

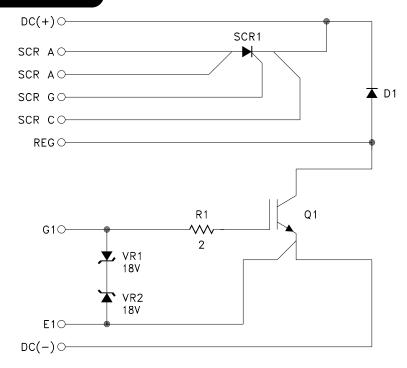
600V/300A SCR/REGEN PEM

4890

4707 Dev Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:


- SCR/REGEN Topology
- 600V Rated Voltage
- 300A Continuous IGBT Current
- · Internal Zener Clamps on Gate
- · Proprietary Encapsulation Provides Near Hermetic Performance
- MIL-PRF-38534 Screening Available (Modified)
- · Light Weight Domed ALSIC Baseplate
- · Robust Mechanical Design for Hi-Rel Applications
- · Ultra-Low Inductance Internal Layout
- Withstands 96 Hours HAST and Thermal Cycling (-55°C to +125°C)

MIL-PRF-38534 CERTIFIED

DESCRIPTION:

The MSK 4890 is one of a family of plastic encapsulated modules (PEM) developed specifically for use in military, aerospace and other severe environment applications. The SCR/REGEN configuration and 600 volt/300 amp rating make it ideal for use in high current motor drive and inverter brake applications. The Aluminum Silicon Carbide (AISiC) baseplate offers superior flatness and light weight; far better than the copper or copper alloys found in most high power plastic modules. The high thermal conductivity materials used to construct the MSK 4890 allow high power outputs at elevated baseplate temperatures. Our proprietary coating, SEES™ - Severe Environment Encapsulation System - protects the internal circuitry of MSK PEM's from moisture and contamination, allowing them to pass the rugged environmental screening requirements of military and aerospace applications. MSK PEM's are also available with industry standard silicone gel coatings for a lower cost option.

EQUIVALENT SCHEMATIC

1

TYPICAL APPLICATIONS

- Motor Drives
- Inverters

Rev. B 8/05

ABSOLUTE MAXIMUM RATING

VCE	Collector to Emitter Voltage 600V	Tst	Storage Temperature Range55°C to +125°C
Vge	Gate to Emitter Voltage ±20V	TJ	Junction Temperature
Icc	Collector Current (Continuous) 300A	Tc	Case Operating Temperature Range
Icc	Collector Current Pulsed (1mS) 600A		MSK 4890H/E55°C to +125°C
lΤ	SCR Forward Current (Continuous)		MSK 489040°C to +85°C
ITSM	SCR Peak Surge Current (1/2 Cycle 60Hz) 1100A		
lF	REGEN Diode Current (Continuous) 50A		
IFP	REGEN Diode Current Pulsed (1mS) 100A		
VCASE	Case Isolation Voltage		
VCASE	Case isolation voltage		

