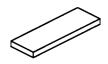
PRELIMINARY

BIT MAP LCD DRIVER

■ GENERAL DESCRIPTION

The **NJU6577S** is a bit map LCD driver to display graphics or characters.

It contains 4,240 bits display data RAM, microprocessor interface circuits, instruction decoder, 80-segment and 53-common (1 out of 53-driver is prepared for icon display) drivers.


The bit image display data is transferred to the display data RAM by serial or 8-bit parallel interface mode.

 53×80 dots graphics or 5-character 3-line by 16×16 dot character with icon are displayed by NJU6577S itself.

The wide operating voltage like as 2.4V t o 5.5V and low operating current are useful to apply small sized battery operated items.

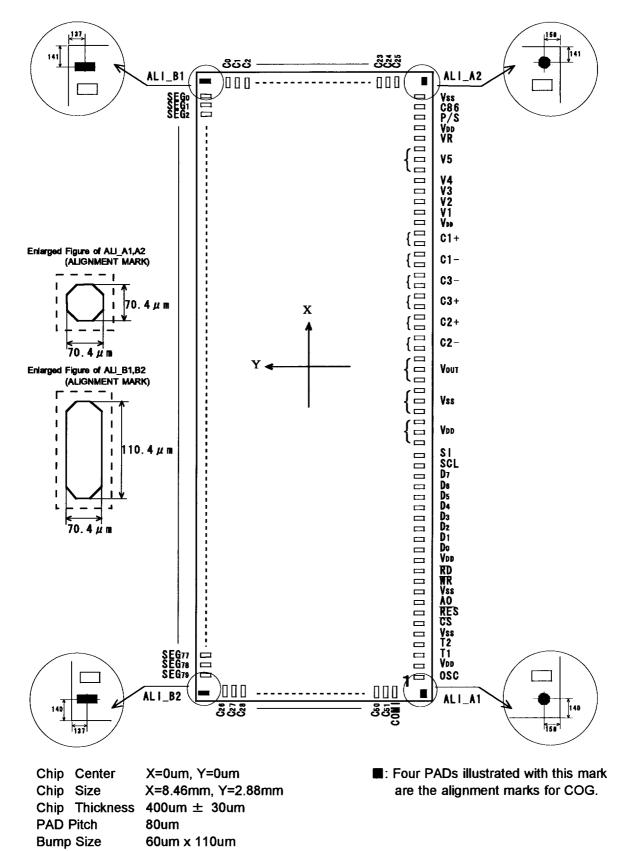
The build-in Electrical Variable Resistor is very precision, furthermore the rectangle outlook is very applicable to COG or Slim TCP.

PACKAGE OUTLINE

NJU6577SCH

■ FEATURES

- Direct Correspondence between Display Data RAM and LCD Pixel
- Display Data RAM 4,240 bits
- 133 LCD Drivers 53- common and 80-segment
- Direct Micro Processor interface for both of 68 and 80 type MPU
- Serial Interface
- Programmable Duty Ratio ; 1/52 or 1/53 Duty
- Useful Instruction Set Display Data Read/Write, Display ON/OFF Cont, Inverse Display, Page Address Set, Display Starting Line Set, Column Address Set, Status Read, All On/Off, Icon Display, Read Modify Write Common Driver order Assignment and Power Saving.
- Power Supply Circuits for LCD Incorporated
 Voltage step up Circuits (quadrapular maximum), Regulator, Voltage Follower x 4
- Precision Electrical Variable Resistance
- Low Power Consumption
- Operating Voltage --- 2.4V to 5.5V
- LCD Driving Voltage --- 6.0V to 10V
- Package Outline --- TCP / Bumped Chip
- C-MOS Technology


PAD LOCATION

Bump Height

Bump Material

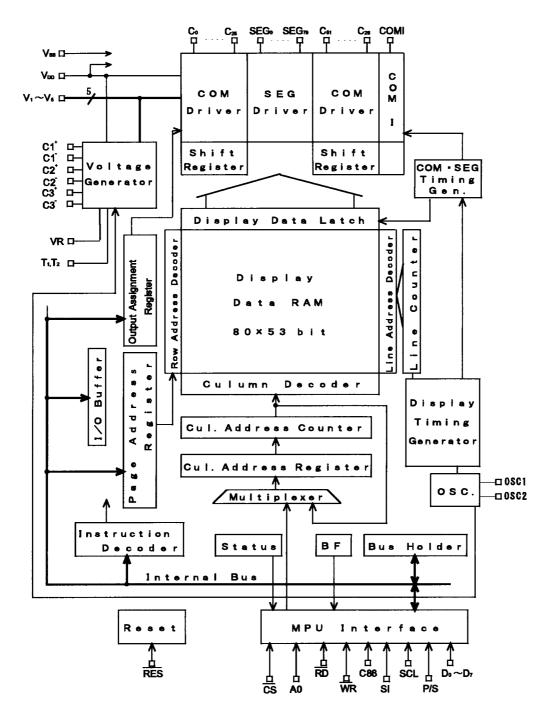
25um TYP.

Au

■ PAD COORDINATES

Chip Size 8.46mm x 2.88mm(Chip Center X=0um,Y=0um)

