Multiple-Output Clock Generator with Spread Spectrum

Abstract

General Description The MAX9492 frequency synthesizer is designed to generate multiple clocks for clock distribution in network routers or switches. The device provides a total of six buffered clock outputs (CLK1 to CLK6). CLK1 is the buffered output of the reference clock. CLK2 through CLK6 are independently programmable to generate eight different frequencies based on a 25 MHz input crystal: $133,125,83,66,62.5,50,33$, and 25 MHz . All the outputs are LVCMOS single-ended signals. Either a 25 MHz crystal or an external clock can serve as the input reference clock. The MAX9492 incorporates two phase-locked loops (PLLs) with two internal loop filters. Select the MAX9492's output clock frequency by programming on-chip registers through the MAX9492's ${ }^{2}{ }^{2} \mathrm{C}^{*}$ interface. The device also features spread-spectrum capability to reduce electromagnetic interference (EMI). This technique allows spreading the fundamental energy over a wider frequency range, hence reducing the respective energy amplitude. The output frequency spectrum is downspread by -1.25% or -2.5%. The MAX9492 operates from a 3.3 V supply and is guaranteed over the extended temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$). The device is available in a space-saving, 20-pin, TQFN, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ package.

Applications

Network Routers
Telecom/Networking Equipment
Storage Area Networks/Network Attached Storage

Features

- Five LVCMOS Outputs with Independent
Frequency Selections
- One Buffered Reference Clock Output
- Eight Selectable Frequencies: 133, 125, 83, 66, $62.5,50,33$, and 25 MHz
- Crystal or an Input-Clock-Based Clock Reference
- Output Frequency Programmed Through I²C Interface
- $0,-1.25 \%$, or -2.5% Selectable Downspreading Rate
- Low Output Period Jitter
(Without Spread Spectrum) < 10psRMS
- <220ps Output-to-Output Skew
- Available in 20 -Lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$, TQFN Package
- +3.3V Supply
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended Temperature Range

PART	TEMP RANGE	PINPACKAGE	$\begin{aligned} & \text { PKG } \\ & \text { CODE } \end{aligned}$
MAX9492ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 Thin QFN-EP** $5 \mathrm{~mm} \times 5 \mathrm{~mm} \times$ 0.8 mm	T2055-3

${ }^{* *} E P=$ Exposed pad.

Typical Operating Circuit and Pin Configuration appear at end of data sheet.
*Purchase of ${ }^{2} C$ components from Maxim Integrated Products, Inc., or one of its sublicensed Associated Companies, conveys a license under the Philips $1^{2} \mathrm{C}$ Patent Rights to use these components in an ${ }^{2} \mathrm{C}$ system, provided that the system conforms to the ${ }^{2} \mathrm{C}$ Standard Specification as defined by Philips.

Multiple-Output Clock Generator with Spread Spectrum

ABSOLUTE MAXIMUM RATINGS

VDD_ to GND \qquad-0.3V to +4.0 V
All Other Pins to GND \qquad -0.3 V to ($\mathrm{V}_{\mathrm{DD}}+1.0 \mathrm{~V}$)
Short-Circuit Duration (all LVCMOS outputs) \qquad Continuous
$\pm 2 \mathrm{kV}$
ESD Protection (Human Body Model)
..... $\pm 2 \mathrm{kV}$
Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
20-Pin TQFN (derate $20.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 1667 mW

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=V_{D D A}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, with CLK1 at 25 MHz , and all other CLK_outputs at 133 MHz .) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CLOCK INPUT (X1)						
Input High Level	$\mathrm{V}_{\mathrm{IH} 1}$		2.0			V
Input Low Level	VIL1				0.8	V
Input Current	$\mathrm{IIL1}^{1} \mathrm{IIH} 1$	$V_{X-}=0$ to $V_{\text {DD }}$	-20		+20	$\mu \mathrm{A}$
CLOCK OUTPUTS (CLK_)						
Output High Level	VOH	$\mathrm{IOH}=-100 \mu \mathrm{~A}$	$\begin{gathered} V_{D D}- \\ 0.2 \end{gathered}$			V
		$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4			
Output Low Level	VoL	$\mathrm{IOL}=100 \mu \mathrm{~A}$			0.2	V
		$\mathrm{l} \mathrm{OL}=4 \mathrm{~mA}$			0.4	
Output Short-Circuit Current	IOS	CLK_ = V ${ }_{\text {DD }}$ or GND	-60		+69	mA
Output Capacitance	Co	(Note 2)			5	pF
THREE-LEVEL INPUTS (SSC, SA0, SA1)						
Input High Level	$\mathrm{V}_{\mathrm{IH} 2}$		2.5			V
Input Low Level	VIL2				0.8	V
Input Open Level	$\mathrm{V}_{\mathrm{IO} 2}$		1.35		1.90	V
Input Current	IIL2, IIH2	$\mathrm{V}_{\mathrm{IL} 2}=0$ or $\mathrm{V}_{\text {IH2 }}=\mathrm{V}_{\text {DD }}$	-15		+15	$\mu \mathrm{A}$
SERIAL INTERFACE (SCL, SDA) (Note 3)						
Input High Level	V_{IH}		$\begin{aligned} & 0.7 x \\ & V_{D D} \end{aligned}$			V
Input Low Level	VIL				$\begin{aligned} & 0.3 x \\ & V_{D D} \end{aligned}$	V
Input Leakage Current	$\mathrm{IIH}^{\text {I ILL }}$		-1		+1	$\mu \mathrm{A}$
Low-Level Output	VOL	$\mathrm{ISINK}=4 \mathrm{~mA}$			0.4	V
Input Capacitance	Ci	(Note 2)			10	pF
POWER SUPPLIES						
Digital Power-Supply Voltage	VDD		3.0		3.6	V
Analog Power-Supply Voltage	VDDA		3.0		3.6	V
Total Supply Current	IDC	$C_{L}=10 \mathrm{pF}$		60	76	mA
Output Disabled Supply Current	IOD	All clock registers $=0 \times 0 \mathrm{~F}$		18	24	mA

