
Abstract

General Description The MAX8650 synchronous PWM buck controller operates from a 4.5 V to 28 V input and generates an adjustable 0.7 V to 5.5 V output voltage at loads up to 25 A . The MAX8650 uses a peak current-mode control architecture with an adjustable (200 kHz to 1.2 MHz) constant switching frequency and is externally synchronizable. The IC's current limit uses the inductor's DC resistance to improve efficiency or an external sense resistor for high accuracy. The current-limit threshold is adjusted with an external resistor. Foldback-type current limit can be implemented to reduce the power dissipation in overload or short-circuit conditions. Short-circuit protection is provided based on sensing the current in the low-side MOSFET. A reference input is provided for use with a high-accuracy external reference or for double-data-rate (DDR)-tracking applications. Monotonic prebiased startup is available for a safe-start in applications where the output capacitor may have an initial charge. This feature prevents the output from pulling low during startup, which is a common characteristic of conventional buck regulators. A 180° out-of-phase synchronization output is available for synchronizing with another converter.

[^0]| - Operates from 4.5V to 28V Supply | | | |
| :---: | :---: | :---: | :---: |
| -1\% FB Voltage Accuracy Over Temperature | | | |
| - Adjustable Output Voltage Down to 0.7V or REFIN | | | |
| - Adjustable Switching Frequency or External Synchronization from 200 kHz to 1.2 MHz | | | |
| - 180° Phase-Shifted Clock Output | | | |
| - Adjustable Overcurrent Limit | | | |
| - Adjustable Foldback Current Limit | | | |
| - Adjustable Slope Compensation | | | |
| - Selectable Current-Limit Mode: Latch-Off or Automatic Recovery | | | |
| - Monotonic Output-Voltage Rise at Startup | | | |
| - Output Sources and Sinks Current | | | |
| - Enable Input | | | |
| - Power-OK (POK) Output | | | |
| - Adjustable Soft-Start | | | |
| - Independently Adjustable Overvoltage Protection\qquad Ordering Information | | | |
| | | | |
| PART | TEMP RANGE | PIN-PACKAGE | PKG CODE |
| MAX8650EEG+ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 24 QSOP | E24-1 |

+Denotes lead-free package.

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

ABSOLUTE MAXIMUM RATINGS

IN, EN to GND	-0.3 V to +30 V
BST to LX.	-0.3V to +7.5 V
DH to LX	-0.3V to ($\mathrm{V}_{\text {BST }}+0.3 \mathrm{~V}$)
LX to GND	$-1 \mathrm{~V}(-2.5 \mathrm{~V}$ for $<50 \mathrm{~ns}$ transient) to $+30 \mathrm{~V}$
DL to PGND.	..-0.3V to (VVL + 0.3V)
ILIM2, ILIM1, SY	SYNC, OVP,
SCOMP to GN-0.3V to (VAVL + 0.3V)
VL to PGND	-0.3V to +7.5V

AVL, FB, POK, COMP, SS, MODE, REFIN to GND-0.3V to +6V
CS+, CS- to GND ..-0.3V to +6V
PGND to GND ... 0.3 V to +0.3 V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
24-Pin QSOP (derate $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).......... 762 mW
Junction Temperature ... $+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{LX}}=6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Input Voltage Range	$\mathrm{VL}=\mathrm{IN}$ for V IN $<7 \mathrm{~V}$	4.5		28.0	V
Quiescent Supply Current	$\mathrm{V}_{\mathrm{FB}}=0.75 \mathrm{~V}$, no switching		2	3	mA
Shutdown Supply Current$I_{I N}+I_{V L}+I_{A V L}$	EN = GND, VIN $\leq 28 \mathrm{~V}$			10	$\mu \mathrm{A}$
	$\mathrm{EN}=\mathrm{GND}, \mathrm{V}_{\mathrm{AVL}}=\mathrm{V}_{\mathrm{VL}}=\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$			32	
AVL Undervoltage-Lockout Trip Level	VAVL rising, 3\% typ hysteresis	3.90	4.15	4.40	V
Output Voltage Adjust Range	Minimum output voltage is limited by minimum duty cycle and external components	0.7		5.5	V
VL Regulation Voltage	7 V < VIN $<28 \mathrm{~V}, 1 \mathrm{~mA}$ < ILOAD $<40 \mathrm{~mA}$	6.0	6.5	7.0	V
VL Output Current		40			mA
AVL Regulation Voltage	$5.5 \mathrm{~V}<\mathrm{V}_{\mathrm{VL}}<7 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<10 \mathrm{~mA}$	4.900	4.975	5.050	V
AVL Output Current		10			mA
SOFT-START					
SS Shutdown Resistance	From SS to GND, $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		20	100	Ω
SS Soft-Start Current	$\mathrm{V}_{S S}=0.625 \mathrm{~V}$	18	23	28	$\mu \mathrm{A}$
REFIN INPUT					
REFIN Dual Mode ${ }^{\text {TM }}$ Threshold		$\begin{gathered} \mathrm{V}_{\mathrm{AVL}}- \\ 1.0 \mathrm{~V} \end{gathered}$		$V_{\text {AVL }}$	V
REFIN Input Bias Current	VREFIN $=0.7 \mathrm{~V}$ to 1.5 V	-250		+250	nA
REFIN Input Voltage Range		0		1.5	V

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{LX}}=6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
ERROR AMPLIFIER					
FB Regulation Voltage	REFIN = AVL	0.693	0.7	0.707	V
	$\mathrm{V}_{\text {REFIN }}=0.7 \mathrm{~V}$ to 1.5 V	VREFIN - 0.00375	$V_{\text {REFIN }}$	VREFIN 0.00375	
Transconductance		70	110	160	$\mu \mathrm{S}$
COMP Shutdown Resistance	From COMP to GND, $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		20	100	Ω
FB Input Leakage Current	$\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$		5	50	nA
FB Input Common-Mode Range		-0.1		+1.5	V
CURRENT-SENSE AMPLIFIER					
Voltage Gain	$\mathrm{V}_{\text {OUT }}=0$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {CS }+}-\mathrm{V}_{\text {CS }}=30 \mathrm{mV}$		12		V/V
CURRENT LIMIT					
Peak Current-Limit Threshold (VCS+ - VCs-)	RILIM $1=24 \mathrm{k} \Omega$	27.2	32.0	36.8	mV
	ILIM1 = AVL	68.0	80.0	92.0	
Valley Current-Limit Threshold (VLX - VPGND)	RILIM2 $=50 \mathrm{k} \Omega$	-42.5	-50.0	-57.5	mV
	RILIM2 $=200 \mathrm{k} \Omega$	-170	-200	-230	
Negative Current-Limit Threshold	\% of (typ) positive direction current limit (VLX - VPGND)	-90	-120	-150	\%
CS+, CS- Input Current	$\mathrm{V}_{\text {CS }}+=\mathrm{V}$ CS- $=0 \mathrm{~V}$ or 5.5 V	-25		+25	$\mu \mathrm{A}$
CS+, CS- Input Common-Mode Range		0		5.5	V
SLOPE COMPENSATION					
Slope Compensation at Maximum Duty Cycle	$\mathrm{V}_{\text {SCOMP }}=2.5 \mathrm{~V}$	231.25	250.00	268.75	mV
	V SCOMP $=1.25 \mathrm{~V}$	113.77	123.00	132.23	
	SCOMP = AVL	231.25	250.00	268.75	
	SCOMP $=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	113.77	123.00	132.23	
	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	110.70	123.00	132.23	
SCOMP High Threshold				$\mathrm{V}_{\text {AVL }}-0.5$	V
SCOMP Low Threshold		0.5			V
SCOMP Adjustment Range		1.25		2.5	V
SCOMP Input Leakage Current	VSCOMP $=1.25 \mathrm{~V}$ to 2.5 V		5	200	nA
OSCILLATOR					
Switching Frequency	RFSYNC $=21.0 \mathrm{k} \Omega$	800	1000	1200	kHz
	RFSYNC $=143 \mathrm{k} \Omega$	160	200	240	
Minimum Off-Time	Measured at DH		235		ns
Minimum On-Time	Measured at DH		75	100	ns