No.	Terminal	X (μm)	Υ(μm)	No.	Terminal	Χ (μ m)	m) Y (µ
1	OSC	-3903	-1277	51	V 5	3520	-1277
2	VDD	-3823	-1277	52	VR	3600	-1277
3	T 1	-3743	-1277	53	Vpp	3680	-1277
4	T 2	-3663	-1277	54	P/S	3760	-1277
5	Vss	-3583	-1277	55	C 8.6	3840	-1277
6		-3503	-1277	56	Vss	3920	-1277
7	RES	-3423	-1277	57	C 25	4063	-880
8	AO	-3343	-1277	58	C 2 5	4063	-800
9	V ss	-3263	-1277	59	C 2 3	4063	-720
10	WR	-3183	-1277	60	C 2 2	4063	-640
11	RD	-3103	-1277	61	C 2 1	4063	-560
12	V DD	-3023	-1277	62	C 20	4063	-480
13		-2728	-1277	63	C 19	4063	-400
14	D 1	-2228	-1277	64		4063	-320
15		-1728	-1277	65	C 17	4063	-240
16	D 2 D 3	-1228	-1277	66	C 16	4063	-160
10	D 3	-728	-1277	67	C 15	4063	-80
18	D ₄ D 5	-228	-1277	68	C 15	4063	-00
19	D 5 D 6	272	-1277	69	C 14 C 13	4063	80
20	D 8 D 7	772	-1277	70	C 13 C 12	4063	160
20	SCL	1120	-1277	70	C 12 C 11	4063	240
21	SUL	1200	-1277	72	C 11 C 10	4063	320
		1200	-1277	72		4063	400
23			-1277	74	C 8	4063	480
24		1360	-1277	74 75	C 8	4063	400 560
25		1440		76	C 7 C 6	4003	640
26	Vss	1520	-1277	76	C 5	4063	720
27	V s s	1600	-1277	77	C₅ C₄	4063	800
28	V s s	1680 1760	-1277 -1277	78	C 3	4063	880
29		+		80	C 3 C 2	4063	960
30		1840	-1277	81	C 2	4063	1040
31		1920	-1277	82		4063	1120
32	C2 - C2 -	2000	-1277 -1277	83	SEG o	3145	120
33		2080					
34	C2 ⁺ C2 ⁺	2160	-1277 -1277	<u>84</u> 85	SEG 1 SEG 2	3065 2985	1276 1276
35 36	C3 ⁺	2240 2320	-1277	86	SEG 2 SEG 3	2905	1276
36	C3 ⁺	2320	-1277	87	SEG ₄	2905	1276
	C3 -	2400	-1277	88	SEG 5	2745	1276
38	C3 -	2480	-1277	89	SEG 6	2665	1276
39 40	C1 -	2560	-1277	90	SEG 6 SEG 7	2585	1276
40	C1 -	2040	-1277 -1277	90	SEG 7 SEG 8	2505	1276
41	C1 ⁺	2720	-1277	91	SEG 8	2303	1276
42	C1 ⁺	2800	-1277	92	SEG 10	2425	1276
		2960	-1277	93	SEG 10	2345	1276
44			-1277	94	SEG 11 SEG 12	2285	1276
45	V 1	3040				2105	1276
46	V 2	3120	-1277	96	SEG 13	2105	1276
47	V 3	3200	-1277	97	SEG 14		
48	V 4	3280	-1277	98	SEG 15	1945	1276
49	V 5	3360	-1277	99	SEG 16	1865	1276
50	V s	3440	-1277	100	SEG 17	1785	1276


New Japan Radio Co., Ltd.

• N - 1		V / N		N.I.	T	V / N	V /
No.	Terminal	X (μm)	Υ (μ m)	No.	Terminal	X (μm)	<u>Υ (μ m)</u>
101	SEG 18	1705	1276	151	SEG 68	-2295	1276
102	SEG 19	1625	1276	152	SEG 69	-2375	1276
103	SEG 20	1545	1276	153	SEG 70	-2455	1276
104	SEG 21	1465	1276	154	SEG 71	-2535	1276
105	SEG 2 2	1385	1276	155	SEG 7 2	-2615	1276
106	SEG 23	1305	1276	156	SEG 7 3	-2695	1276
107	SEG 24	1225	1276	157	SEG 74	-2775	1276
108	SEG 25	1145	1276	158	SEG 75	-2855	1276
109	SEG 2 6	1065	1276	159	SEG 76	-2935	1276
110	SEG 27	985	1276	160	SEG 77	-3015	1276
111	SEG 28	905	1276	161	SEG 78	-3095	1276
112	SEG 29	825	1276	162	SEG 7 9	-3175	1276
113	SEG 30	745	1276	163	C 2 6	-4064	1121
114	SEG 31	665	1276	164	C 27	-4064	1041
115	SEG 3 2	585	1276	165	C 2 8	-4064	961
116	SEG 3 3	505	1276	166	С 29	-4064	881
117	SEG 34	425	1276	167	С зо	-4064	801
118	SEG 35	345	1276	168	C 3 1	-4064	721
119	SEG 36	265	1276	169	C 3 2	-4064	641
120	SEG 3 7	185	1276	170	С з з	-4064	561
121	SEG 38	105	1276	171	С з 4	-4064	481
122	SEG 39	25	1276	172	С з 5	-4064	401
123	SEG 40	-55	1276	173	С з б	-4064	321
124	SEG 4 1	-135	1276	174	С з 7	-4064	241
125	SEG 4 2	-215	1276	175	С з в	-4064	161
126	SEG 4 3	-295	1276	176	С з 9	-4064	81
127	SEG 44	-375	1276	177	C 40	-4064	1
128	SEG 4 5	-455	1276	178	C 4 1	-4064	-79
129	SEG 4 6	-535	1276	179	C 4 2	-4064	-159
130	SEG 47	-615	1276	180	C 4 3	-4064	-239
131	SEG 48	-695	1276	181	C 4 4	-4064	-319
132	SEG 4 9	-775	1276	182	C 4 5	-4064	-399
133	SEG 50	-855	1276	183	C 4 6	-4064	-479
134	SEG 51	-935	1276	184	C 4 7	-4064	-559
135	SEG 5 2	-1015	1276	185	С 4 в	-4064	-639
136	SEG 5 3	-1095	1276	186	C 4 9	-4064	-719
137	SEG ₅₄	-1175	1276	187	C 50	-4064	-799
138	SEG 55	-1255	1276	188	C 5 1	-4064	-879
139	SEG 56	-1335	1276	189	COMI	-4064	-959
140	SEG 57	-1415	1276	Alignment Mark	ALI_A1	-4090	-1303
141	SEG 58	-1495	1276	Alignment Mark	ALI_A2	4089	-1303
142	SEG 59	-1575	1276	Alignment Mark	ALI_B1	4089	1282
143	SEG 60	-1655	1276	Alignment Mark	ALI_B2	-4090	1282
144	SEG 6 1	-1735	1276				
145	SEG 6 2	-1815	1276				
146	SEG 63	-1895	1276				
147	SEG 6 4	-1975	1276				
148	SEG 65	-2055	1276				
149	SEG 66	-2135	1276				
150	SEG 6 7	-2215	1276				

