

NC7WV07

TinyLogic® ULP-A Dual Buffer (Open Drain Output)

General Description

The NC7WV07 is a dual buffer with open drain output from Fairchild's Ultra Low Power-A series of TinyLogic®. ULP-A is ideal for applications that require extreme high speed, high drive and low power. This product is designed for a wide low voltage operating range (0.9V to 3.6V $\rm V_{CC}$) and applications that require more drive and speed than the TinyLogic ULP series, but still offer best in class low power operation.

The NC7WV07 is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- Extremely High Speed tpD

1.0 ns typ for 2.7V to 3.6V $V_{\rm CC}$

1.2 ns typ for 2.3V to 2.7V $\rm V_{\rm CC}$

2.0 ns typ for 1.65V to 1.95V V_{CC}

3.2 ns typ for 1.4V to 1.6V $\rm V_{CC}$

6.0 ns typ for 1.1V to 1.3V $\rm V_{CC}$ 13.0 ns typ for 0.9V $\rm V_{CC}$

- Power-Off high impedance inputs and outputs
- High Static Drive (I_{OH}/I_{OL})

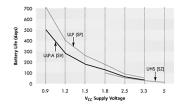
±24 mA @ 3.00V V_{CC}

±18 mA @ 2.30V V_{CC}

 ± 6 mA @ 1.65V V_{CC}

 ± 4 mA @ 1.4V V_{CC}

 ± 2 mA @ 1.1V V_{CC}


 ± 0.1 mA @ 0.9V V_{CC}

- Uses patented Quiet Series™ noise/EMI reduction circuitry
- Ultra small MicroPak™ leadfree package
- Ultra low dynamic power

Ordering Code:

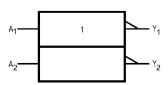
Order Number	Package Product Code Number Top Mark		Package Description	Supplied As	
NC7WV07P6X	MAA06A	V07	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel	
NC7WV07L6X	MAC06A	BC	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel	

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

Battery Life = $(V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day$

Where, P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f


Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with $C_L=15\,\mathrm{pF}$ load

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.

MicroPak™ and Quiet Series™ are trademarks of Fairchild Semiconductor Corporation.

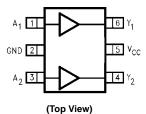
Logic Symbol

IEEE/IEC

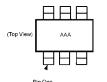
Pin Descriptions

Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output

Function Table

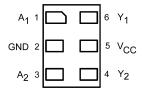

$\mathbf{Y}=\overline{\mathbf{A}}$

Input	Output
Α	Y
L	L
Н	Н


H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignments for SC70


Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code.

Note: Orientation of Top Mark determines Pin One location. Read the Top
Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignment for MicroPak

(Top Thru View)

±24 mA

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Supply Voltage (V$_{CC}$)} & -0.5 \mbox{V to } +4.6 \mbox{V} \\ \mbox{DC Input Voltage (V$_{IN}$)} & -0.5 \mbox{V to } +4.6 \mbox{V} \\ \end{array}$

DC Output Voltage (V_{OUT})

 $\label{eq:local_$

DC Output Diode Current (I_{OK})

 $\label{eq:control_potential} V_{OUT} < 0V & -50 \text{ mA} \\ V_{OUT} > V_{CC} & +50 \text{ mA} \\ \text{DC Output Source/Sink Current (I}_{OH}/I_{OL}) & \pm 50 \text{ mA} \\ \end{cases}$

DC V_{CC} or Ground Current per

Supply Pin (I $_{CC}$ or Ground) \pm 50 mA Storage Temperature Range (T $_{STG}$) -65° C to +150 $^{\circ}$ C

Recommended Operating Conditions (Note 3)

Supply Voltage 0.9V to 3.6VInput Voltage (V_{IN}) 0V to 3.6V

Output Voltage (V_{OUT})

 $V_{\rm CC} = 0.0 {\rm V}$ 0V to 3.6V HIGH or LOW State 0V to $V_{\rm CC}$

Output Current in I_{OH}/I_{OL} $V_{CC} = 3.0 \text{V to } 3.6 \text{V}$

 $\begin{array}{lll} \mbox{V}_{CC} = 2.3 \mbox{V to } 2.7 \mbox{V} & \pm 18 \mbox{ mA} \\ \mbox{V}_{CC} = 1.65 \mbox{V to } 1.95 \mbox{V} & \pm 6 \mbox{ mA} \\ \mbox{V}_{CC} = 1.4 \mbox{V to } 1.6 \mbox{V} & \pm 4 \mbox{ mA} \\ \end{array}$

 $V_{CC} = 1.1 V \text{ to } 1.3 V$ $\pm 2 \text{ mA}$ $V_{CC} = 0.9 V$ $\pm 0.1 \text{ mA}$ Free Air Operating Temperature (T_A) $-40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$