Multiple-Output Clock Generator with Spread Spectrum

AC ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=V_{D D A}=+3.0 \mathrm{~V}\right.$ to $+3.6 \mathrm{~V}, C L=10 \mathrm{pF}$, unless otherwise noted. Typical values at $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, with CLK 1 at 25 MHz and all other CLK_outputs at 133 MHz .) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUTS (CLK_)						
Crystal Frequency			10		35	MHz
Input Frequency Range		External clock	15		35	MHz
Crystal Frequency Tolerance	$\Delta \dagger^{\prime}$		-50		+50	ppm
Output-to-Output Skew	tsko	Any two CLK_ outputs			220	ps
Rise Time	tR1	20\% VDD to $80 \% V_{D D}$		1.9	2.5	ns
Fall Time	tF1	$80 \% V_{\text {DD }}$ to $20 \% V_{D D}$		1.3	2.5	ns
Duty Cycle			40		60	\%
Output Period Jitter	Jp	RMS (SSC $=0$), CLK1 is disabled to high impedance		10	15	ps
Power-Up Time	tpo	VDD $>2.8 \mathrm{~V}$ to PLL lock		2		ms
Frequency Spread		SSC = high		-2.5		\%
		SSC = floating		-1.25		

SERIAL INTERFACE TIMING

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$.) (Note 1, Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
Serial Clock	fSCL			400	kHz
Bus Free Time Between STOP and START Conditions	tBUF		1.3		$\mu \mathrm{S}$
Hold Time, Repeated START Condition	thD,STA		0.6		$\mu \mathrm{S}$
Repeated START Condition Setup Time	tSU,STA		0.6		$\mu \mathrm{S}$
STOP Condition Setup Time	tsu,STO		0.6		$\mu \mathrm{s}$
Data Hold Time	thD, DAT	(Note 4)	15	900	ns
Data Hold Time Slave	thD, DAT	(Note 4)	15	900	ns
Data Setup Time	tsu,DAT		100		ns
SCL Clock Low Period	tlow		1.3		$\mu \mathrm{s}$
SCL Clock High Period	tHIGH		0.7		$\mu \mathrm{s}$
Rise Time of SDA and SCL, Receiving	t_{R}	(Notes 2, 5)	$\begin{gathered} 20+ \\ 0.1 C_{B} \end{gathered}$	300	ns
Fall Time of SDA and SCL, Receiving	$\mathrm{tF}_{\text {F }}$	(Notes 2, 5)	$\begin{gathered} 20+ \\ 0.1 C_{B} \end{gathered}$	300	ns

Multiple-Output Clock Generator with Spread Spectrum

SERIAL INTERFACE TIMING (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DDA}}=+3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$.) (Note 1, Figure 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fall Time of SDA, Transmitting	tF,TX	(Notes 2, 6)	$\begin{gathered} 20+ \\ 0.1 C_{B} \end{gathered}$		250	ns
Pulse Width of Spike Suppressed	tSP	(Notes 2, 7)	0		50	ns
Capacitive Load for Each Bus Line	СВ	(Note 2)			400	pF

Note 1: All DC parameters tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
Note 3: No high output level is specified but only the output resistance to the bus. For $I^{2} \mathrm{C}$, the high-level voltage is provided by pullup resistors on the bus
Note 4: The device provides a hold time of at least 300 ns for the SDA signal (referred to VIL of the SCL signal) to bridge the undefined region of SCL's falling edge
Note 5: $\mathrm{C}_{\mathrm{B}}=$ total capacitance of one bus line in pF . tR_{R} and tF_{F} measured between $0.3 \times \mathrm{V}_{\mathrm{DD}}$ and $0.7 \times \mathrm{V}_{\mathrm{DD}}$.
Note 6: Bus sink current is less than 6 mA . C_{B} is the total capacitance of one bus line in pF . t_{R} and tF_{F} are measured between 0.3 x $V_{D D}$ and $0.7 \times V_{D D}$.
Note 7: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.