ELECTRICAL SPECIFICATIONS

Parameter (6)	Test Conditions	Group A	MSK 4890 H/E			MSK 4890			Units
		Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Oille
		1	-	2.1	2.6	-	2.1	2.7	V
Collector-Emitter Saturation Voltage	ge IC = 300A, VGE = 15V	2	-	2.1	2.6	-	2.1	2.7	V
		3	-	2.3	2.8	-	2.3	2.9	V
		1	-	0.05	1.0	-	0.05	1.5	mA
Collector-Emitter Leakage Current	VCE = 600V, $VGE = 0V$	2	-	2.0	7.5	-	2.0	8.0	mΑ
		① 3	-	0.05	1.5	-	0.05	2.0	mA
	IC = 30mA, VCE = VGE	1	4.0	5.5	7.5	4.0	5.5	7.5	V
Gate Threshold Voltage		2	4.0	4.5	7.5	4.0	4.5	7.5	V
		3	4.0	6.1	7.5	4.0	6.1	7.5	V
		1	-10	0.2	10	-15	0.2	15	uA
Gate Leakage Current	$VCE = 0V$, $VGE = \pm 15V$	2	-10	0.8	10	-15	0.8	15	ųΑ
		ω	-10	0.1	10	-15	0.1	15	uA
	IF = 50A	1	-	1.4	2.4	-	1.4	2.5	V
Diode Forward Voltage		2	-	1.1	2.4	-	1.1	2.5	V
		3	-	1.5	2.6	-	1.5	2.7	V
		1	-	0.01	30	-	0.01	35	mA
SCR Leakage Current	VRRM = 600V	2	-	1.0	30	-	1.0	35	mA
		ω	-	0.01	30	-	0.01	35	mA
		1	-	1.0	1.35	-	1.0	1.5	V
SCR On Voltage	IF = 220A	2	-	0.9	1.35	-	0.9	1.5	V
		3	-	1.1	1.5	-	1.1	1.6	V
		1	-	110	600	-	110	600	mΑ
SCR Holding Current		2	-	100	800	-	100	900	mA
		3	-	170	600	-	170	650	mA
Total Gate Charge ①	V = 300V, IC = 300A	4	-	170	2900	-	170	2900	nC
Turn-On Delay ①	$V = 300V$, IC $= 300A$, RG $= 20 \Omega$	4	-	630	900	-	630	900	nS
Rise Time ①	$V = 300V$, IC = 300A, RG = 20 Ω	4	-	320	700	-	320	700	nS
Turn-Off Delay ①	$V = 300V$, IC = 300A, RG = 10Ω	4	-	0.9	2.1	-	0.9	2.1	uS
Fall Time ①	$V = 300V$, IC $= 300A$, RG $= 10\Omega$	4	-	90	300	-	90	300	nS
Diode Reverse Recovery Time 1	IE = 50A, $di/dt = 25A/uS$	4	-	50	170	-	50	170	nS
Diode Reverse Recovery Charge ①	IE = 50A, $di/dt = 25A/uS$	4	-	0.26	2.5	-	0.26	2.5	uC
	IGBT @ TJ=125°C	4	-	0.1	0.12	-	0.1	0.13	°C/W
Thermal Resistance ①	DIODE @ TJ=125°C	4	-	0.6	0.8	-	0.6	0.85	°C/W
	SCR @ TJ=125°C	4	-	0.12	0.19	-	0.12	0.20	°C/W

NOTES:

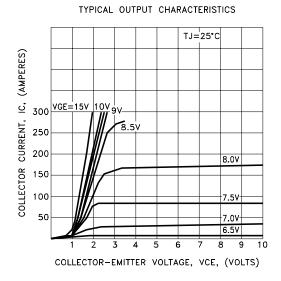
- (1) Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.

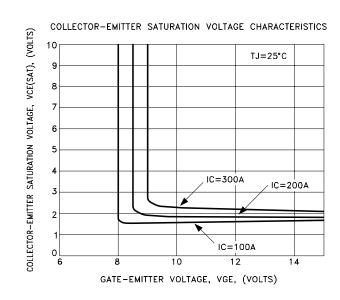
 (2) Industrial grade and "E" suffix devices shall be tested to subgroup 1 unless otherwise specified.

 (3) Military grade devices ("H" suffix) shall be 100% tested to subgroups 1, 2 and sample tested to subgroup 3.

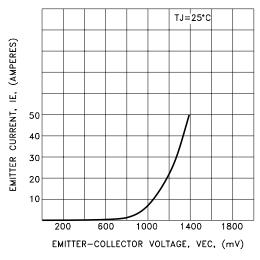
 (4) Subgroups 4, 5 and 6 testing available upon request.

 (5) Subgroup 1, 4 TA = +25°C

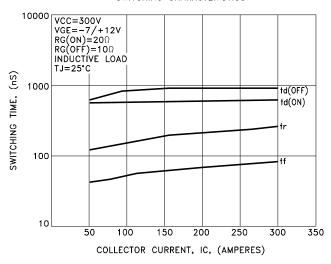

 2, 5 TA = +125°C

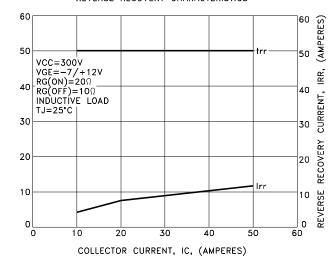

 $3, 6 T_A = -55 °C$


- 6 VGE = 15V unless otherwise specified.
- Tontinuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.