BLOCK DIAGRAM

■ TERMINAL DESCRIPTION

No.	Symbol	1/0	Function									
2,12,23, 24,25,44 ,53	Vpd	Power	V_{DD} =+3V. (Less then 3.3V should apply when 3-time voltage booster using.)									
5,9,26, 27,28,56	Vss	GND	V s s=0V									
45 46 47 48 49,50,51	V 1 V 2 V 3 V 4 V 5	Power	CD Driving Voltage Supplying Terminal. When the internal tripler is not used, supply each level from outside maintained following relation. $V_{DD} \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$ When the internal power supply is on, the internal circuits generates and supply following LCD bias voltage from V ₁ to V ₄ terminals. <u>Device V₁ V₂ V₃ V₄ NJU6577S V₅+5/6V_{LCD} V₅+4/6V_{LCD} V₅+2/6V_{LCD} V₅+1/6V_{LCD}</u>									
			(V _{LCD} =V _{DD} -V ₅)									
42,43 40,41 34,35 32,33 36,37 38,39	C1 ⁺ C1 ⁻ C2 ⁺ C2 ⁻ C3 ⁺ C3 ⁻	0	Voltage set up capacitor connecting terminals. - In case of tripled voltage step up connect the capacitor between $C1^+$ and $C1^-$, $C2^+$ and $C2^-$, connect $C2^-$ to $C3^-$, and $C3^+$ should be open (or correct the capacitors between $C1^+$ and $C1^-$, $C3^+$ and $C3^-$,connect $C2^+$ to $C3^+$, and $C2^-$ should be open.) - In case of doubled voltage step up operation, connect the capacitor between $C1^+$ and $C1^-$,connect $C1^-$ to $C3^-$, and $C2^-$, $C2^+$, $C3^+$ should be open.									
29,30,31	Vout	0	Step up voltage output terminal. Connect the voltage boost capacitor between this terminal and $V_{ss}.$									
52	VR	I	Voltage adjust terminal. V $_{\text{P}}$ level is adjusted by external bleeder resistance connect between V $_{\text{PP}}$ and V5 terminal.									
3 4	Τ 1 Τ 2	I	LCD bias voltage control terminals.X Don't CareT 1T 2Voltage Boost CircuitVoltage Adj.V/F Cir.LXAvailableAvailableAvailableHLNot Avail.AvailableAvailableHHNot Avail.Not Avail.Available									
13 ~ 20	Do to D7	I/O	Tri-state bi-directional Data I/O terminal in 8-bit parallel operation.									
8	A0	I	Connect to the Address bus of MPU. The data on the Do to Dr is distinguishedbetween Display data andInstruction by status of Ao.A0HLDist.Display DataInstruction									
7	RES	I	Reset terminal. When the $\overline{\text{RES}}$ terminal goes to "L", the initialization is performed. Reset operation is executing during "L" state of $\overline{\text{RES}}$.									
6	<u>cs</u>	I	Chip select terminal. Data Input/Output are available during \overline{CS} ="L".									

New Japan Radio Co., Ltd.

No.	Symbol	1/0		F	uncti	o n								
11	RD (E)	ł	RD sigr During 1 <in case="" o<="" td=""><td colspan="11"><in 80="" case="" mpu="" of="" type=""> RD signal of 80 type MPU input terminal. Active"L". During this signal "L", the data bus becomes as output terminal. <in 68="" case="" mpu="" of="" type=""> Enable signal of 68 type MPU input terminal. Active "H".</in></in></td></in>	<in 80="" case="" mpu="" of="" type=""> RD signal of 80 type MPU input terminal. Active"L". During this signal "L", the data bus becomes as output terminal. <in 68="" case="" mpu="" of="" type=""> Enable signal of 68 type MPU input terminal. Active "H".</in></in>										
10	WR (R/W)	I	Connec The dat <in case="" o<="" td=""><td colspan="10"></td></in>											
55	C86	l	C86											
22	SI	1	Serial data	a input termin	al.									
21	SCL	ł	SI data in	put at the rise	input terminal. edge of SCL in 8th SCL clock ri		ely. It convert	to						
54	P/S	1	Serial or p	parallel interfa	ce selection term	ninal.								
			P/S	Chip Select	Data/Command	Data	Read/Write	Serial CLK						
			"H"	CS	A0	D o~ D 7	RD、WR	_						
			"L"	CS	A0	SI	Write only	SCL						
			fixed "H • In case	 *RAM data and status read operation do not work in mode of the serial interface. In case of select the parallel interface (P/S="H"), SI and SCL must be fixed "H" or "L". In case of select the serial interface (P/S="L"), RD and WR must be fix "H" or "L", and D ₀ ~ D 7 are high impedance . 										
1	OSC1	1	•	ock input tern nal should be	ninal for Maker to open.	esting								

No.	Symbol	I/O	Function									
57 ~	C 25	0	CD driving signal output terminals. Segment output terminals : SEG o to SEG 7 s Common output terminals :C o to C s 1									
82	С 。		 Segment output terminal Segment driving output terminals. The following output voltages are 									
83	SEG ₀		selected by the combination of FR and data in the RAM.									
~ 162	SEG 7 9		RAMOutput VoltageDataFRNormalReverse									
163	C 2 6		$\begin{array}{c cccc} H & H & V_{PP} & V_2 \\ \hline H & L & V_5 & V_3 \end{array}$									
~ 189	~ C 5 1		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
			Common Output Terminal Common driving output terminals. The following output voltages are selected by the combination of FR and status of common.									
			Status of FR Output Voltage									
			H V₅ L V₀₀									
	СОМІ	0	Icon common output terminal. Icon common output when Icon Display instruction execution.									
			Icon Display ON Icon Display OFF State COM 5 2 V 1 or V 4									

Functional Description

(1) Description for each blocks

(1-1) Busy Flag (BF)

While the internal circuits are operating, the busy flag(BF) is "1", and any instruction excepting for the status read are inhibited .

The busy flag output from D 7 terminal when status read instruction is executed.

When enough cycle time over than t $_{c \ v \ c}$ indicated in "BUS TIMING CHARACTERISTICS" is ensured, no need to check the busy flag for reduction of the MPU load.

(1-2) Line Counter

The Line Counter generates the line address of display data RAM by the count up operation synchronizing the common cycle after the reset operation at the status change of internal FR signal.

(1-3) Column Address Counter

The column address counter is 8-bit presettable counter which addressing the column address as show n in Fig. 1. This counter increments (+1) up to $(A0)_{H}$ when the Display Data Read/Write instruction is executed. This counter auto-increment up to $(4F)_{H}$, but accessing to the display data RAM over than $(4F)_{H}$ is forbidden.

Furthermore, this counter is independent with the Page Register.

By the Address Inverse Instruction, the column address decoder inverse the column address of Display Data RAM corresponding to the Segment Driver.