Free Air Operating Temperature (T_A) Minimum Input Edge Rate $(\Delta t/\Delta V)$

 $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C		T _A = -40°0	C to +85°C	Units	Conditions
Syllibol	raiametei	(V)	Min	Max	Min	Max	Units	Conditions
V _{IH}	HIGH Level	0.90	0.65 x V _{CC}		0.65 x V _{CC}			
	Input Voltage	$1.10 \le V_{CC} \le 1.30$	0.65 x V _{CC}		0.65 x V _{CC}			
		$1.40 \leq V_{CC} \leq 1.60$	0.65 x V _{CC}		0.65 x V _{CC}		V	
		$1.65 \le V_{CC} \le 1.95$	0.65 x V _{CC}		0.65 x V _{CC}		ľ	
		$2.30 \le V_{CC} < 2.70$	1.6		1.6			
		$2.70 \leq V_{CC} \leq 3.60$	2.0		2.0			
V _{IL}	LOW Level	0.90		0.35 x V _{CC}		0.35 x V _{CC}		
	Input Voltage	$1.10 \le V_{CC} \le 1.30$		$0.35 \times V_{\rm CC}$		$0.35 \times V_{\rm CC}$		
		$1.40 \le V_{CC} \le 1.60$		$0.35 \times V_{\rm CC}$		$0.35 \times V_{\rm CC}$	V	
		$1.65 \le V_{CC} \le 1.95$		$0.35 \times V_{\rm CC}$		$0.35 \times V_{\rm CC}$		
		$2.30 \le V_{CC} < 2.70$		0.7		0.7		
		$2.70 \leq V_{CC} \leq 3.60$		0.8		0.8		
V _{OL}	LOW Level	0.90		0.1		0.1		I _{OL} = 100 μA
	Output Voltage	$1.10 \le V_{CC} \le 1.30$		0.1		0.1		
		$1.40 \le V_{CC} \le 1.60$		0.2		0.2		
		$1.65 \le V_{CC} \le 1.95$		0.2		0.2		100 μΑ
		$2.30 \le V_{CC} < 2.70$		0.2		0.2		
		$2.70 \leq V_{CC} \leq 3.60$		0.2		0.2		
		1.10 ≤ V _{CC} ≤ 1.30		0.25 x V _{CC}		0.25 x V _{CC}	v	I _{OL} = 2 mA
		1.40 ≤ V _{CC} ≤ 1.60		0.25 x V _{CC}		0.25 x V _{CC}	ľ	I _{OL} = 4 mA
		1.65 ≤ V _{CC} ≤ 1.95		0.3		0.3		I _{OL} = 6 mA
		$2.30 \le V_{CC} < 2.70$		0.4		0.4		I _{OL} = 12 mA
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		10L - 12 111A
		$2.30 \le V_{CC} < 2.70$		0.6		0.6		I _{OL} = 18 mA
		$2.70 \leq V_{CC} \leq 3.60$		0.4		0.4		IOL - TO THA
		$2.70 \leq V_{CC} \leq 3.60$		0.55		0.55		I _{OL} = 24 mA
I _{IN}	Input Leakage Current	0.90 to 3.60		±0.1		±0.5	μΑ	$0 \le V_1 \le 3.6V$

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Cymbol	i arameter	(V)	Min	Max	Min	Max	Omis	Conditions
I _{OFF}	Power Off Leakage Current	0		0.5		0.5	μΑ	$0 \le (V_I, V_O) \le 3.6V$
I _{CC}	Quiescent Supply Current	0.90 to 3.60		0.9		0.9	μА	$V_I = V_{CC}$ or GND
		0.90 to 3.60				±0.9	μΑ	$V_{CC} \le V_I \le 3.6V$

AC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure	
Cymbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PZL}	Propagation Delay	0.90		13					$C_L = 15 \text{ pF},$	
t _{PLZ}		0.00		10					$R_U = R_D 1M\Omega$	
		$1.10 \le V_{CC} \le 1.30$	2.0	6.0	15.0	1.0	18.6		$C_L = 15 \text{ pF},$]
		$1.40 \leq V_{CC} \leq 1.60$	1.0	3.2	8.7	1.0	9.7	ns	$R_U = R_D 2k\Omega$	Figures 1, 2
		1.65 ≤ V _{CC} ≤ 1.95	1.0	2.0	6.0	1.0	6.8		C _L = 30 pF	
		$2.30 \leq V_{CC} < 2.70$	0.7	1.2	3.6	0.6	4.7		$R_U = R_D 500\Omega$	
		$2.70 \leq V_{CC} \leq 3.60$	0.5	1.0	3.3	0.4	4.0			
C _{IN}	Input Capacitance	0		2.0				pF		
C _{OUT}	Output Capacitance	0		6.5				pF		
C _{PD}	Power Dissipation	0.90 to 3.60		10				pF	$V_I = 0V \text{ or } V_{CC}$	
	Capacitance	0.90 to 3.00	10					рі	f = 10 MHz	