4.5V to 28 V Input Current-Mode Step-Down Controller with Adjustable Frequency

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{LX}}=6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
FSYNC Synchronization Range		160		1200	kHz
FSYNC Input-High Pulse Width		100			ns
FSYNC Input-Low Pulse Width		100			ns
FSYNC Rise/Fall Time				100	ns
SYNCO Phase Shift			180		Degrees
SYNCO Output Low Level	ISYNCO $=5 \mathrm{~mA}$			0.4	V
SYNCO Output High Level	ISYNCO $=5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{AVL}}-$ 1V			V
FSYNC Pin Threshold for SYNC Mode		1.7		2.5	V
FSYNC Input Low				0.4	V
FSYNC Input High		2.5			V
FET DRIVERS					
DH On-Resistance, High State	$\mathrm{V}_{\text {BST }}-\mathrm{V}_{\text {LX }}=6.5 \mathrm{~V}$		1.13	1.8	Ω
	$V_{\text {BST }}-V_{\text {LX }}=5 \mathrm{~V}$		1.4	2.2	
DH On-Resistance, Low State	$\mathrm{V}_{\text {BST }}-\mathrm{V}_{\text {LX }}=6.5 \mathrm{~V}$		1.0	2	Ω
	$V_{\text {BST }}-V_{\text {LX }}=5 \mathrm{~V}$		1.3	2.2	
DL On-Resistance, High State	$V_{V L}=6.5 \mathrm{~V}$		1.6	2.5	Ω
	$\mathrm{V}_{\mathrm{VL}}=5 \mathrm{~V}$		1.7	2.8	
DL On-Resistance, Low State	$\mathrm{V}_{\mathrm{VL}}=6.5 \mathrm{~V}$		0.8	1.5	Ω
	$\mathrm{V}_{\mathrm{VLL}}=5 \mathrm{~V}$		0.85	1.5	
Break-Before-Make Dead Time	Low side off to high side on, high side off to low side on		20	30	ns
LX, BST Leakage Current	$\mathrm{V}_{\mathrm{BST}}=35 \mathrm{~V}, \mathrm{~V}_{\text {LX }}=28 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=28 \mathrm{~V}$			5	$\mu \mathrm{A}$
THERMAL PROTECTION					
Thermal Shutdown	Rising temperature		+160		${ }^{\circ} \mathrm{C}$
Thermal-Shutdown Hysteresis			15		${ }^{\circ} \mathrm{C}$

\qquad

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{BST}}-\mathrm{V}_{\mathrm{LX}}=6.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
POK					
Power-OK Threshold	REFIN = AVL, $\mathrm{V}_{\text {FB }}$ rising, typical hysteresis is 3\%	629.0	650.0	671.0	mV
	$\mathrm{V}_{\text {REFIN }}=0.7 \mathrm{~V}$ to 1.5V, $\mathrm{V}_{\text {FB }}$ rising, typical hysteresis is 3\%	88.7	91.7	94.7	\% of
POK Output Voltage, Low	$\mathrm{V}_{\mathrm{FB}}=0.6 \mathrm{~V}, \mathrm{IPOK}=2 \mathrm{~mA}$		25	200	mV
POK Leakage Current, High	$\mathrm{V}_{\mathrm{POK}}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
OVP					
OVP Threshold Voltage	REFIN = AVL	770	800	840	mV
	$\mathrm{V}_{\text {REFIN }}=0.7 \mathrm{~V}$ to 1.5 V	110	115	120	$\begin{gathered} \% \text { of } \\ V_{\text {REFIN }} \end{gathered}$
OVP Leakage Current, High	V OVP $=0.8 \mathrm{~V}$			500	nA
MODE CONTROL					
MODE Logic-Level Low	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {AVL }} \leq 5.5 \mathrm{~V}$			0.4	V
MODE Logic-Level High	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {AVL }} \leq 5.5 \mathrm{~V}$	1.8			V
MODE Input Current	$\mathrm{V}_{\text {MODE }}=0$ to $\mathrm{V}_{\text {AVL }}$	-1		+1	$\mu \mathrm{A}$
SHUTDOWN CONTROL					
EN Logic-Level Low	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{AVL}} \leq 5.5 \mathrm{~V}$			0.45	V
EN Logic-Level High	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {AVL }} \leq 5.5 \mathrm{~V}$	2			V
EN Input Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	-1		+1	$\mu \mathrm{A}$
	$\mathrm{V}_{\mathrm{EN}}=28 \mathrm{~V}$		1.5	6.0	

Note 1: Specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$. Limits over the operating temperature range are guaranteed by design.

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

(Circuit of Figure 3, 500kHz switching, $\mathrm{V}_{\mathrm{IN}}=17 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Typical Operating Characteristics (continued)

(Circuit of Figure 3, 500kHz switching, $\mathrm{V}_{\mathrm{IN}}=17 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Pin Description

PIN	NAME	FUNCTION
1	FSYNC	Frequency Set and Synchronization. Connect a resistor from FSYNC to GND to set the switching frequency, or drive with an external clock signal between 160 kHz and 1.2 MHz . See the Switching Frequency and Synchronization section.
2	MODE	Current-Limit Operating-Mode Selection. Connect MODE to AVL for latch-off current limit or connect MODE to GND for automatic-recovery current limit.
3	SYNCO	Synchronization Output. Provides a clock output that is 180° out-of-phase with the internal oscillator for synchronizing another MAX8650.
4	BST	Boost Capacitor Connection. Connect a $0.1 \mu \mathrm{~F}$ ceramic capacitor from BST to LX.
5	DH	High-Side n-Channel MOSFET Gate-Driver Output. Connect DH to the gate of the high-side MOSFET. DH is internally pulled low in shutdown.
6	LX	External Inductor Connection
7	DL	Low-Side n-Channel MOSFET Gate-Driver Output. Connect DL to the gate of the low-side MOSFET (synchronous rectifier). DL is internally pulled low in shutdown.
8	PGND	Power Ground. Connect PGND to the power ground plane and to the source of the low-side external MOSFET. The return path for both gate drivers is through PGND.
9	VL	Internal 6.5V Linear-Regulator Output. Connect a $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ ceramic capacitor from VL to ground. For $\mathrm{VIN}_{\mathrm{I}}<7 \mathrm{~V}$, connect VL directly to IN . VL powers both gate drivers. VL is the input to the AVL linear regulator.
10	IN	Input Supply Voltage. IN is the input to the VL linear regulator. Connect VL to IN for $\mathrm{V}_{\text {IN }}<7 \mathrm{~V}$.
11	EN	Enable. Apply logic-high to enable the output, or logic-low to put the controller in low-power shutdown mode. Connect EN to IN for always-on operation.
12	AVL	Internal 5V Linear-Regulator Output. Connect a $1 \mu \mathrm{~F}$ ceramic capacitor from AVL to ground. AVL powers the MAX8650's internal circuits.
13	GND	Ground. Connect GND to the analog ground plane. Connect the analog ground and power ground planes at a single point near the IC. Low-current signals return to GND.
14	CS+	Positive Differential Current-Sense Input
15	CS-	Negative Differential Current-Sense Input
16	ILIM1	Programmable Current-Limit Input for Inductor Current. Connect a resistor from ILIM1 to GND to set the peak current-limit threshold. ILIM1 sources $10 \mu \mathrm{~A}$ through the resistor, and the voltage at ILIM1 is attenuated $7.5: 1$ to set the final current limit. For example, a $60 \mathrm{k} \Omega$ resistor results in 600 mV at ILIM1. This results in a current-limit threshold ($\mathrm{V}_{\mathrm{CS}}^{+}$- V_{CS}) of 80 mV . The ILIM1 resistor range is $24 \mathrm{k} \Omega$ to $60 \mathrm{k} \Omega$. Connect ILIM1 to AVL to set the default current-limit threshold of 80 mV .