(1-4) Page Register

The page register gives a page address of Display Data RAM as shown in Fig. 1. When the MPU accesses the data with the page change, the page address set instruction is required. Page address "7 "(D_2 , D_1 , $D_0 =$ "H") is Icon RAM area, the data only for the D_0 is valid.

(1-5) Display Data RAM

Display Data RAM is the bit map RAM consisting of 4,240 bits memorize the display data correspondin g to each pixel of LCD panel. The each bit in the Display Data RAM corresponds to the each pixel of the LCD panel and controls the display by following bit data.

When Normal Display : On="1", Off="0"

When Inverse Display : On="0", Off="1"

The Display Data RAM outputs 80-bit parallel data in the area addressed by the line counter, and these data are set into the Display Data Latch.

The access operation from MPU to the display data RAM and the data output from the display data RAM are so controlled to operate independently that the data rewriting does not influence with any malfunctions to the display.

The relation between column address and segment output can inverse by the Address Inverse Instruction ADC as shown in Fig. 1.

New Japan Radio Co., Ltd.

Page Address	Data							D	isplav	Pattern						1	
	Do			!	1											1	COMo
	Di			<u>.</u>	<u></u>			[-	COM
D2, D1, D0 (0, 0, 0)	D2 D3									PAGE	0						COM ₂ COM ₃
	D3 D4			į. .					L 	I AUL	U			}			COM4
	D5			<u></u>			[[\vdash	COM
	D6		¦	¦	¦	¦ 📕 .		¦						;			
	D7 D0		<u> </u>	<u>-</u>	-	<u> </u>	<u></u>	<u> </u>	! !					_			COM7 COM8
	D1			+		¦		<u> </u>									
D2, D1, D0	D2		• ! !		<u>.</u>	<u>.</u>		 	 - 				+			<u> </u>	COM10
(0, 0, 1)	D3			<u>.</u>						PAGE	1						
	D4 D5			÷													COM12 COM13
	D6			<u>+</u>	<u>.</u>											_	COM14
	D 7								· · · ·								
	Do			i		į											COM16
D2, D1, D0	D1 D2			÷	÷												COM17 COM18
(0, 1, 0)	D3			 !		 	•			PAGE	2					-	ČŎM19
	D4							 								\vdash	
	D5		!	¦	¦	¦		¦						¦			COM ₂₁
	D6 D7			÷	<u>+</u>	¦								;			COM22 COM23
	D ₀		9 9 1			<u> </u>	↓ <u>-</u>	<u> </u>	L					-		1	COM24
	Dı		::::	[]	[[]]]	[]]	[!		\vdash	COM ₂₅
D2, D1, D0 (0, 1, 1)	D2		:	¦	¦	¦		¦						;			COM26 COM27
	D3 D4			<u> </u>	<u> </u>	<u></u>	<u>.</u>	¦	 								COM27 COM28
	D5			+ !	<u>+</u>					PAGE	3					-	COM ₂₉
	De		 	¦	ļ							-				-	
	D7 D0	L			<u></u>		<u> </u>	<u> </u>					<u>i</u>	_			COM31 COM32
	D0 D1													!			COM32
D2, D1, D0 (1, 0, 0)	D2			<u>.</u>		<u></u>	 		 ! !							┣—	COM34
(1, 0, 0)	D3			;						PAGE	4			;			COM ₃₅
	D4 D5		÷	+	¦	¦		¦	-					¦			COM36 COM37
	D ₆		+	÷	÷	÷		¦									COM38
	D 7					<u> </u>	-	 	h 1 1								COM39
	Do															E	
	D1 D2				į	į											COM41 COM42
D2, D1, D0 (1, 0, 1)	D3			;	1	1	[PAGE	5					<u> </u>	COM43
	D4			<u>.</u>	;	;	<u>.</u>	<u>.</u>								\vdash	COM44
	D5		:	¦	<u>+</u>	<u> </u>	Ļ	¦									COM45 COM46
	D6 D7		<u>;</u>	<u>+</u>	<u> </u>	÷											COM46 COM47
	Do			1	1	!										1—	COM48
D2 , D1, D0	Dı			<u>.</u>	[[[[PAGE	6					┢──	COM49
(1, 1, 0)	D2 D3		-	÷	<u> </u>	¦		¦									COM50 COM51
(1 1 1)	D3 D0		ļ		<u>.</u>	<u>.</u>			, , ,	PAGE	7			-			COMI *
(1, 1, 1)		L.,	i T	i T	i T	i T	i T		i	FAUE	1		:	T		1	
					1	Ļ							- - - -	Ļ			*:1/53 Duty
	o=″0″	00	—	02	───			<u>-</u>						-	4F		
Address Č Do	o=″1″	4F	_	4D					←				0	_	00		
Segm	ent	0	1	2	3	4	5	6					7	8	79		

Fig. 1 Correspondence with Display Data RAM and Address (COMI can be used in case of 1/53 duty set.)

(1-6) Common Driver Assignment

The scanning order can be assigned by setting A $_{3}$ of the Output Assignment Register as shown on Table 1.

	_		Table 1										
Register		COM Output Terminals											
	PAD No.	82	57	188	163								
A3	Pin name	С о	C 2 5	C 51	C 26								
0]→	COM 0	> COM ₂ ₅	COM 5 1 <	COM 26								
1]>	COM ₅ 1 <	COM 2 6	COM •	·····•>COM ₂₅								

The lcon display is regardless with this function, therefore the lcon Display instruction must be executed when the lcon display is needed. In this time, the lcon display driver COMI is fixed to COM_{52} timing regardless the other Common Driver assignment.

(1-7) Reset Circuit

Reset circuit operates the following initializations when the condition of $\overline{\text{RES}}$ terminals goes to "L"level..

Initialization

- ① Display Off
- ② Normal Display (Non-inverse display)
- 3 Icon Display Reset
- (4) ADC Select : Normal (ADC Instruction D .="0")
- 5 Read Modify Write Mode Off
- 6 Internal Power supply (Step up) circuits Off
- ⑦ Clear the serial interface register
- (8) Set the address $(00)_{H}$ to the Column Address Counter
- (9) Set the page "0" to the Page Address Register
- 1 Select the D 3 of the Output Assignment Register to "0"
- (1) Set the EVR register to $(00)_{H}$

The RES terminal should be connected to the Reset terminal of MPU for the initialization at the mean time with MPU as shown in "MPU Interface Example". The period of reset signal requires over than 10us $\overline{\text{RES}}$ ="L" level input as shown in "Electrical Characteristics". After 1us from the rise edge of $\overline{\text{RES}}$ signal, the operation goes to normal.

