MPSL51 # **PNP General Purpose Amplifier** This device is designed for use as general purpose amplifiers and switches requiring high voltages. Sourced from Process 74. See 2N5401 for characteristics. ## **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 100 | V | | V _{CBO} | Collector-Base Voltage | 100 | V | | V_{EBO} | Emitter-Base Voltage | 4.0 | V | | Ic | Collector Current - Continuous | 200 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ## **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Characteristic Max | | |-----------------|--|--------------------|-------------| | | | MPSL51 | | | P_D | Total Device Dissipation Derate above 25°C | 625
5.0 | mW
mW/∘C | | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 83.3 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 200 | °C/W | # PNP General Purpose Amplifier (continued) | Electrical Characteristics TA = 25°C unless otherwise noted | | | | | | | | |---|--------------------------------------|---|-----|------------|-------|--|--| | Symbol | Parameter | Test Conditions | Min | Max | Units | | | | OFF CHA | RACTERISTICS | | | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage* | $I_C = 1.0 \text{ mA}, I_B = 0$ | 100 | | V | | | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 100 | | V | | | | $V_{(BR)EBO}$ | Emitter-Base Breakdown Voltage | $I_E = 10 \mu A, I_C = 0$ | 4.0 | | V | | | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 50 \text{ V}, I_{E} = 0$ | | 1.0 | μΑ | | | | I _{EBO} | Emitter Cutoff Current | $V_{EB} = 3.0 \text{ V}, I_{C} = 0$ | | 100 | nA | | | | h _{FE} | RACTERISTICS* DC Current Gain | $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$ | 40 | 250 | | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ | 40 | 0.25 | V | | | | | | $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$ | | 0.3 | V | | | | $V_{BE(sat)}$ | Base-Emitter Saturation Voltage | $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$
$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$ | | 1.2
1.2 | V | | | | SMALL S | IGNAL CHARACTERISTICS | | | | | | | | C _{ob} | Output Capacitance | V _{CB} = 10 V, f = 1.0 MHz | | 8.0 | pF | | | | h _{fe} | Small-Signal Current Gain | $I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$
f = 1.0 kHz | 20 | | | | | | f _T | Current Gain - Bandwidth Product | $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA},$ | 60 | | MHz | | | ^{*}Pulse Test: Pulse Width $\leq 300~\mu s$, Duty Cycle $\leq 2.0\%$