Typical Operating Characteristics

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Multiple-Output Clock Generator with Spread Spectrum

Typical Operating Characteristics (continued)

($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

133MHz OUTPUT 0\% DOWNSPREADING

133MHz OUTPUT WITH
0\% AND 1.25\% DOWNSPREADING

133MHz OUTPUT WITH
0\% AND 2.5\% DOWNSPREADING

Multiple-Output Clock Generator with Spread Spectrum

Pin Description

PIN	NAME	FUNCTION
1	GNDA	Analog Ground
2	X1	Crystal Connection or Clock Input. If using a 25MHz crystal, connect it to X1 and X2. If using a reference
3	X2	clock, connect the clock signal to X1 and leave X2 floating. See the Typical Operating Circuit.

\qquad

Multiple-Output Clock Generator with Spread Spectrum

Detailed Description

The MAX9492 frequency synthesizer is designed to generate multiple clocks for clock distribution in network routers or switches. The device provides a total of six buffered clock outputs (CLK1 to CLK6). CLK1 is the buffered output of the reference clock. CLK2 through CLK6 are independently programmable to generate eight different frequencies based on a 25 MHz input crystal: $133,125,83,66,62.5,50,33$, and 25 MHz . All the outputs are LVCMOS single-ended signals.
Select the MAX9492's output frequency by programming on-chip registers through the $I^{2} \mathrm{C}$ interface. The MAX9492 also features spread-spectrum capability to reduce EMI. Output frequency spectrum can be downspread by -2.5% or -1.25%. The 25 MHz reference comes from either a crystal or an external clock. The MAX9492 incorporates two PLLs with two internal loop filters. The MAX9492 operates from a 3.3 V supply.

Reference Frequency Input

The MAX9492 requires a reference frequency. The reference can be a 25 MHz crystal or an external clock signal. If using a 25 MHz crystal, connect it across X 1 and X 2 , and connect loading capacitors from X 1 and X2 to GND (refer to the crystal manufacturer's specification). If using an external clock, connect the signal to X 1 and leave X 2 floating.

Power-Up State

At power-up, the CLK1 output is enabled and free running, the CLK2 to CLK4 outputs are set at 33.3 MHz , and the other CLK outputs are disabled at logic-low. The output states can be overridden by writing to the registers through the $\mathrm{I}^{2} \mathrm{C}$ interface.

Serial Interface
The MAX9492 is programmed through its $I^{2} \mathrm{C}$ serial interface. This interface has a clock, SCL, and a bidirectional data line, SDA. In an $I^{2} \mathrm{C}$ system, a master, typically a microcontroller, initiates all data transfers to and from slave devices, and generates the clock to synchronize the data transfers.
The MAX9492 operates as a slave device. The timing of the SDA and SCL signals is detailed in Figure 1. SDA operates as both an input and an open-drain output. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SDA. SCL operates only as an input. A pullup resistor, typically $4.7 \mathrm{k} \Omega$, is required on SCL .

START and STOP Conditions
A master signals the beginning of a transmission with a START condition by transitioning SDA from high to low while SCL is high (Figure 2). When communication is complete, a master issues a STOP condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission.

Figure 1. Serial-Interface Timing Diagram

Multiple-Output Clock Generator with Spread Spectrum

Figure 2. 1^{2} C Address and Acknowledge

Bit Transfer

One data bit is transferred during each SCL clock cycle. SDA must remain stable during the high period of SCL, as changes in SDA while SCL is high are START and STOP control signals. Idle the interface by pulling both SDA and SCL high.
After 8 bits are transferred, the receiving device generates an acknowledge signal by pulling SDA low for the entire duration of the 9th clock pulse. If the receiving device does not pull SDA low, a not acknowledge is indicated (Figure 2).

Table 1. Device $\mathrm{I}^{2} \mathrm{C}$ Address Selection

SA0	SA1	DEVICE ADDRESS
Open	Open	1101000
Low	Open	1100100
High	Open	1100010
Open	Low	1101100
Low	Low	1101001
High	Low	1110000
Open	High	1110001
Low	High	1110010
High	High	1110100

Device Address

The MAX9492 features a 7-bit device address, configured by the two three-level address inputs, SA1 and SAO. To select the device address, connect SA1 and SAO to VDD, GND, or leave floating, as indicated in Table 1. The MAX9492 has nine possible addresses, allowing up to nine MAX9492 devices to share the same interface bus.