When the internal LCD power supply is not used, the external LCD power supply into the NJU6577 must be turned on during $\overline{\text{RES}}$ = "L". Although the condition of $\overline{\text{RES}}$ ="L" clear each registers and initialize as above, the oscillation circuit and output terminal conditions (D0 \sim D7) are no influenced. The initialization must performed using $\overline{\text{RES}}$ terminal at the power on, to prevent hung up or incorrect operations.

The reset Instruction performs the initialization procedures from No.8 to No.11 as shown in above.

Caution) The noise into the RES terminal should be eliminated to avoid the error on the application with the careful design.

New Japan Radio Co., Ltd.

be

(1-8) LCD Driving

(a) LCD Driving Circuits

LCD driving circuits are consisted of 133 multiplexers which operate as 80 Segment drivers,52 Common drivers and 1 Icon common driver. 52 Common drivers with the shift register scan the common display signal. The combination of the Display data, COM scan signal and FR signal form the define the LCD driving output voltage. The output wave form is mentioned in the Fig. 7.

(b) Display Data Latch Circuits

Display Data Latch stores 80-bit display data temporarily which is output to LCD driver circuits at a common cycle from Display Data RAM addressed by Line Counter. The instructions of Display On/Off, Display inverse ON/OFF and Static Drive On/Off control only the data in Display Data Latch, therefore, the data in the Display Data RAM is not changed.

(c) Line Counter and Latch signal of Latch Circuits

The clock to Line Counter and latch signal to the Latch Circuits are generated from the internal display clock (CL). The line address of Display Data RAMis renewed by synchronizing with display clock (CL). 80 bits display data are latched into display latch circuits synchronizing with display clock, and then output to the LCD driving circuits. The display data transfer to the LCD driving circuits is executed independently with RAM access by the MPU.

(d) Display Timing Generator

Display Timing Generator generates the timing signal for the display system by combination of the master clock CL and Driving Signal FR (refer to Fig.2). The Frame Signal FR and LCD alternative signal generate LCD driving waveform of two frame alternative driving method I.

(e) Common Timing Generation

The common timing is generated by display clock CL (refer to Fig.2).

Wave f	form of dis	splay tim									
CL				6 	8 49	50 5			$\int_{-\infty}^{2}$	4_5 	
FR	<u> </u>										VDD
COM ₀				 	 		ı			 	V 1 V 4 V 5 V DD
			<u> </u>	 	 					 	V 1 V 4 V 5
RAM DAT				χ _			X_X	_X		X	VDD
SEG "	.	/	٦٢		 					 	V 2 V 3 V 5

Fig. 2 Waveform of Display Timing

(f) Oscillation Circuit

The Oscillation Circuit is a low power CR oscillator incorporating with a Resistor and a Capacitor. It generates clocks for display timing signal source and the clock for step up circuits for LCD driving. The oscillation circuit output frequency is divided by 4 which is used as display clock CL.

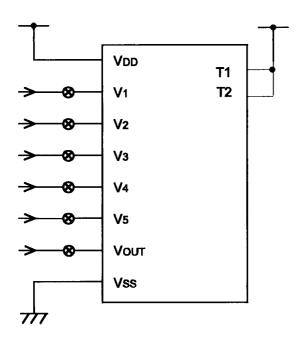
(g) Power Supply Circuits

Internal Power Supply Circuit generate the High voltage and Bias voltage for the LCD. The power Supply Circuit consists of Voltage step up circuit (Trippler maximum) Circuits, Regulator Circuits, and Voltage Followers. The internal Power Supply is designed for small size LCD panel, therefore it is not suitable for the large size LCD panel application. If the contrast is no good the large size LCD panel application, please supply the external.

The suitable values of the capacitors connecting to the V1 to V5 terminals and the step up circuit, and the feedback resistors for V5 operational amplifier depend on the LCD panel. And the power consumption with the LCD panel is depending on the display pattern. Please evaluation with actual modules.

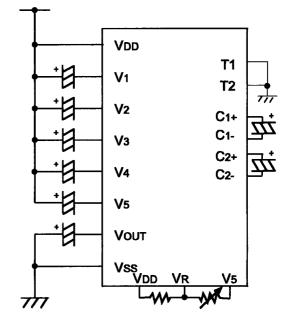
The operation of internal Power Supply Circuits is controlled by the Internal Power Supply On/Off Instruction. When the Internal Power Supply Off Instruction is executed, all of the Voltage booster circuits, regulator circuits, voltage follower circuits are turned off. In this time, the bias voltage of V₁,

V₂, V₃, V₄, and V₅ for the LCD should be supplied from outside, terminals C1⁺, C1⁻, C2⁺, C2⁻, C3⁺, C3⁻ and VR should be open. The status of internal power supply is selected by T₁ and T₂ terminal. Furthermore the external power supply operates with some of internal power supply function.

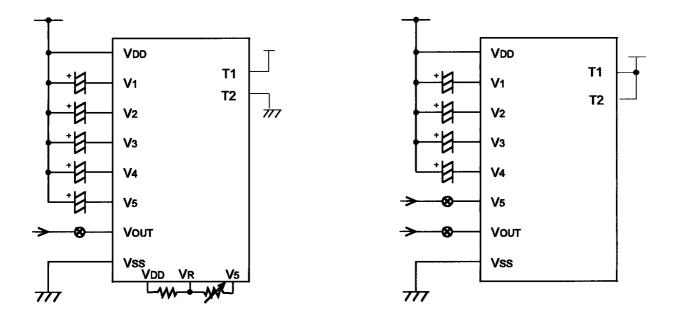

			(*:D	(*:Don't Care)			
T 1	T 2	Step up	Voltage Adj.	Buffer (V/F)	Ext. Pow Supply	C1+,C1-,C2+,C2-	VR Term.
L	*	0	0	0	-		
Н	L	×	0	0	V out	OPEN	
Н	Н	×	×	0	Vs, Vout	OPEN	OPEN

When (T1, T2) = (H, L), C1+, C1-, C2+, C2-,C3+, C3-, C4+, C4- terminals for voltage booster circuits are open because the voltage booster circuits doesn't operate. Therefore LCD driving voltage to the VOUT terminal should be supplied from outside.

When (T1, T2)=(H, H), terminals for voltage booster circuits and VR are open, because the voltage booster circuits and Voltage adjust circuits do not operate.