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Pin Description (continued)

PIN	NAME	FUNCTION
17	OVP	Output Voltage Sensing for Overvoltage Protection. Connect OVP to the center of a resistor-divider from OUT to GND to set the FB independent output overvoltage trip point. Connect OVP to FB if this independence is not desired. The OVP threshold is 115% of the nominal FB regulation voltage.
18	FB	Feedback Input. Connect FB to the center of a resistor voltage-divider between the output and GND to set the output voltage. The FB threshold regulates at 0.7 V or VREFIN.
19	COMP	Loop Compensation. Connect COMP to an external RC network to compensate the loop. COMP is internally pulled to GND through 20Ω during shutdown.
20	SS	Soft-Start. Connect a $0.1 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ ceramic capacitor from SS to GND. This capacitor sets the softstart period during startup. SS is internally pulled to GND through 20Ω during shutdown.
21	REFIN	External Reference Input. Connect REFIN to AVL to use the internal 0.7 V reference for the feedback threshold.
22	ILIM2	Programmable Current-Limit Input for the Low-Side MOSFET (LX-PGND). Connect a resistor from ILIM2 to GND to set the valley current-limit threshold. ILIM2 sources $5 \mu \mathrm{~A}$ through the resistor, and the voltage at ILIM2 is attenuated $5: 1$ to set the final current limit. For example, a $50 \mathrm{k} \Omega$ resistor results in 250 mV at ILIM2. This results in a current-limit threshold (VLX - VPGND) of 50 mV . VIIIM2 must not exceed 1 V .
23	SCOMP	Programmable Slope-Compensation Input. The slope-compensation voltage rate is the voltage at SCOMP times 0.1 divided by the oscillator period (T). Connect SCOMP to AVL or GND to set to the default of $250 \mathrm{mV} / \mathrm{T}$ or $125 \mathrm{mV} / \mathrm{T}$, respectively.
24	POK	Open-Drain Output that Is High Impedance when the Output Voltage Rises Above 92\% of the Nominal Regulation Value. POK pulls low during shutdown and when the output drops below 88\% of the nominal regulation value.

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Figure 1. Functional Diagram

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Detailed Description

DC-DC Converter Control Architecture
The MAX8650 step-down controller uses a PWM, cur-rent-mode control scheme. An internal transconductance amplifier establishes an integrated error voltage. The heart of the PWM controller is an open-loop comparator that compares the integrated voltage-feedback signal against the amplified current-sense signal plus the adjustable slope-compensation ramp, which are summed into the main PWM comparator to preserve inner-loop stability. At each rising edge of the internal clock, the high-side MOSFET turns on until the PWM comparator trips or the maximum duty cycle is reached. During this on-time, current ramps up through the inductor, storing energy in a magnetic field and sourcing current to the output. The current-mode feedback system regulates the peak inductor current as a function of the output-voltage error signal. The circuit acts as a switch-mode transconductance amplifier and pushes the output LC filter pole normally found in a voltage-mode PWM to a higher frequency.
During the second half of the cycle, the high-side MOSFET turns off and the low-side MOSFET turns on. The inductor releases the stored energy as the current ramps down, providing current to the output. The output capacitor stores charge when the inductor current exceeds the required load current and discharges when the inductor current is lower, smoothing the voltage across the load. Under soft-overload conditions, when the peak inductor current exceeds the selected current limit (see the Current-Limit Circuit section), the high-side MOSFET is turned off immediately and the low-side MOSFET is turned on and remains on to let the inductor current ramp down until the next clock cycle. Under heavy-overload or short-circuit conditions, the valley foldback current limit is enabled to reduce power dissipation of external components.
The MAX8650 operates in a forced-PWM mode. As a result, the controller maintains a constant switching frequency, regardless of load, to allow for easier filtering of the switching noise.

Internal Linear Regulators

The MAX8650 contains two internal LDO regulators. The AVL regulator provides 5 V for the IC's internal circuitry, and the VL regulator provides 6.5 V for the MOSFET gate drivers. Connect a $4.7 \mu \mathrm{~F}$ ceramic capacitor from VL to PGND, and connect a 1μ F ceramic capacitor from AVL to GND. For applications where the input voltage is between 4.5 V and 7 V , connect VL directly to IN and connect a 10Ω resistor from VL to AVL.

Undervoltage Lockout
 When AVL drops below 4.03V, the MAX8650 assumes that the supply voltage is too low for proper operation, so the undervoltage-lockout (UVLO) circuitry inhibits switching and forces the DL and DH gate drivers low. When AVL rises above 4.15 V , the controller enters the startup sequence and then resumes normal operation.
 Startup and Soft-Start

The internal soft-start circuitry gradually ramps up the reference voltage to control the rate of rise of the stepdown controller's output and reduce input surge currents during startup. The soft-start period is determined by the value of the capacitor from SS to GND. The softstart time is approximately ($30.4 \mathrm{~ms} / \mu \mathrm{F}$) x CSS. The MAX8650 also features monotonic output-voltage rise; therefore, both external power MOSFETs are kept off if the voltage at FB is higher than the voltage at SS. This allows the MAX8650 to start up into a prebiased output without pulling the output voltage down.
Before the MAX8650 can begin the soft-start and powerup sequence, the following conditions must be met:

- VAVL exceeds the 4.15V UVLO threshold.
- EN is at logic-high.
- The thermal limit is not exceeded.

Enable (EN)

The MAX8650 features a low-power shutdown mode. A logic-low at EN shuts down the controller. During shutdown, the output is high impedance, and both DH and DL are low. Shutdown reduces the quiescent current (IQ) to less than $10 \mu \mathrm{~A}$. A logic-high at EN enables the controller.

Synchronous-Rectifier Driver (DL) Synchronous rectification reduces conduction losses in the rectifier by replacing the normal Schottky catch diode with a low-resistance MOSFET switch. The MAX8650 also uses the synchronous rectifier to ensure proper startup of the boost gate-driver circuit and to provide the current-limit signal. The low-side gate driver (DL) swings from 0 to the 6.5 V provided from VL. The DL waveform is always the complement of the DH highside gate-drive waveform (with controlled dead time to prevent cross-conduction or shoot-through). An adaptive dead-time circuit monitors the DL voltage and prevents the high-side MOSFET from turning on until DL is fully off. For the dead-time circuit to work properly, there must be a low-resistance, low-inductance path from the DL driver to the MOSFET gate. Otherwise, the sense circuitry in the MAX8650 can interpret the MOSFET gate as off when gate charge actually remains. Use very short, wide traces, approximately 10

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Figure 2. DH Boost Circuit
to 20 squares (50 mils to 100 mils wide if the MOSFET is 1 in from the device) for the gate drive. The dead time at the other edge (DH turning off) also has an adaptive dead-time circuit operating in a similar manner. For both edges, there is an additional 20ns fixed dead time after the adaptive dead time expires.

High-Side Gate-Drive Supply (BST)
A flying capacitor boost circuit (Figure 2) generates the gate-drive voltage for the high-side n-channel MOSFET. The capacitor between BST and LX is charged from VL to 6.5 V minus the diode forward-voltage drop while the low-side MOSFET is on. When the low-side MOSFET is switched off, the stored voltage of the capacitor is stacked above LX to provide the necessary turn-on voltage (VGS) for the high-side MOSFET. The controller then closes an internal switch between BST and DH to turn the high-side MOSFET on.

Current-Sense Amplifier

The current-sense circuit amplifies the differential cur-rent-sense voltage (VCS+ - VCs-). This amplified cur-rent-sense signal and the internal slope-compensation signal are summed (VSUM) together and fed into the PWM comparator's inverting input. The PWM comparator shuts off the high-side MOSFET when Vsum exceeds the integrated feedback voltage (VCOMP).
The differential current sense is also used to provide peak inductor current limiting. This current limit is more accurate than the valley current limit, which is measured across the low-side MOSFET's on-resistance.

Current-Limit Circuit

The MAX8650 uses both foldback and peak current limiting (Figure 5). The valley foldback current limit is used to reduce power dissipation of external compo-
nents, mainly inductor and power MOSFETs, and upstream power source, when output is severely overloaded or short circuited and POK is low. Thus, the circuit can withstand short-circuit conditions continuously without causing overheating of any component. The peak constant-current limit sets the current-limit point more accurately since it does not have to suffer the wide variation of the low-side power MOSFET's on-resistance due to tolerance and temperature.
The valley current is sensed across the on-resistance of the low-side MOSFET (VPGND - VLX). The valley current limit trips when the sensed voltage exceeds the valley current-limit threshold. The valley current limit recovers when the sensed voltage drops below the valley currentlimit threshold (except when using the latch-off option).
Set the minimum valley current-limit threshold, when the output voltage is at the nominal regulated value, higher than the maximum peak current-limit setting. With this method, the current-limit point accuracy is controlled by the peak current limit and is not interfered with by the wide variation of MOSFET on-resistance. See the Setting the Current Limit section for how to set these limits.
The MAX8650 can be configured for either an adjustable valley current-limit threshold with adjustable foldback ratio, or a fixed valley current limit that latches the converter off. When latch-off is used (MODE is connected to AVL), set the current-limit threshold by only one resistor from ILIM2 to GND and make sure this threshold is higher than the maximum output current required by at least a 20% margin. Cycle EN or input power to reset the current-limit latch.
The peak current limit is used to sense the inductor current, and is more accurate than the valley current limit since it does not depend upon the on-resistance of the low-side MOSFET. The peak current can be measured across the resistance of the inductor for the highest efficiency, or alternatively, a current-sense resistor can be used for more accurate current sensing. A resistor connected from ILIM1 to GND sets the peak current-limit threshold.
For more information on the current limit, see the Setting the Current Limit section.