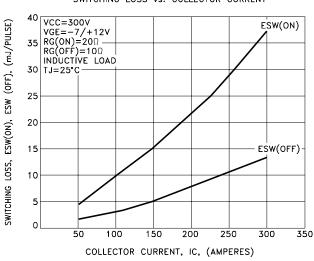

2

TYPICAL PERFORMANCE CURVES





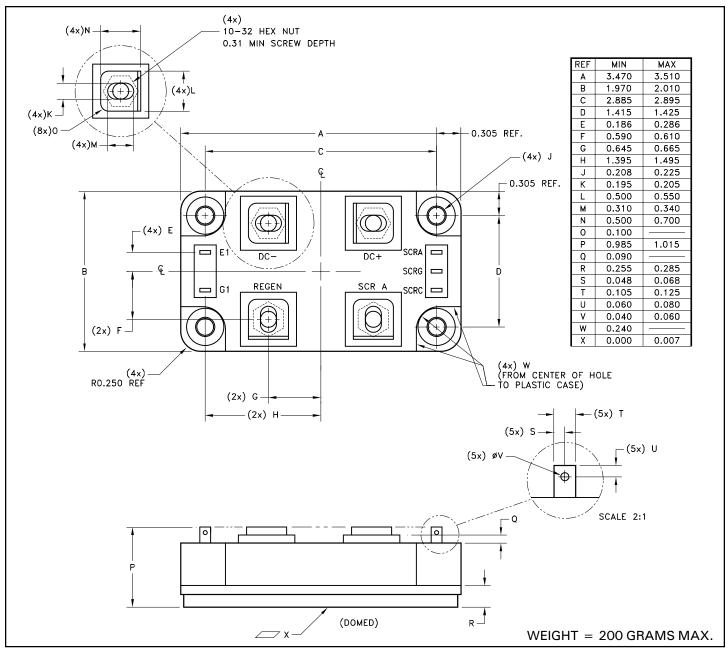
SWITCHING CHARACTERISTICS



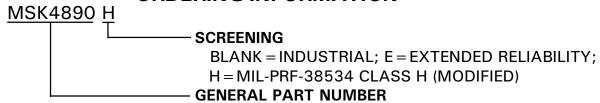
REVERSE RECOVERY CHARACTERISTICS

REVERSE RECOVERY TIME, TRR, (nS)

SWITCHING LOSS vs. COLLECTOR CURRENT


SCREENING CHART

OPERATION IN ACCORDANCE WITH MIL-PRF-38534	INDUSTRIAL	CLASS E	CLASS H
QUALIFICATION (MODIFIED)	NO	NO	YES
ELEMENT EVALUATION	NO	YES	YES
CLEAN ROOM PROCESSING	YES	YES	YES
NON DESTRUCT BOND PULL SAMPLE	YES	YES	YES
CERTIFIED OPERATORS	NO	YES	YES
MIL LINE PROCESSING	YES	YES	YES
MAX REWORK SPECIFIED	NO	YES	YES
ENCAPSULANT	GEL COAT	SEES ™	SEES ™
PRE-CAP VISUAL	YES - INDUSTRIAL	YES - CLASS H	YES - CLASS H
TEMP CYCLE (-55°C TO +125°C)	NO	YE\$	YE\$
BURN-IN	NO	YES - 96 HOURS	YES - 160 HOURS
ELECTRICAL TESTING	YES - 25°C	YES - 25°C	YES - FULL TEMP
EXTERNAL VISUAL	YES - SAMPLE	YES - SAMPLE	YES
XRAY	NO	NO	NO
PIN FINISH	NI	NI	NI


NOTE: ADDITIONAL SCREENING IS AVAILABLE SUCH AS XRAY, CSAM, MECHANICAL SHOCK, ETC. CONTACT FACTORY FOR QUAL STATUS.

Rev. B 8/05

MECHANICAL SPECIFICATIONS

ORDERING INFORMATION

THE ABOVE EXAMPLE IS A MILITARY SCREENED MODULE.

M.S. Kennedy Corp.

4707 Dey Road Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this datasheet.

Rev. B 8/05