- O Power Supply application.
- (1) External power supply operation.



(3) External power supply operation with Voltage Adjustment, Buffer(V/F) Internal power supply ON (Instruction) (T1,T2)=(H,L)

(2) Internal power supply operation.
 (Step up, Voltage Adj., Buffer(V/F))
 Internal power supply ON(instruction) (T1,T2)=(L,L)

(4) External power supply operation adjusted Voltage to V5. Buffer(V/F)) Internal power supply (Instruction) (T1,T2)=(H,H)

* \otimes : These switches should be open during the power save mode.

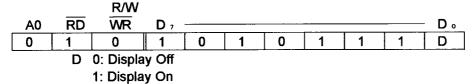
(2) Instruction

JRC

The NJU6577S distinguishes the signal on the data bus by combination of A0, \overline{RD} and \overline{WR} . Normally, the busy check is not required as the NJU6577S is operating so first because of the decode of the instruction and execution are performs only depending on the internal timing only neither the external clock. In case of serial interface, the data input as MSB first serially. The Table. 4 shows the instruction codes of the NJU6577S.

	Instruction					(Code	;					Description
	Instruction	AO	RD	WR		D 6	D 5			D 2	D ₁	Do	Description
(1)	Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0	LCD Display ON/OFF
												1	0:OFF 1:ON
(2)	Page Address Set	0	1	0	1	0	1	1	*	Pa	ge		Set the page of DD RAM
	_									Ad	dres	s	to the Page Add. Register
(3)	Column Address Set	0	1	0	0	0	0	1	Hi	gh O	rder		Set the Higher order 4 bits
	High Order 4bit								Co	olumr	n Ado	d	Column Address to the Reg.
(4)	Column Address Set	0	1	0	0	0	0	0	Lo	wer	orde	r	Set the Lower order 4 bits
	Lower Order 4bit								Co		<u>n Ado</u>		Column Address to the Reg.
(5)	Status Read	0	0	1	:	Statu	S		0	0	0	0	Read out the internal
													Status
(6)	Write Display Data	1	1	0			W	rite C)ata				Write the data into the
													Display Data RAM
(7)	Read Display Data	1	0	1			Re	ad D	Data				Read the Data from the
											1		Display Data RAM
(8)	ADC Select	0	1	0	1	0	1	0	0	0	0	0	Set the DD RAM vs Segment
												1	0:Normal 1:Inverse
(9)	Normal or Inverse	0	1	0	1	0	1	0	0	1	1	0	Inverse the On and Off Display
<u> </u>	of On/Off Set							_	<u> </u>	Ļ		1	0:Normal 1:Inverse
(10)	Whole Display On	0	1	0	1	0	1	0	0	1	0	0	Whole Display Tums On
	/Normal Display											1	0:Normal 1:Whole Disp. On
(11)	Icon Display	0	1	0	1	0	1	0	1	0	1	0	Set the Duty Ratio
(10)		0				4	4	_				1	0:No Icon 1:With Icon
(12)	Read Modify Write	0	1	0	1	1	1	0	0	0	0	0	Increment the Column Add.
													Register when writing but
(40)	End	0	1	0	1	1	1	0	1	1	1	0	no-change when reading Release from the Read
(13)	End	U	1	U	I	1	1	0	1	'	1	U	Modify Write Mode
(14)	Reset	0	1	0	1	1	1	0	0	0	1	0	Initialize the internal Circuits
(14)	Resel	U	•	0	'	'	1	ľ	ľ	ľ	1	U	
(15)	Output Assignment	0	1	0	1	1	0	0	А з	*	*	*	Set the scanning order of
(13)	Register Set	Ŭ	ſ	Ŭ		•	Ŭ	ľ			ĺ		common drivers to the Register
(16)	Internal Power	0	1	0	0	0	1	0	0	1	0	0	0:Int. Power Supply Off
	Supply On/Off	ľ	'	ľ l		ľ		ľ	ľ	l' '	ľ	1	1:Int. Power Supply On
(17)	LCD Driving	0	1	0	1	1	1	0	1	1	0	1	Set LCD Driving Voltage after
	-	Ŭ	•		•	•	•	ľ			•	after the internal (external)	
┝──┤	Voltage Set											L	power supply is turned on
(18)	EVR Register Set	0	1	0	1	0	0	0	Setting Data			a	Set the V 5 output level to
ļ.,, ļ					Ļ								the EVR register
(19)	Power Save	0	1	0	1	0	1	0	1			0	Set the Power save Mode
Ļ	(Dual Command)	0	1	0	1	0	1	0	0	1	0	1	

Table 4. Instruction Code


(*:Don't Care)

(3) Explanation of Instruction Code

(a) Display On/Off

This instruction executes whole display On/Off no relation with the data in the Display Data RAM and internal conditions.

(b) Page Address Set

When MPU accesses the Display Data RAM, the page address must be selected before the data writing The access to the Display Data RAM is available by setting the page and column addresses set (Refer the Fig. 1.). The page address change does not influence with the display.

		R/W									
A0	RD	WR	D 7							D o	
0	1	0	1	0	1	1	*	A 2	A 1	A٥	(*:Don't Care)

		-	-
A 2	A 1	A٥	Page
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

(c) Column Address

When MPU accesses the Display Data RAM, the page address set(refer(b) in front page) and column address set are required before the data writing. The column address set requires twice address set which are higher order 4 bits address set and lower order 4 bits. When the MPU accesses the Display Data RAM sequentially, the column address is increase one by one automatically, therefore, the MPU can access only the data sequentially without address set

This counter auto-increment up to $(A0)_{H}$, but accessing to the display data RAM over than $(4F)_{H}$ is forbidden.

After writing 1 page data, page address setting is required due to page address doesn't increase automatically.

			R/	W										
	A0	RD	WF	R	D 7									D _o
Higher Order	0	1	0		0	0		0		1	A7	A6	A5	A4
Lower Order	0	1	0		0	0		0		0	A3	A2	A1	A0
	A7	A6	A5	A4	. A	3	A2	2	A1	A0		Colur	nn Add	ress
	0	0	0	0	()	0		0	0			0	
	0	0	0	0	()	0		0	1			1	
					•						1		•	
					•								•	
	0	1	0	0	•		1		1	1		-	4F	

(d) Status Read

This instruction reads out the internal status of "BUSY", "ADC", "ON/OFF" and "RESET".