Switching Frequency and Synchronization

 The MAX8650 has an adjustable internal oscillator that can be set to any frequency from 200 kHz to 1.2 MHz . To set the switching frequency, connect a resistor from FSYNC to GND. Calculate the resistor value from the following equation:
4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

$$
\mathrm{R}_{\mathrm{FSYNC}}=\left(\frac{1}{2 \mathrm{f}_{\mathrm{S}}}-162 \mathrm{~ns}\right)\left(\frac{1 \mathrm{k} \Omega}{16.34 \mathrm{~ns}}\right)
$$

The MAX8650 can also be synchronized to an external clock by connecting the clock signal to FSYNC. In addition, SYNCO is provided to synchronize a second MAX8650 controller 180° out-of-phase with the first by connecting SYNCO of the first controller to FSYNC of the second. When the first controller is synchronized to an external clock, the external clock is inverted to generate SYNCO. Therefore, to get 180° out-of-phase operation, the clock input to the first controller should have a 50% duty cycle.

Power-Good Signal (POK)
POK is an open-drain output on the MAX8650 that monitors the output voltage. When the output is above 92%
of its nominal regulation voltage, POK is high impedance. When the output drops below 89% of its nominal regulation voltage, POK is internally pulled low. POK is also internally pulled low when the MAX8650 is shut down. To use POK as a logic-level signal, connect a pullup resistor from POK to the logic supply rail.

Thermal-Overload Protection
Thermal-overload protection limits total power dissipation in the MAX8650. When the junction temperature exceeds $+160^{\circ} \mathrm{C}$, an internal thermal sensor shuts down the device, allowing the IC to cool. The thermal sensor turns the IC on again after the junction temperature cools by $15^{\circ} \mathrm{C}$, resulting in a pulsed output during continuous thermal-overload conditions.

Figure 3. Applications Circuit with 500 kHz Switching, 10 V to 24 V Input, and 3.3V/15A Output

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Table 1. Component List for Figure 3

COMPONENT	DESCRIPTION	VENDOR/PART	QUANTITY
C1, C2, C3	10بF, 25 V X5R ceramic capacitors	TDK C3225X5R1E106M (1210)	3
C5, C6	$0.1 \mu \mathrm{~F}, 10 \mathrm{~V}$ X7R ceramic capacitors	Kemet C0603C104M9RAC (0603)	2
C7	220pF, 50V X7R ceramic capacitor	TDK C1608X7R1H271K	1
C8	Not installed	-	0
C9A, C9B	$150 \mu \mathrm{~F} \pm 20 \%, 4 \mathrm{~V}, 7 \mathrm{~m} \Omega$ ESR polymer aluminum electrolytic capacitors	Panasonic EEFSDOG151R	2
C10, C14	$0.47 \mu \mathrm{~F} \pm 10 \%$, 10V X5R ceramic capacitors	Taiyo Yuden LMK107BJ474KA (0603)	2
C11	4.7 F F, 10V X5R ceramic capacitor	TDK C2012X5R1A475M (0805)	1
C12	100pF, 25V C0G ceramic capacitor	Kemet C603C101K3GAC (0603)	1
C13, C15	$1 \mu \mathrm{~F}, 16 \mathrm{~V}$ X5R ceramic capacitors	TDK C1608X7R1C105M (0603)	2
D1	100V, 200mA switching diode	Central CMPD914 (SOT23)	1
D2	30V, 100mA Schottky diode	Central CMPSH-3 (SOT23)	1
L1	$1.2 \mu \mathrm{H}, 18.2 \mathrm{~A}, 2.6 \mathrm{~m} \Omega \mathrm{max}, 2.16 \mathrm{~m} \Omega \mathrm{typ}$ inductor	TOKO FDA1254-1R2M	1
Q1	30V n-channel MOSFET	Fairchild FDS7296N3	1
Q2	30 V n-channel MOSFET	Fairchild FDS7088SN3	1
R1	$51.1 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R2	$100 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1
R3	0Ω resistor	-	1
R4	Not installed	-	0
R5	$17.4 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R6	$130 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R8	$220 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1
R9, R11	$7.5 \mathrm{k} \Omega \pm 1 \%$ resistors (0603)	-	2
R10, R12	$28.0 \mathrm{k} \Omega \pm 1 \%$ resistors (0603)	-	2
R13	$39.2 \Omega \pm 1 \%$ resistor (0603)	-	1
R14	$2.4 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1
R15	$39.2 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Figure 4. Applications Circuit with 400 kHz Switching, 12 V Input, and $0.9 \mathrm{~V} \pm 8 \mathrm{~A}$ Output

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Table 2. Component List for Figure 4

COMPONENT	DESCRIPTION	VENDOR / PART	QUANTITY
C1, C2	104F, 16V X5R ceramic capacitors (1210)	Taiyo Yuden EMK325BJ106MN	2
C3	0.01 F , 10V X7R ceramic capacitor (0603)	Kemet C0603C103M9RAC	1
C4, C5	$0.1 \mu \mathrm{~F}, 10 \mathrm{~V}$ X7R ceramic capacitors	Kemet C0603C104M9RAC	2
C6	1800pF, 50V X7R ceramic capacitor	TDK C1608X7R1H182K	1
C7	X7\% 22pF, 50V ceramic capacitor	TDK C1608C0G1H220K	1
C8A-C8E	$680 \mu \mathrm{~F} / 20 \%$, $2.5 \mathrm{~V}, 6 \mathrm{~m} \Omega$ ESR capacitors, POS AI Lytic	Sanyo 2R5TPD680M6	5
C9, C13	$10 \mathrm{~V} \pm 10 \%, 0.47 \mu \mathrm{~F}$ X R ceramic capacitors (0603)	Taiyo Yuden LMK107BJ474KA	2
C10	4.7 F F, 10V X5R ceramic capacitor (0805)	TDK C2012X5R1A475M	1
C11	100pF, 25V ceramic capacitor (C0G)	Kemet C0402C101K3GAC	1
C12, C14	$1 \mu \mathrm{~F}, 16 \mathrm{~V}$ X5R ceramic capacitors (0603)	TDK C1608X7R1C105M	2
D1	Diode, switching, 100V, 200 mA	Central/CMPD914	1
D2	30V, 100mA diode Schottky	Central/CMPSH-3	1
L1	$0.56 \mu \mathrm{H}, 15 \mathrm{~A}, 1.7 \mathrm{~m} \Omega$ inductor	Panasonic ETQPLR56WFC	1
Q1	30 V n-MOSFET, 8-pin SO	Vishay Si4346DY	1
Q2	30 V n-MOSFET, 8-pin SO	Vishay Si4362DY	1
R1	$100 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1
R2	$66.5 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R3	0Ω resistor	-	1
R4	Resistor, open	-	0
R5	$16.2 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R6	$35.7 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R7	$15.8 \mathrm{k} \Omega \pm 1 \%$ resistor (0603)	-	1
R8	$160 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1
R9, R10	$10 \mathrm{k} \Omega \pm 5 \%$ resistors (0603)	-	2
R11	$1.5 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1
R12	$1.1 \mathrm{k} \Omega \pm 5 \%$ resistor (0603)	-	1

Table 3. Suggested Components Manufacturers

MANUFACTURER	COMPONENTS	PHONE	WEBSITE
Central Semiconductor	Diodes	$631-435-1110$	www.centralsemi.com
Fairchild Semiconductor	MOSFETs	$972-910-8000$	www.fairchildsemi.com
Panasonic	Capacitors	$714-373-7939$	www.panasonic.com
Sumida	Inductors	$847-545-6700$	www.sumida.com
Taiyo Yuden	Capacitors	$408-573-4150$	www.t-yuden.com
TDK	Capacitors	$847-803-6100$	www.component.tdk.com
Vishay	MOSFETs	$402-564-3131$	www.vishay.com

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Figure 5. Inductor-Current Waveform

Design Procedure

Setting the Output Voltage
To set the output voltage for the MAX8650, connect FB to the center of an external resistor-divider from the output to GND (R9 and R10 of Figure 3). Select R9 between $8 \mathrm{k} \Omega$ and $24 \mathrm{k} \Omega$, and then calculate R10 with the following equation:

$$
\mathrm{R} 10=\mathrm{R} 9 \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{FB}}}-1\right)
$$

where $\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$. R9 and R10 should be placed as close to the IC as possible.