AC Loading and Waveforms

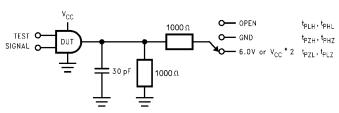


FIGURE 1. AC Test Circuit

TEST	SWITCH			
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$;			
	$V_{CC} \times 2$ at $V_{CC} = 0.9V - 2.7V$			
t _r = 3 ns →	90% V _{CC}			

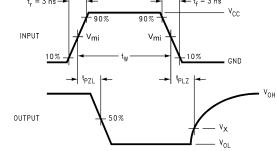
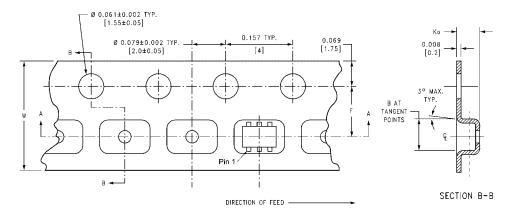
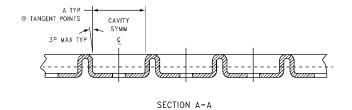
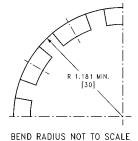


FIGURE 2. Waveform for Inverting and Non-Inverting Functions

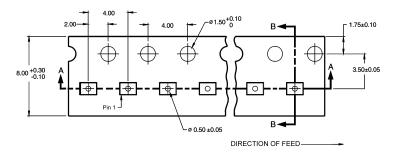

Symbol	V _{CC}									
- Cymbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$	$1.5V \pm 0.1V$	$\textbf{1.2 V} \pm \textbf{0.1V}$	0.9V				
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2				
V _x	V _{OL} + 0.3V	V _{OL} + 0.15V	V _{OL} + 0.15V	V _{OL} + 0.1V	V _{OL} + 0.1V	V _{OL} + 0.1V				

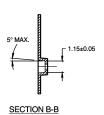

Tape and Reel Specification


TAPE FORMAT for SC70

THE ET CHAMPAT TO COTO							
	Package	Package Tape		Cavity	Cover Tape		
	Designator	Section	Cavities	Status	Status		
		Leader (Start End)	125 (typ)	Empty	Sealed		
	P6X	Carrier	3000	Filled	Sealed		
		Trailer (Hub End)	75 (typ)	Empty	Sealed		

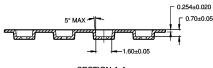
TAPE DIMENSIONS inches (millimeters)



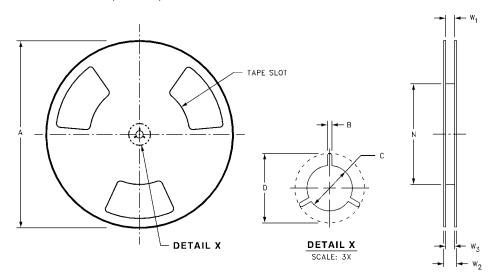

Tape and Reel Specification (Continued) TAPE FORMAT for MircoPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Sealed Empty L6X Carrier 5000 Filled Sealed

75 (typ)

Empty

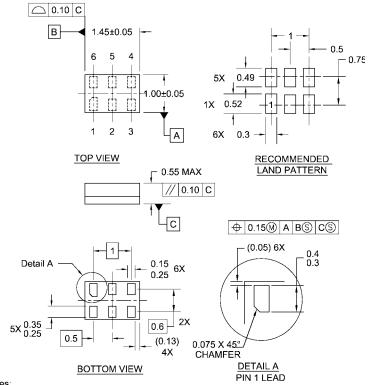

TAPE DIMENSIONS inches (millimeters)

SCALE:10X


Sealed

Trailer (Hub End)

SECTION A-A SCALE:10X


REEL DIMENSIONS inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2	W3
0	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted 0.65 1.9 B- 1.25±0.10 2.10±0.10 0.4 min 0.20 +0.10 LAND PATTERN RECOMMENDATION ♦ max 0.1 **9** SEE DETAIL A 0.9±.10 0.95±0.15 max 0.1 R0.14 GAGE PLANE R0.10 0.20 -- 0.425 NOMINAL DETAIL A NOTES: A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88. MAA06ARevC B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. C. DIMENSIONS ARE IN MILLIMETERS. 6-Lead SC70, EIAJ SC88, 1.25mm Wide Package Number MAA06A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com