		R/W								
A0	RD	WR	D ₇							D o
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0	0

BUSY : BUSY=1 indicate the operating or the Reset cycle.

The instruction can be input after the BUSY status change to "0".

ADC : Indicate the output correspondence of column (segment) address and segment driver.
 0 :Counterclockwise Output (Inverse) Column Address 79-n ←→ Segment Driver n
 1 :Clockwise Output (Normal) Column Address n ←→ Segment Driver n
 (Note) The data "0=Inverse" and "1=Normal" of ADC is inverted with the ADC select Instruction of "1=Inverse" and "0=Normal".

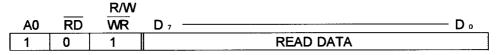
ON/OFF : Indicate the whole display On/Off status.

- 0 : Whole Display "On"
- 1 : Whole Display "Off"
- (Note) The data "0=On" and "1=Off" of Display On/Off status read out is inverted with the Display On/Off instruction data of "1=On" and "0=Off".
- RESET : Indicate the initializing period by RES signal or reset instruction.

0:

1 : Initialization Period

New Japan Radio Co., Ltd.


(e) Write Display Data

This instruction writes the 8-bit data on the data bus into the Display Data RAM. The column address increases "1" automatically after data writing,therefore, the MPU can write the 8-bit data into the Display Data RAM continuously without any address setting after the start address setting.

		FK/ V V		
A0	RD	WR	D 7 —	D o
1	1	0		WRITE DATA

(f) Read Display Data

This instruction reads out the 8-bit data from Display Data RAM addressed by the column and page address. The column address increase "1" automatically after data reading out, therefore, the MPU can read out the 8-bit data from the Display Data RAM without any address setting after the start address setting. One time of dummy read must operate after column address set as the explanation in "(5-5) Access to the Display Data RAM and Internal Register". In the serial interface mode, the display data is not readout.

(g) ADC Select

This instruction set the correspondence of column address in the Display Data RAM and segment driver output. (See Fig. 1.) By this instruction, the order of segment output can be changed by the software, and no restriction of the LSI placement against the LCD panel.

		R/W								
A0	RD	WR	D 7							- D 。
0	1	0	1	0	1	0	0	0	0	D
D	0: 0	Clockwis	e Outp	ut (No	rmal)					

1: Counterclockwise Output (Inverse)

(h) Normal or inverse On/Off Set

This instruction changes the condition of display turn on and off as normal or inverse. The contents of Display Data RAM is not changed by this instruction execution.

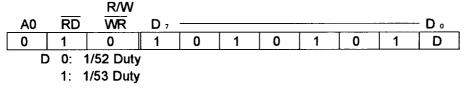
		R/W								
A0	RD	WR	D 7							- D º
0	1	0	1	0	1	0	0	1	1	D
D	0: N	lormal	RAM	data "1	" corre	espond	to "Or	"		
	1: Inverse RAM data "0" correspond to "On"									

(i) Whole Display On

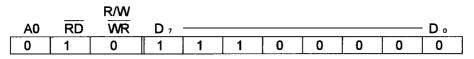
This instruction turns on the all pixels independent of the contents of Display Data RAM. In this time, the contents of Display Data RAM is not changed and is kept. This instruction takes over precedence over the "Normal or Inverse On/Off Set Instruction".

		R/W								
A0	RD	WR	D 7							- D o
0	1	0	1	0	1	0	0	1	0	D

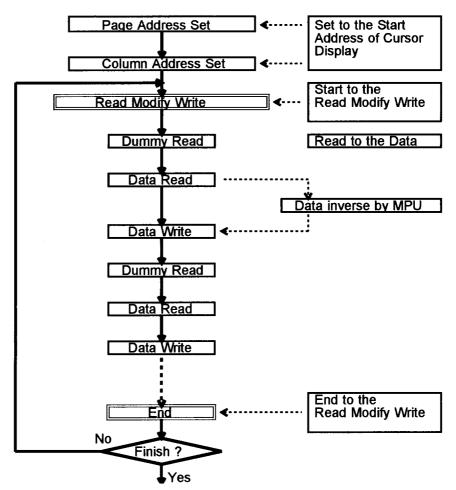
- D 0: Normal Display
 - 1: Whole Display turns on


When Whole Display On Instruction is executed in the Display Off status, the internal circuits go to the power save mode (refer to the (s) Power Save).

New Japan Radio Co., Ltd.

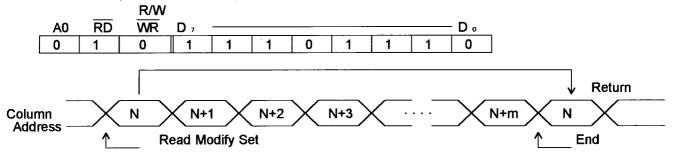

(j) Icon Display

This instruction set the 1/53 duty for the lcon Display. The COMI terminal operate as COM $_{52}$ and output the icon display data stored in D $_{\circ}$ of Display Data RAM page 8 (refer to the Fig. 1).


(k) Read Modify Write

This instruction sets the Read Modify Write Mode for the column address increment control. In mode of the Read Modify Write, the column address increases "1" automatically when the Display Data Write Instruction is executed, but the address does not change when the Display Data Read Instruction is executed. This status is continued until End instruction execution. This function reduces the load of MPU for repeating the display data change in the fixed area (ex. cursor blink).

Note) In mode of the Read Modify Write mode, any instructions except for Column Address Set can execute.


(I) Sequence of inverse display

JRC

(m) End

This instruction release the Read Modify Write mode and the column address back to the address where the read modify write mode setting.

(n) Reset

This instruction executes the following initialization.

Initialization

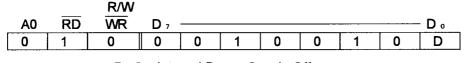
- (1) Set the Address $(00)_{H}$ into the Column Address Counter.
- ② Set the page "0" into the Page Address Register.
- ③ Select the D3 of the Output Assignment Register to "0".
- (4) Set 0 to the EVR Register to $(00)_{H}$.

In this time, there is no influence to the Display Data RAM.

A0	RD	WR	D 7	···· ··· ··						- D o	
0	1	0	1	1	1	0	0	0	1	0	l

The reset signal input to the $\overline{\text{RES}}$ terminal (hardware reset) must be input for the power on initialization. when the power terms on. Reset Instruction for the reset signal input to the $\overline{\text{RES}}$ terminal is not allowed.