Setting the Output Overvoltage Protection Threshold

To set the overvoltage threshold voltage for the MAX8650, connect OVP to the center of an external resistor-divider from the output to GND (R11 and R12 of Figure 3). Select R11 between $8 \mathrm{k} \Omega$ and $24 \mathrm{k} \Omega$, then calculate R12 with the following equation:

$$
\mathrm{R} 12=\mathrm{R} 11 \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{OVP}}}-1\right)
$$

where Vovp $=0.8 \mathrm{~V}$ when using the internal reference. When using an external reference, Vovp is 115% of VREFIN.

Setting the Slope Compensation For most applications where the duty cycle is less than 50%, connect SCOMP to GND to set the slope compensation to the default of $125 \mathrm{mV} / \mathrm{T}$, where T is the oscillator period ($\mathrm{T}=1 / \mathrm{fs}$).

Figure 6. Resistor-Divider for Setting the Slope Compensation
For a slope compensation of $250 \mathrm{mV} / \mathrm{T}$, connect SCOMP to AVL.
For applications with a duty cycle greater than 50%, set the SCOMP voltage with a resistor voltage-divider from AVL to GND (R3 and R4 in Figure 6). First, use the following equation to find the SCOMP voltage:

$$
V_{\text {SOOMP }}=\frac{V_{\text {OUT }} \times 60 \times R_{\mathrm{L}}}{f_{S} \times \mathrm{L}}
$$

where $R L$ is the $D C$ resistance of the inductor, and $f s$ is the switching frequency.
Next, select a value for R3, typically $10 \mathrm{k} \Omega$, and solve for R4 as follows:

$$
R 4=\frac{\left(5 \mathrm{~V}-\mathrm{V}_{\text {SCOMP }}\right) \times R 3}{\mathrm{~V}_{\text {SCOMP }}}
$$

This sets the slope-compensation voltage rate to VSCOMP / ($10 \times \mathrm{T}$).

Inductor Selection

There are several parameters that must be examined when determining which inductor is to be used. Input voltage, output voltage, load current, switching frequency, and LIR. LIR is the ratio of inductor-current ripple to maximum DC load current. A higher LIR value allows for a smaller inductor, but results in higher losses and higher output ripple. A good compromise between size and efficiency is an LIR of 0.3. Once all the parameters are chosen, the inductor value is determined as follows:

$$
L=\frac{V_{\text {OUT }} \times\left(V_{\mathbb{N}}-V_{\text {OUT }}\right)}{V_{\mathbb{N}} \times f_{S} \times I_{\text {LOAD }}(\text { MAX })} \times \text { LIR }
$$

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

where fs is the switching frequency. Choose a standardvalue inductor close to the calculated value. The exact inductor value is not critical and can be adjusted to make trade-offs between size, cost, and efficiency. Lower inductor values minimize size and cost, but they also increase the output ripple and reduce the efficiency due to higher peak currents. On the other hand, higher inductor values increase efficiency, but eventually resistive losses due to extra turns of wire exceed the benefit gained from lower AC current levels. This is especially true if the inductance is increased without also increasing the physical size of the inductor. Find a low-loss inductor with the lowest possible DC resistance that fits the allotted dimensions. Ferrite cores are often the best choice, although powdered iron is inexpensive and can work well at 300 kHz . The chosen inductor's saturation current rating must exceed the peak inductor current determined as:

$$
I_{\text {PEAK }}=I_{\text {LOAD }}(M A X)+\frac{\text { LIR }}{2} \times I_{\text {LOAD }}(M A X)
$$

Setting the Current Limit Valley Current Limit

The MAX8650 has an adjustable valley current limit, configurable for foldback with automatic recovery, or a constant-current limit with latchup. To set the current limit for foldback mode, connect a resistor from ILIM2 to the output (RFOBK), and another resistor from ILIM2 to GND (RILIM2). See Figure 7. The values of RFOBK and RILIM2 are calculated as follows:

1) First, select the percentage of foldback (PfB). This percentage corresponds to the current limit when VOUT equals zero, divided by the current limit when Vout equals its nominal voltage. A typical value of PFB is in the 15% to 40% range. A lower value of PFB yields lower short-circuit current. The following equations are used to calculate RFOBK and RILIM2:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{FOBK}}=\frac{\mathrm{P}_{\mathrm{FB}} \times \mathrm{V}_{\mathrm{OUT}}}{5 \mu \mathrm{~A} \times\left(1-\mathrm{P}_{\mathrm{FB}}\right)} \\
\mathrm{R}_{\text {ILIM2 }}=\frac{5 \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times I_{\mathrm{VALLEY}} \times\left(1-\mathrm{P}_{\mathrm{FB}}\right) \times \mathrm{R}_{\mathrm{FOBK}}}{\mathrm{~V}_{\mathrm{OUT}}-\left[5 \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})} \times l_{\mathrm{VALLEY}} \times\left(1-\mathrm{P}_{\mathrm{FB}}\right)\right]}
\end{gathered}
$$

where IVALLEY is the value of the inductor valley current at maximum load (ILOAD (MAX) - $1 / 2 \times \operatorname{IP}-\mathrm{P}$), and $\operatorname{RDS}(\mathrm{ON})$ is the maximum on-resistance of the low-side MOSFET at the highest operating junction temperature.

Figure 7. ILIM2 Resistor Connections
2) If the resulting value of RILIM2 is negative, either increase PFB or choose a low-side MOSFET with a lower $\operatorname{RDS}(\mathrm{ON})$. The latter is preferred as it increases the efficiency and results in a lower short-circuit current.
To set the constant-current limit for the latchup mode, only RILIM2 is used. The equation for RILIM2 below sets the current-limit threshold at 1.2 times the maximum rated output current:

$$
\mathrm{R}_{\mathrm{ILIM} 2}=\frac{1.2 \times l_{\mathrm{VALLEY}} \times \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}}{1 \mu \mathrm{~A}}
$$

Similarly, IVALLEY is the value of the inductor valley current at maximum load and $\operatorname{RDS}(\mathrm{ON})$ is the maximum on-resistance of the low-side MOSFET at the highest operating junction temperature.

Peak Current Limit

The peak current-limit threshold $\left(\mathrm{V}_{\mathrm{TH}}\right)$ is set by a resistor connected from ILIM1 to GND. VTH corresponds to the peak voltage across the sensing element (inductor or current-sense resistor), RLIM1. RLIM1 is calculated as follows:

$$
\mathrm{R}_{\mathrm{ILIM} 1}=\frac{8 \times \mathrm{V}_{\mathrm{TH}}}{10 \mu \mathrm{~A}}
$$

This allows a maximum DC output current (ILIM) of:

$$
\mathrm{I}_{\mathrm{LIM}}=\frac{\mathrm{V}_{\mathrm{TH}}}{\mathrm{R}_{\mathrm{DC}}}-\frac{\mathrm{I}_{\mathrm{PK}-\mathrm{PK}}}{2}
$$

where $R_{D C}$ is either the DC resistance of the inductor or the value of the optional current-sense resistor.
To ensure maximum output current, use the minimum value of V_{TH} from each setting, and the maximum RDC values at the highest expected operating temperature.