Writing to the MAX9492

Writing to the MAX9492 begins with a START condition (Figure 3). Following the START condition, each pulse on SCL transfers 1 bit of data. The first 7 bits comprise the device address (see the Device Address section). The 8th bit is low to indicate a write operation. An acknowledge bit is then generated by the MAX9492, signaling that it recognizes its address. The next 8 bits form the register address byte (Table 2) and determine which control register receives the following data byte. The MAX9492 then generates another acknowledge bit. The data byte is then written into the addressed register of the MAX9492. An acknowledge bit by the MAX9492 followed by a required STOP condition by the master completes the communication. To write to the device again, the entire write procedure is repeated; $I^{2} \mathrm{C}$ burstwrite mode is not supported by the MAX9492.

Multiple-Output Clock Generator with Spread Spectrum

Figure 3. $I^{2} \mathrm{C}$ Interface Data Structure

Reading from the MAX9492

Reading from the MAX9492 registers begins with a START condition and a device address with the write bit set low, then the register address that is to be read, followed by a repeated START condition and a device address with the write bit set high, and finally the data are shifted out (Figure 3). Following a START condition, the first 7 bits comprise the device address. The 8th bit is low to indicate a write operation (to write in the following register address). An acknowledge bit is then generated by the MAX9492, signaling that it recognizes its address. The next 8 bits form the register address, indicating the location of the data to be read, followed by another acknowledge, again generated by the MAX9492. The master then produces a repeated START condition and readdresess the device, with the R/W bit high to indicate a read operation (Figure 3). The MAX9492 generates an acknowledge bit, signaling that it recognizes its address. The data byte is then clocked out of the MAX9492. A final not-acknowledge bit, generated by the master (not required), and a STOP condition, also generated by the master, complete the communication. To read from the device again, the entire read procedure is repeated; ${ }^{2} \mathrm{C}$ burst-read mode is not supported by the MAX9492.

Device Control Registers

The MAX9492 has eight control registers. The register addresses and functions are shown in Table 2. The first seven registers are used to set the six outputs, with register 0x00 controlling all outputs simultaneously, and the rest are mapped to individual outputs. All other addresses are reserved and are not to be used.

Table 2. Register Address Mapping

REGISTER ADDRESS	OUTPUT PORT
00	Broadcast to all CLK registers
01	CLK1
02	CLK2
03	CLK3
04	CLK4
05	CLK5
06	CLK6
All others	Reserved

Multiple-Output Clock Generator with Spread Spectrum

___Setting the Clock Frequencies

Each CLK_ output has an associated control register. The contents of the registers determine the frequencies of their associated outputs. Table 3 provides the frequency mapping for the registers. CLK1 only responds to the 25 MHz and high-impedance settings in Table 3. For example, writing 03h to the CLK1 control register does not change CLK1's output frequency to 133.3 MHz . The CLK1 output continues to output a buffered reference clock signal.

Table 3. Output Frequency Selection for CLK1-CLK6

BITS IN CLKn REGISTERS	OUTPUT FREQUENCY (MHz)
00	Logic-Low
01	133.3
02	125
03	83.3
04	66.6
05	62.5
06	50
07	33.3
08	25
$0 F$	High Impedance

Typical Operating Circuit

Spread-Spectrum Control

The MAX9492 features spread-spectrum output structures to spread radiated emissions over the frequency band. A programmable triangle-wave generator injects an offset element into the master oscillator to dither its output by -1.25% or -2.5%. The dither is controlled by the SSC input. When SSC is low, spread spectrum is disabled. When SSC is floating, spread spectrum is set to -1.25%. When SSC is high, spread spectrum is set to -2.5\%.

Power Supply
The MAX9492 uses a 3.0V to 3.6 V power supply connected to $V_{D D}$, and 3.0 V to 3.6 V connected to $\mathrm{V}_{\mathrm{DDA}}$. Bypass VDDA and VDD at the device with a $0.1 \mu \mathrm{~F}$ capacitor. Additionally, use bulk bypass capacitors of $10 \mu \mathrm{~F}$ where power enters the circuit board.

Applications Information

Board Layout Considerations

As with all high-frequency devices, board layout is critical to proper operation. Place the crystal as close as possible to X1 and X2, and minimize parasitic capacitance around the crystal leads. Ensure that the exposed pad makes good contact with GND.

Chip Information

PROCESS: BiCMOS

Pin Configuration

Multiple-Output Clock Generator with Spread Spectrum

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

QFN THIN.EPS
Z6ヤ6XVW

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

