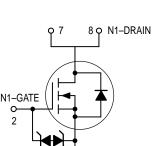
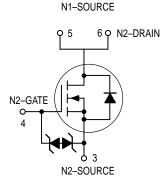
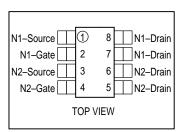
Product Preview


Medium Power Surface Mount Products **TMOS Dual N-Channel**


Field Effect Transistors

WaveFET™ devices are an advanced series of power MOSFETs which utilize Motorola's latest MOSFET technology process to achieve the lowest possible on–resistance per silicon area. They are capable of withstanding high energy in the avalanche and commutation modes and the drain–to–source diode has a very low reverse recovery time. WaveFET™ devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc–dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones. They can also be used for low voltage motor controls in mass storage products such as disk drives and tape drives. The avalanche energy is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients.

- Zener Protected Gates Provide Electrostatic Discharge Protection
- Designed to withstand 200 V Machine Model and 2000 V Human Body Model
- Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Logic Level Gate Drive Can Be Driven by Logic ICs
- Miniature SO–8 Surface Mount Package Saves Board Space
- Diode Is Characterized for Use In Bridge Circuits
- Diode Exhibits High Speed, With Soft Recovery
- IDSS Specified at Elevated Temperature
- Mounting Information for SO–8 Package Provided



MMDF3200Z

Motorola Preferred Device

DUAL TMOS
POWER MOSFET
11.5 AMPERES
20 VOLTS
RDS(on) = 0.015 OHM

MAXIMUM RATINGS (T_{.J} = 25°C unless otherwise noted)

Rating	Symbol	Max	Unit
Drain-to-Source Voltage	V _{DSS}	20	V
Drain–to–Gate Voltage (R _{GS} = 1.0 M Ω)	V _{DGR}	20	V
Gate-to-Source Voltage — Continuous	VGS	± 12	V
Operating and Storage Temperature Range	T.I. Tsta	- 55 to 150	°C

DEVICE MARKING

ORDERING INFORMATION

D3200	Device Device		Tape Width	Quantity
D3200	MMDF3200Z	13″	12 mm embossed tape	4000 units

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. HDTMOS is a trademark of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.

Preferred devices are Motorola recommended choices for future use and best overall value.

MMDF3200Z

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise specified) When mounted on 1 inch square (25.40 mm square) FR-4 or G-10 board ($V_{GS} = 10 \ V @ 10 \ Seconds$)

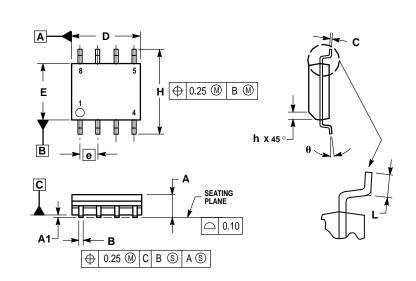
Parameter	Symbol	Maximum	Unit
Drain Current — Continuous @ T _A = 25°C	ΙD	11.5	Α
— Continuous @ $T_A = 70^{\circ}C$, ID	9.2	Α
— Pulsed Drain Current ⁽¹⁾	IDM	57.5	Α
Total Power Dissipation @ T _A = 25°C	P_{D}	2.0	Watts
Linear Derating Factor		16	mW/°C
Thermal Resistance — Junction to Ambient	$R_{ heta JA}$	62.5	°C/W
Continuous Source Current (Diode Current)	IS	TBD	Α

When mounted on 1 inch square (25.40 mm square) FR-4 or G-10 board (VGS = 10 V @ Steady State)

Parameter	Symbol	Maximum	Unit
Drain Current — Continuous @ T _A = 25°C — Continuous @ T _A = 70°C — Pulsed Drain Current (1)	I _D I _{DM}	8.0 5.9 40	A A A
Total Power Dissipation @ T _A = 25°C Linear Derating Factor	PD	1.28 10.2	Watts mW/°C
Thermal Resistance — Junction to Ambient	$R_{ heta JA}$	98	°C/W
Continuous Source Current (Diode Current)	IS	TBD	Α

When mounted on minimum FR-4 or G-10 board ($V_{GS} = 10 \text{ V}$ @ Steady State)