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Figure 8. Current Sense Using the Inductor's DC Resistance
The DC resistance of the inductor's copper wire has a $+0.22 \% /{ }^{\circ} \mathrm{C}$ temperature coefficient.
To use the DC resistance of the output inductor for current sensing, an RC circuit is added (see Figure 8). The RC time constant is set at twice the inductor (L/RDC) time constant. Pick the value of C9 (typically $0.47 \mu \mathrm{~F}$), then calculate the resistor value from $\mathrm{R} 4=2 \mathrm{~L} /(\mathrm{RDC} \times \mathrm{C} 9)$.
Add a resistor (R5 in Figure 8) to the CS- connection to minimize input offset error. Calculate the value of R5 as follows:

1) When VOUT $\geq 2.4 \mathrm{~V}$:

$$
R 5=\frac{\left(20 \mu \mathrm{~A}+\frac{\mathrm{R}_{\mathrm{ILIM} 1} \times 10 \mu \mathrm{~A}}{32 \mathrm{k} \Omega}\right) \times \mathrm{R} 4}{20 \mathrm{~mA}}
$$

2) When Vout $<2.4 \mathrm{~V}$:

$$
R 5=\frac{15 \mu \mathrm{~A} \times \mathrm{R} 4}{\left(15 \mu \mathrm{~A}+\frac{\mathrm{RILIM} 1 \times 10 \mu \mathrm{~A}^{32 k \Omega}}{32 \mathrm{k} \Omega}\right)}
$$

Capacitor C13 is connected in parallel with R5 and is equal in value to C 9 .
The equivalent current-sense resistance when using an inductor for current sensing is equal to the DC resistance of the inductor (RDC).

MOSFET Selection

The MAX8650 drives two or four external, logic-level, nchannel MOSFETs as the circuit switch elements. The key selection parameters are:

1) On-resistance (RDS(ON)): the lower, the better.

Figure 9. Using a Current-Sense Resistor for Improved CurrentSense Accuracy
2) Maximum drain-to-source voltage (VDSS): should be at least 20% higher than the input supply rail at the high-side MOSFET's drain.
3) Gate charges ($\left.Q_{G}, Q_{G D}, Q_{G S}\right)$: the lower, the better.

For a 5 V input application, choose the MOSFETs with rated $\operatorname{RDS}(O N)$ at $\mathrm{VGS}_{\mathrm{GS}} \leq 4.5 \mathrm{~V}$. With higher input voltages, the internal VL regulator provides 6.5 V for gate drive to minimize the on-resistance for a wide range of MOSFETs.
For a good compromise between efficiency and cost, choose the high-side MOSFET (N1, N2) that has conduction losses equal to switching losses at nominal input voltage and output current. The selected low-side MOSFET (N3, N4) must have an RDS(ON) that satisfies the current-limit-setting condition above. Make sure that the low-side MOSFET does not spuriously turn on due to $\mathrm{dV} / \mathrm{dt}$ caused by the high-side MOSFET turning on, as this would result in shoot-through current and degrade the efficiency. MOSFETs with a lower QGD/QGs ratio have higher immunity to $\mathrm{dV} / \mathrm{dt}$. For highcurrent applications, it is often preferable to parallel two MOSFETs rather than to use a single large MOSFET.
For proper thermal-management design, the power dissipation must be calculated at the desired maximum operating junction temperature, maximum output current, and worst-case input voltage (for the low-side MOSFET, worst case is at $\operatorname{VIN}(\mathrm{MAX})$; for the high-side MOSFET, it could be either at $\operatorname{VIN(MAX)}$ or $\operatorname{VIN(MIN)})$. The high-side and low-side MOSFETs have different loss components due to the circuit operation. The lowside MOSFET operates as a zero voltage switch; therefore, major losses are the channel-conduction loss (PLSCC) and the body-diode conduction loss (PLSDC).

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

$$
\begin{aligned}
& \quad P_{\text {LSCC }}=\left(1-\frac{V_{\text {OUT }}}{V_{I N}}\right) \times\left.\right|_{\text {LOAD }} ^{2} \times R_{\mathrm{DS}(\mathrm{ON})} \\
& \text { Use } \mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \text { at }} \mathrm{T}_{\mathrm{J}(\mathrm{MAX}):} \\
& \mathrm{P}_{\mathrm{LSDC}}=2 \times \mathrm{L}_{\text {LOAD }} \times \mathrm{V}_{\mathrm{F}} \times t_{\mathrm{DT}} \times f_{S}
\end{aligned}
$$

where V_{F} is the body-diode forward-voltage drop, $t_{D T}$ is the dead time between high-side and low-side switching transitions (30 ns typ), and fs is the switching frequency.
The high-side MOSFET operates as a duty-cycle control switch and has the following major losses: the channel-conduction loss (PHSCC), the VL overlapping switching loss (PHSSW), and the drive loss (PHSDR). The high-side MOSFET does not have body-diode conduction loss, unless the converter is sinking current, when the loss due to body-diode conduction is calculated as PHSDC $=2 \times$ ILOAD $\times V_{F} \times$ tDT \times fs:

$$
P_{\mathrm{HSCC}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{V_{\text {IN }}} \times\left.\right|_{\text {LOAD }} ^{2} \times R_{\mathrm{DS}(\mathrm{ON})}
$$

Use RDS(ON) at TJ(MAX):

$$
P_{H S S W}=V_{I N} \times I_{\text {LOAD }} \times \frac{Q_{G S}+Q_{G D}}{I_{G A T E}} \times f_{S}
$$

where IGATE is the average DH driver output-current capability determined by:

$$
\mathrm{I}_{\mathrm{GATE}} \cong \frac{0.5 \times \mathrm{V}_{\mathrm{VL}}}{\mathrm{R}_{\mathrm{DS}(\mathrm{ON})(\mathrm{DR})}+\mathrm{R}_{\mathrm{GATE}}}
$$

where $\operatorname{RDS}(O N)(D R)$ is the high-side MOSFET driver's on-resistance (1.5Ω typ) and RGATE is the internal gate resistance of the MOSFET ($\sim 2 \Omega$):

$$
P_{H S D R}=Q_{G} \times V_{G S} \times f_{S} \times \frac{R_{\mathrm{GATE}}}{R_{\mathrm{GATE}}+R_{\mathrm{DS}(\mathrm{ON})(\mathrm{DR})}}
$$

where $\mathrm{V}_{\mathrm{GS}} \approx \mathrm{VVL}_{\mathrm{L}}$.
In addition to the losses above, allow approximately 20% more for additional losses due to MOSFET output capacitances and low-side MOSFET body-diode reverse-recovery charge dissipated in the high-side MOSFET, but is not well defined in the MOSFET data sheet. Refer to the MOSFET data sheet for thermalresistance specifications to calculate the PC board area needed to maintain the desired maximum operat-
ing junction temperature with the above calculated power dissipations.
To reduce EMI caused by switching noise, add a $0.1 \mu \mathrm{~F}$ ceramic capacitor from the high-side switch drain to the low-side switch source or add resistors in series with DH and DL to slow down the switching transitions. However, adding series resistors increases the power dissipation of the MOSFET, so ensure this does not overheat the MOSFET.

Input Capacitor

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching. The input capacitor must meet the ripple-current requirement (IRMS) imposed by the switching currents defined by the following equation:

$$
\mathrm{I}_{\mathrm{RMS}}=\frac{\mathrm{I}_{\mathrm{LOAD}} \sqrt{\mathrm{~V}_{\mathrm{OUT}} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right)}}{\mathrm{V}_{\text {IN }}}
$$

IRMS has a maximum value when the input voltage equals twice the output voltage ($\mathrm{V}_{\text {IN }}=2 \times$ VOUT), so $\operatorname{IRMS}(\mathrm{MAX})=\operatorname{ILOAD} / 2$. Ceramic capacitors are recommended due to their low ESR and ESL at high frequency with relatively low cost. Choose a capacitor that exhibits less than $10^{\circ} \mathrm{C}$ temperature rise at the maximum operating RMS current for optimum long-term reliability. Ceramic capacitors with X5R or better temperature characteristics are recommended.

