the normal operating ranges. Drive MARGIN low to hold RESET in its existing state while system-level testing occurs. Leave MARGIN unconnected or connect to DBP if unused. An internal 10µA current source pulls MARGIN to DBP. MARGIN overrides MR if both are asserted at the same time.

Watchdog Timer

The MAX6886's watchdog circuit monitors the μ P's activity. If the μ P does not toggle the watchdog input (WDI) within the watchdog timeout period, RESET asserts. The internal watchdog timer is cleared by a reset, or by a transition at WDI (which can detect pulses as short as 50ns.) The watchdog timer remains cleared while RESET is asserted. The timer starts counting as soon as RESET goes high (see Figure 2).

The MAX6886 features two modes of watchdog timer operation: normal and initial modes. At power-up, after a reset event, or after the watchdog timer expires, the initial watchdog timeout is active (twd). After the first transition on WDI, the normal watchdog timeout is active (twd). The initial and normal watchdog timeouts are determined by the value of the capacitor connected between SWT and ground. The initial watchdog timeout is approximately 64 times the normal watchdog timeout.

Connect a capacitor from SWT to GND to determine the normal watchdog timeout period according to the following equation:

$$C_{SWT} = \frac{t_{WD}}{4.348 \times 10^6}$$

where t_{WD} is in seconds and C_{SWT} is in Farads. As an example, a $1\mu F$ capacitor gives a normal timeout period of 4.68s and an initial watchdog timeout period of approximately 4.5 minutes. Connect SWT to V_{CC} to use the factory-default watchdog normal and initial timeouts of 1.6s and 102.4s, respectively. Choose a low-leakage capacitor for C_{SWT} . Disable the watchdog timer by connecting SWT to GND. WDI is internally pulled down to GND through a $10\mu A$ current sink.

RESET Output

The reset output is typically connected to the reset input of a $\mu P.$ A $\mu P's$ reset input starts or restarts the μP in a known state. RESET goes low whenever one or more input voltage (IN1-IN6) monitors drop below their respective thresholds, when \overline{MR} is pulled low for a minimum of 1 μs , or when the watchdog timer expires. RESET remains low for its reset timeout period (tRP) after all assertion-causing conditions have been cleared (see Figure 2).

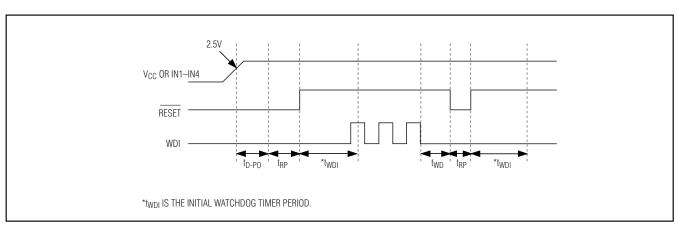


Figure 2. Watchdog, Reset, and Power-Up Timing Diagram

Set the RESET time delay by connecting a capacitor from SRT to GND using the following equation:

$$C_{SRT} = \frac{t_{WD}}{4.348 \times 10^6}$$

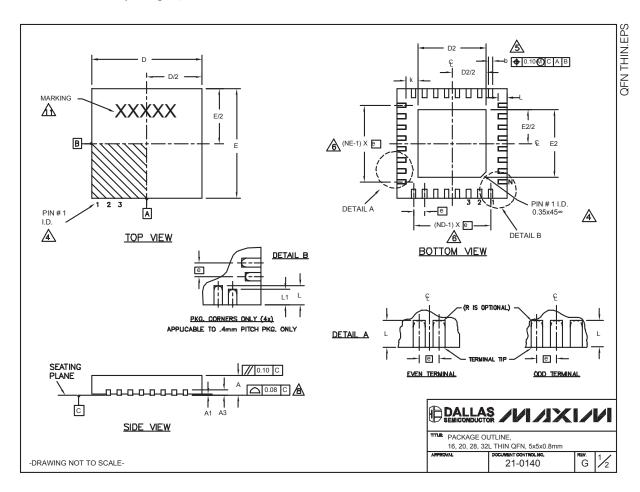
where t_{RP} is in seconds and C_{SRT} is in Farads. Connect SRT to V_{CC} for a factory-default reset timeout of 200ms. RESET is open-drain and requires an external pullup resistor. RESET remains low for $1V \le V_{CC} \le 2.5V$.

_Applications Information

Layout and Bypassing

For better noise immunity, bypass each of the voltage-detector inputs to GND with $0.1\mu\text{F}$ capacitors installed as close to the device as possible. Bypass V_{CC} and DBP to GND with $1\mu\text{F}$ capacitors installed as close to the device as possible.

Pin Configuration


TOP VIEW ₹ ₹ 18 RESET SRT DBP 3 SWT 13 V_{CC} MAX6886 GND TH0 *EXPOSED PAD 5 11 WDI TH1 8 9 10 THIN QFN *EXPOSED PAD CONNECTED TO GND.

_Chip Information

PROCESS: BiCMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

	COMMON DIMENSIONS												
PKG.	1	6L 5x	5	2	OL 5	√ 5	2	8L 5x	:5	3	32L 5x	:5	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	
A3	0.	20 RE	F.	0.	20 RE	F.	0.:	20 RE	F.	0.:	20 RE	F.	
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	
Е	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	
е	0	.80 BS	SC.	0.65 BSC.		0.50 BSC.		0	.50 BS	SC.			
k	0.25	-	-	0.25	-		0.25	-	-	0.25	-	-	
L	0.30	0.40	0.50	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	
L1	-	-	-	-	-	-	-	-	-	-	-	-	
N	16			20		28			32				
ND	4		5		7			8					
NE	4		5		7			8					
JEDEC		WHHE	3		WHHO)	V	VHHD	-1	V	WHHD-2		

N	0	rc	C.

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.

4 THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.

- ⚠ DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- M ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1, T2855-3 AND T2855-6.
- WARPAGE SHALL NOT EXCEED 0.10 mm.
- MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.
- 12. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.

-DRAWING NOT TO SCALE-

EXPOSED PAD VARIATIONS												
PKG.		D2			E2		L	DOWN				
CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	±0.15	BONDS ALLOWED				
T1655-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	**	YES				
T1655N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
T2055-2	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES				
T2055-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
T2055-5	3.15	3.25	3.35	3.15	3.25	3.35	0.40	Υ				
T2855-1	3.15	3.25	3.35	3.15	3.25	3.35	**	NO				
T2855-2	2.60	2.70	2.80	2.60	2.70	2.80	**	NO				
T2855-3	3.15	3.25	3.35	3.15	3.25	3.35	**	YES				
T2855-4	2.60	2.70	2.80	2.60	2.70	2.80	**	YES				
T2855-5	2.60	2.70	2.80	2.60	2.70	2.80	**	NO				
T2855-6	3.15	3.25	3.35	3.15	3.25	3.35	**	NO				
T2855-7	2.60	2.70	2.80	2.60	2.70	2.80	**	YES				
T2855-8	3.15	3.25	3.35	3.15	3.25	3.35	0.40	Υ				
T2855N-1	3.15	3.25	3.35	3.15	3.25	3.35	**	N				
T3255-2	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
T3255-3	3.00	3.10	3.20	3.00	3.10	3.20	**	YES				
T3255-4	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				
T3255N-1	3.00	3.10	3.20	3.00	3.10	3.20	**	NO				

**SEE COMMON DIMENSIONS TABLE

PACKAGE OUTLINE

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.