Parameter	Symbol	Maximum	Unit
Drain Current — Continuous @ T _A = 25°C — Continuous @ T _A = 70°C — Pulsed Drain Current (1)	I _D I _D	7.1 5.2 35.5	A A A
Total Power Dissipation @ T _A = 25°C Linear Derating Factor	PD	0.75 6.0	Watts mW/°C
Thermal Resistance — Junction to Ambient	$R_{ heta JA}$	166	°C/W
Continuous Source Current (Diode Current)	Is	TBD	Α


⁽¹⁾ Repetitive rating; pulse width limited by maximum junction temperature.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (VGS = 0 Vdc, ID = 0.25 mAdc) Temperature Coefficient (Positive)		V _(BR) DSS	20 —	— TBD	_	Vdc mV/°C
Zero Gate Voltage Drain Current (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc) (V _{DS} = 20 Vdc, V _{GS} = 0 Vdc, T _J = 125°C)		I _{DSS}	_	_ _	1.0 10	μAdc
Gate-Body Leakage Current (VGS =	± 12 Vdc, V _{DS} = 0 Vdc)	IGSS	_	TBD	1.0	μΑ
ON CHARACTERISTICS ⁽¹⁾						
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 0.25 mAdc) Threshold Temperature Coefficient	(Negative)	VGS(th)	0.5 —	0.8 TBD	1.2 —	Vdc mV/°C
Static Drain–to–Source On–Resistance (VGS = 4.5 Vdc, I _D = 11.5 Adc) (VGS = 2.5 Vdc, I _D = 5.9 Adc)		R _{DS(on)}	_	TBD TBD	15 25	mΩ
Forward Transconductance (V _{DS} = 8	3.0 Vdc, I _D = 3.0 Adc)	9FS	5.0	TBD	_	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	_	TBD	TBD	pF
Output Capacitance	(V _{DS} = 15 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{oss}	_	TBD	TBD	
Transfer Capacitance	, <u>.</u> ,	C _{rss}	_	TBD	TBD	
SWITCHING CHARACTERISTICS(2)						
Turn-On Delay Time		^t d(on)	_	TBD	TBD	ns
Rise Time	$(V_{DD} = 16 \text{ Vdc}, I_{D} = 11.5 \text{ Adc},$	t _r	_	TBD	TBD]
Turn-Off Delay Time	$V_{GS} = 4.5 \text{ Vdc},$ $R_{G} = 10 \Omega)$	^t d(off)	_	TBD	TBD]
Fall Time		t _f	_	TBD	TBD]
Gate Charge		Q _T	_	TBD	TBD	nC
See Figure 8	$(V_{DS} = 16 \text{ Vdc}, I_{D} = 11.5 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc})$	Q ₁	_	TBD	_	
		Q ₂	_	TBD	_	
			_	TBD	_	1
SOURCE-DRAIN DIODE CHARACTE	RISTICS	I.				
Forward On–Voltage	$(I_S = 11.5 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 11.5 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$	V _{SD}	_	TBD TBD	1.2 —	Vdc
Reverse Recovery Time		t _{rr}		TBD		ns
	$(I_S = 11.5 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	t _a	_	TBD	_]
	dls/dt = 100 A/μs)	t _b	_	TBD	_	1
Reverse Recovery Stored Charge		Q _{RR}		TBD	_	μС

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
(2) Switching characteristics are independent of operating junction temperature.

PACKAGE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ASME
- Y14.5M, 1994. DIMENSIONS ARE IN MILLIMETER.
- DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR
- PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS			
DIM	MIN MAX			
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.19	0.25		
D	4.80	5.00		
Е	3.80	4.00		
е	1.27	BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.25		
θ	0.0	7 º		

STYLE 11:

PIN 1. SOURCE 1 2

- GATE 1
- SOURCE 2 3.
- GATE 2
- DRAIN 2 DRAIN 2
- 6
- DRAIN 1
- DRAIN 1

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

CASE 751-06

ISSUE T

Mfax is a trademark of Motorola. Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 - US & Canada ONLY 1-800-774-1848 Motorola Fax Back System - http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

HOME PAGE: http://motorola.com/sps/

 \Diamond MMDF3200Z/D