Output Capacitor

The key selection parameters for the output capacitor are the actual capacitance value, the equivalent series resistance (ESR), the equivalent series inductance (ESL), and the voltage-rating requirements. These parameters affect the overall stability, output voltage ripple, and transient response. The output ripple has three components: variations in the charge stored in the output capacitor, the voltage drop across the capacitor's ESR and ESL caused by the current into and out of the capacitor. The maximum output voltage ripple is estimated as follows:

$$
\mathrm{V}_{\text {RIPPLE }}=\mathrm{V}_{\text {RIPPLE(ESR }}+\mathrm{V}_{\text {RIPPLE }}(\mathrm{C})+\mathrm{V}_{\text {RIPPLE }}(E S L)
$$

The output voltage ripple as a consequence of the ESR, ESL, and output capacitance is:

$$
\begin{gathered}
V_{R I P P L E(E S R)}=I_{P-P} \times E S R \\
V_{R I P P L E}(E S L)=\frac{V_{I N}}{L+E S L} \times E S L
\end{gathered}
$$

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

$$
V_{\text {RIPPLE }(C)}=\frac{I_{\text {P-P }}}{8 \times C_{O U T} \times f_{S}}
$$

where IP-p is the peak-to-peak inductor current:

$$
I_{P-P}=\frac{V_{\mathbb{I N}}-V_{\text {OUT }}}{f_{S} \times L} \times \frac{V_{\text {OUT }}}{V_{\mathbb{I N}}}
$$

These equations are suitable for initial capacitor selection, but final values should be chosen based on a prototype or evaluation circuit. As a general rule, a smaller current ripple results in less output-voltage ripple. Since the inductor ripple current is a factor of the inductor value and input voltage, the output-voltage ripple decreases with larger inductance, and increases with higher input voltages. Ceramic, tantalum, or aluminum polymer electrolytic capacitors are recommended. The aluminum electrolytic capacitor is the least expensive; however, it has higher ESR. To compensate for this, use a ceramic capacitor in parallel to reduce the switching ripple and noise. For reliable and safe operation, ensure that the capacitor's voltage and ripple-current ratings exceed the calculated values.
The response to a load transient depends on the selected output capacitors. After a load transient, the output voltage instantly changes by ESR $\times \Delta$ ILOAD. Before the controller can respond, the output voltage deviates further, depending on the inductor and outputcapacitor values. After a short period (see the Typical Operating Characteristics), the controller responds by regulating the output voltage back to its nominal state. The controller response time depends on its closedloop bandwidth. With a higher bandwidth, the response time is faster, thus preventing the output voltage from further deviation from its regulating value.

Compensation Design

The MAX8650 uses an internal transconductance error amplifier whose output compensates the control loop. The external inductor, output capacitor, compensation resistor, and compensation capacitors determine the loop stability. The inductor and output capacitor are chosen based on performance, size, and cost. Additionally, the compensation resistor and capacitors are selected to optimize control-loop stability. The component values, shown in the circuits of Figures 3 and 4, yield stable operation over the given range of input-tooutput voltages.
The controller uses a current-mode control scheme that regulates the output voltage by forcing the required current through the external inductor, so the MAX8650 uses the voltage drop across the DC resistance of the induc-
tor or the alternate series current-sense resistor to measure the inductor current. Current-mode control eliminates the double pole in the feedback loop caused by the inductor and output capacitor resulting in a smaller phase shift and requiring a less elaborate error-amplifier compensation than voltage-mode control. A simple sin-gle-series Rc and C_{C} is all that is needed to have a stable, high-bandwidth loop in applications where ceramic capacitors are used for output filtering. For other types of capacitors, due to the higher capacitance and ESR, the frequency of the zero created by the capacitance and ESR is lower than the desired closed-loop crossover frequency. To stabilize a nonceramic output capacitor loop, add another compensation capacitor from COMP to GND to cancel this ESR zero.
The basic regulator loop is modeled as a power modulator, an output feedback-divider, and an error amplifier. The power modulator has DC gain set by gmc x RLOAD, with a pole and zero pair set by RLOAD, the output capacitor (COUT), and its ESR. Below are equations that define the power modulator:

$$
G_{M O D(d c)}=g_{m c} \times \frac{R_{\text {LOAD }} \times f_{S} \times L}{R_{\text {LOAD }}+f_{S} \times L}
$$

where RLOAD = Vout / IOUt(MAX), fs is the switching frequency, L is the output inductance, and $\mathrm{gmc}=1 /$ (Avcs $\times R_{D C}$), where Avcs is the gain of the currentsense amplifier (12 typ), and RDC is the DC resistance of the inductor.
Find the pole and zero frequencies created by the power modulator as follows:

$$
\begin{aligned}
f_{\mathrm{pMOD}}= & \frac{1}{2 \pi \times \mathrm{C}_{\text {OUT }} \times\left(\frac{R_{\text {LOAD }} \times f_{S} \times \mathrm{L}}{R_{\text {LOAD }}+f_{S} \times \mathrm{L}}+E S R\right)} \\
& \mathrm{f}_{\mathrm{ZMOD}}=\frac{1}{2 \pi \times \mathrm{C}_{\text {OUT }} \times E S R}
\end{aligned}
$$

When Cout comprises " n " identical capacitors in parallel, the resulting Cout $=n \times \operatorname{Cout}(E A C H)$, and $E S R=$ $E S R_{(E A C H)} / n$. Note that the capacitor zero for a parallel combination of like capacitors is the same as for an individual capacitor. See Figures 10 and 11 for illustrations of the pole and zero locations.
The feedback voltage-divider has a gain of $\mathrm{G}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{FB}}$ / Vout, where $V_{F B}$ is equal to 0.75 V .

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Figure 10. Simplified Gain Plot for the $f_{Z M O D}>f_{C}$ Case
The transconductance error amplifier has a DC gain, $G_{E A(D C)}=g_{m E A} \times R O$, where gmEA is the error-amplifier transconductance, which is equal to $110 \mu \mathrm{~S}$, Ro is the output resistance of the error amplifier, which is $30 \mathrm{M} \Omega$. A dominant pole is set by the compensation capacitor (Cc), the amplifier output resistance (Ro), and the compensation resistor (Rc_{c}), and a zero is set by the compensation resistor (R_{C}) and the compensation capacitor (CC). There is an optional pole set by C_{F} and Rc to cancel the output-capacitor ESR zero if it occurs near the crossover frequency (fc). Thus:

$$
\begin{aligned}
f_{\text {pdEA }} & =\frac{1}{2 \pi \times C_{C} \times\left(R_{O}+R_{C}\right)} \\
f_{z E A} & =\frac{1}{2 \pi \times C_{C} \times R_{C}} \\
f_{p E A} & =\frac{1}{2 \pi \times C_{F} \times R_{C}}
\end{aligned}
$$

The crossover frequency, fc, should be much higher than the power-modulator pole fpmod. Also, fc should be less than or equal to $1 / 5$ the switching frequency. Select a value for fc in the range:

$$
f_{\text {pMOD }} \ll f_{C} \leq \frac{f_{S}}{5}
$$

At the crossover frequency, the total loop gain must equal 1 , and is expressed as:

Figure 11. Simplified Gain Plot for the $f_{Z M O D}<f_{C}$ Case

For the case where $\mathrm{f}_{\mathbf{z} M O D}$ is greater than fc :

$$
\begin{gathered}
G_{E A(f c)}=g_{m E A} \times R_{C} \\
G_{M O D(f c)}=G_{M O D(d c)} \times \frac{f_{\mathrm{pMOD}}}{f_{C}}
\end{gathered}
$$

Then Rc can be calculated as:

$$
R_{C}=\frac{V_{\text {OUT }}}{g_{\text {mEA }} \times V_{F B} \times G_{M O D(f c)}}
$$

where $\mathrm{gmEA}=110 \mu \mathrm{~S}$.
The error-amplifier compensation zero formed by Rc and Cc_{c} should be set at the modulator pole fрмод. Calculate the value of Cc as follows:

$$
C_{C}=\frac{R_{\text {LOAD }} \times f_{S} \times L \times C_{O U T}}{\left(R_{\text {LOAD }}+f_{S} \times L\right) \times R_{C}}
$$

If $\mathrm{f}_{\text {ZMOD }}$ is less than $5 \times \mathrm{fc}$, add a second capacitor, C_{F}, from COMP to GND. The value of C_{F} is:

$$
C_{F}=\frac{1}{2 \pi \times R_{C} \times f_{\mathrm{ZMOD}}}
$$

As the load current decreases, the modulator pole also decreases; however, the modulator gain increases accordingly and the crossover frequency remains the same.

$$
G_{E A(f c)} \times G_{M O D(f c)} \times \frac{V_{F B}}{V_{O U T}}=1
$$

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

For the case where $\mathrm{f}_{\mathbf{Z} M O D}$ is less than f :

The power modulator gain at fc is:

$$
G_{\mathrm{MOD}(\mathrm{fc})}=\mathrm{G}_{\mathrm{MOD}(\mathrm{dc})} \times \frac{\mathrm{f}_{\mathrm{pMOD}}}{\mathrm{f}_{\mathrm{zMOD}}}
$$

The error-amplifier gain at f_{C} is:

$$
G_{E A(f c)}=g_{m E A} \times R_{C} \times \frac{f_{\mathrm{ZMOD}}}{f_{C}}
$$

R_{C} is calculated as:

$$
R_{C}=\frac{V_{\mathrm{OUT}}}{V_{\mathrm{FB}}} \times \frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{~g}_{\mathrm{mEA}} \times \mathrm{G}_{\mathrm{MOD}(\mathrm{fc})} \times f_{\mathrm{ZMOD}}}
$$

where $g m E A=110 \mu S$.
C_{C} is calculated from:

$$
C_{C}=\frac{R_{\text {LOAD }} \times f_{S} \times L \times C_{\text {OUT }}}{\left(R_{\text {LOAD }}+f_{S} \times L\right) \times R_{C}}
$$

C_{F} is calculated from:

$$
C_{F}=\frac{1}{2 \pi \times R_{C} \times f_{z M O D}}
$$

Below is a numerical example to calculate R_{C} and CC_{C} values of the typical operating circuit of Figure 3:
AvCs $=12$
$L=1.2 \mu \mathrm{H}$
$R \mathrm{DC}=2.16 \mathrm{~m} \Omega$
$\mathrm{fS}=500 \mathrm{kHz}$
$g_{m c}=1 /(\operatorname{AvCS} \times \operatorname{RDC})=1 /(12 \times 0.00216)=38.6 S$
VOUT $=3.3 \mathrm{~V}$
$\operatorname{IOUT}(\mathrm{MAX})=15 \mathrm{~A}$
RLOAD $=$ VOUT $/ \operatorname{IOUT}(\mathrm{MAX})=3.3 / 15=0.22 \Omega$
COUT $=300 \mu \mathrm{~F}$
$\mathrm{ESR}=3.5 \mathrm{~m} \Omega$

$$
\begin{aligned}
G_{M O D(d c)} & =g_{m c} \times \frac{R_{\text {LOAD }} \times f_{S} \times L}{R_{\text {LOAD }}+f_{S} \times L} \\
& =38.6 \times \frac{0.22 \times\left(500 \times 10^{3}\right) \times\left(1.2 \times 10^{-6}\right)}{0.22+\left(500 \times 10^{3}\right) \times\left(1.2 \times 10^{-6}\right)}=6.22
\end{aligned}
$$

$$
=\frac{f_{\mathrm{pMOD}}=\frac{1}{2 \pi \times C_{O U T} \times\left(\frac{R_{\text {LOAD }} \times f_{S} \times L}{R_{\text {LOAD }}+f_{S} \times L}+E S R\right)}}{2 \pi \times\left(300 \times 10^{-6}\right) \times\left(\frac{1}{0.22 \times\left(500 \times 10^{3}\right) \times\left(1.2 \times 10^{-6}\right)} \frac{0.22+\left(500 \times 10^{3}\right) \times\left(1.2 \times 10^{-6}\right)}{}+0.0035\right)}
$$

$$
=3.23 \mathrm{kHz}
$$

$$
\mathrm{f}_{\mathrm{pMOD}} \ll \mathrm{f}_{\mathrm{C}} \leq \frac{\mathrm{f}_{\mathrm{S}}}{5}
$$

$$
3.23 \mathrm{kHz} \ll \mathrm{fc} \leq 100 \mathrm{kHz} \text {, select } \mathrm{f} \mathrm{C}=100 \mathrm{kHz}:
$$

$$
\mathrm{f}_{\mathrm{ZMOD}}=\frac{1}{2 \pi \times \mathrm{C}_{\text {OUT }} \times \mathrm{ESR}}=\frac{1}{2 \pi \times\left(300 \times 10^{-6}\right) \times 0.0035}=152 \mathrm{kHz}
$$

Since $f_{z M O D}>f_{f}$:

$$
G_{M O D(f c)}=G_{M O D(d c)} \times \frac{f_{\mathrm{pMOD}}}{f_{C}}=6.22 \times \frac{3230}{100 \times 10^{3}}=0.201
$$

$$
\begin{aligned}
& R_{C}=\frac{V_{O U T}}{g_{m E A} \times V_{\text {FB }} \times G_{M O D(f c)}} \\
& =\frac{3.3}{\left(110 \times 10^{-6}\right) \times 0.7 \times 0.201}=199 \mathrm{k} \Omega
\end{aligned}
$$

Select the nearest standard value: $\mathrm{RC}=200 \mathrm{k} \Omega$:

$$
\begin{aligned}
C_{C} & =\frac{R_{\text {LOAD }} \times f_{S} \times L \times C_{O U T}}{\left(R_{\text {LOAD }}+f_{S} \times L\right) \times R_{C}} \\
& =\frac{0.22\left(500 \times 10^{3}\right) \times\left(1.2 \times 10^{-6}\right) \times\left(300 \times 10^{-6}\right)}{\left(0.22+\left(500 \times 10^{3}\right) \times\left(1.2 \times 10^{-6}\right)\right) \times\left(200 \times 10^{3}\right)}=241 p
\end{aligned}
$$

Select the nearest standard value: $\mathrm{C}_{\mathrm{C}}=270 \mathrm{pF}$:

$$
C_{F}=\frac{1}{2 \pi \times R_{C} \times f_{\mathrm{ZMOD}}}=\frac{1}{2 \pi \times\left(200 \times 10^{3}\right) \times\left(152 \times 10^{3}\right)}=5.2 \mathrm{pF}
$$

Since the calculated value for C_{F} is very small (close to the parasitic capacitance present at COMP), it is not necessary:
$R 8=R_{C}=200 k \Omega$
$\mathrm{C} 7=\mathrm{CC}=270 \mathrm{pF}$
C8 $=\mathrm{CF}=$ Not installed

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Applications Information

PC Board Layout Guidelines
Careful PC board layout is critical to achieve low switching losses and clean, stable operation. The switching power stage requires particular attention. Follow these guidelines for good PC board layout:

1) Place IC decoupling capacitors as close to IC pins as possible. Keep the power ground plane and signal ground plane separate. Place the input ceramic decoupling capacitor directly across and as close as possible to the high-side MOSFET's drain and the low-side MOSFET's source. This is to help contain the high switching current within this small loop.
2) For output current greater than 10A, a multilayer PC board is recommended. Pour a signal ground plane in the second layer underneath the IC to minimize noise coupling.
3) Connect input, output, and VL capacitors to the power ground plane; connect all other capacitors to the signal ground plane.
4) Place the inductor current-sense resistor and capacitor as close to the inductor as possible. Make a Kelvin connection to minimize the effect of PC board trace resistance. Place the input-bias balance resistor (R5 in Figures 8 and 9) near CS-. Run two closely parallel traces from across the capacitor (C9 in Figures 8 and 9) to CS+ and CS-.
5) Place the MOSFET as close as possible to the IC to minimize trace inductance of the gate-drive loop. If parallel MOSFETs are used, keep the trace lengths to both gates equal.
6) Connect the drain leads of the power MOSFET to a large copper area to help cool the device. Refer to
the power MOSFET data sheet for recommended copper area.
7) Place the feedback and compensation components as close to the IC pins as possible. Connect the feedback resistor-divider from FB to the output as close as possible to the farthest output capacitor.
8) Refer to the MAX8650 evaluation kit for an example layout.

Chip Information
PROCESS: BiCMOS

Pin Configuration

4.5V to 28V Input Current-Mode Step-Down Controller with Adjustable Frequency

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

[^0]: Applications

 | Base Stations | DDR |
 | :--- | :--- |
 | Network and Telecom | Power Modules |
 | Storage | IBA Applications |
 | Servers | |

 Pin Configuration appears at end of data sheet.