(o) Output Assignment Register


This instruction sets the common driver scanning order .

		R/W									
A0	RD	WR	D 7							– D o	
0	1	0	1	1	0	0	A3	*	*	*	(*:Don't Care)

A3: Set the scanning order . (Refer to 1-6)

(p) Internal Power Supply

This instruction set the condition of internal Power Supply On/Off. Step up circuits, Voltage Regulator and Voltage Follower operate at On. To operate the step up circuits, the operation of oscillation circuits must be operating.

D 0: Internal Power Supply Off

1: Internal Power Supply On

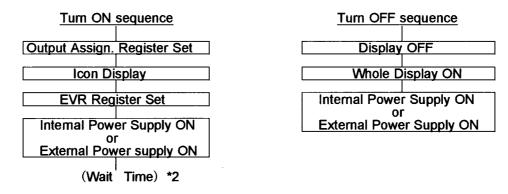
The internal Power Supply must be Off when external power supply using.

New Japan Radio Co., Ltd.

(q) LCD Driving Voltage Set

This instruction control LCD driving voltage V1 to V4 and output LCD driving waveform output through the COM/SEG terminals.

		R/W									
A0	RD	WR	D,							· D o	_
0	1	0	1	1	1	0	1	1	0	1	

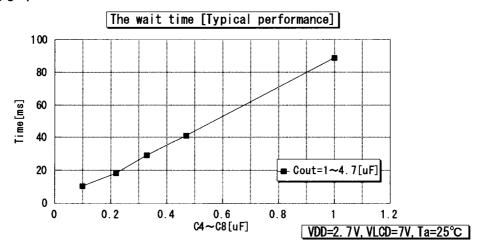

NJU6577S contains operational amplifiers for LCD bias voltage V1 to V4. These amplifiers current are reduced in order to realize low power consumption. Because of this reduction, LCD driving voltage V1 to V4 might be unstable just after the internal power supply is turned on.

LCD Driving Voltage Set instruction is prepared for this unstableness.

LCD driving power supply ON/OFF sequences

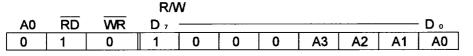
The following sequences are required when the power supply is tuned on/of.

When the power supply is tuned on again after the turn off (by the power save instruction), the power save release sequence (s) is required.



*1 This instruction is required in both cases of the internal and external power supply.

Until "LCD driving voltage Set" execution, NJU6577S operating current is higher than usual state and all COM/ SEG do not output LCD driving waveform output V DD level continuously.

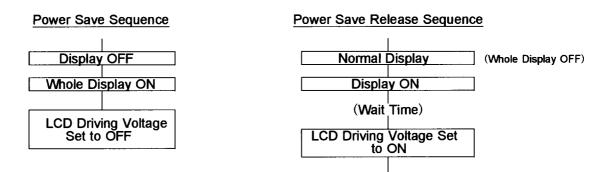

*2 The wait time depends on the C₄, C₅,C₆,C₇,C₈ and C_{0UT} capasitors((4) (d)Fig.4), V_{DD} and V_{LCD} voltage.

Therefore it requires the actual evaluation using the LCD module to get the correct time. (Refer to the following graph)

(r) EVR Register Set

This instruction controls voltage adjustment circuits of internal LCD power supply and changes LCD driving voltage V5 Finally, it adjusts the contrast of LCD display. By setting a data into EVR register, V5 output voltage selects one condition out of 16-voltage conditions. The range of V5 voltage is adjusted by setting external resistors as mentioned in "(4) (b) Voltage Adjust Circuits.

V L C D = V D D - V 5	VLCD	A0	A1	A2	A3	A4	
	High	0	0	0	0	0	
When EVR does	:			:			
EVR register	:			:		ļ	
	Low	1	1	1	1	1	


When EVR doesn't use, set the EVR register to (0,0,0,0,0).

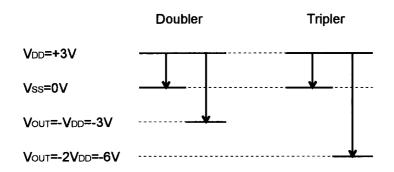
(s) Power Save (Dual Command)

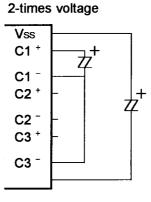
When both of Display Off and Whole Display On are executed, the internal circuit go to the power save mode and the operating current is reduced as same as the stand by current. The internal status in the Power Save Mode is shown follows;

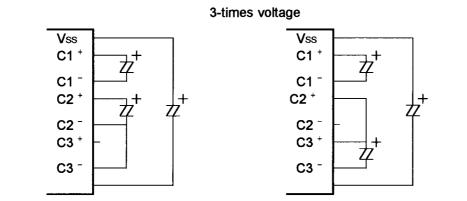
- ① Stop the Oscillation Circuits and Internal Power Supply Circuits operation.
- 2 Stop the LCD driving. Segment and Common drivers output V DD level.
- ③ Keep the display data and operating mode just before the power save mode.
- (4) All of LCD driving bias voltage fix to the V_{DD} level.

The power save and its release should be performed according to the following sequences.

- *1 In the power save sequence, The power save mode is started after the second the instruction "Whole Display ON".
- *2 In the power save release sequence, The power save mode is released after the Normal Display instruction (Whole Display OFF).
- *3 Until "LCD driving voltage set to ON" execution, NJU6577S operating current is higher than usual state and all COM/SEG terminals output V DD level continuously.
- *4 In case of the external power supply for LCD driving, it should be turned off and made condition like as disconnection or connection to VDD before the power save mode or at the same time, In this time, V_{OUT} terminal should be made condition like as unconnection or connection to the lowest voltage of the system. (V5 level from the external power supply).


New Japan Radio Co., Ltd.


(4) Internal Power Supply


(a) Quadruple voltage step up circuit

Three times negative voltage(V $_{DD}$ common) of the voltage V $_{DD}$ -V $_{SS}$ is output from V $_{OUT}$ terminal when connecting three capacitor between C1 ⁺ and C1 ⁻, C2 ⁺ and C2 ⁻, Connect C2 ⁻ to C3 ⁻ and C3 ⁺, should be open.(or connect the capacitor between C1 ⁺ and C1 ⁻, C3 ⁺ and C3 ⁻, connect C2 ⁺ to C3 ⁺, and C2 ⁻ should be open.) V $_{SS}$ and V $_{OUT}$. voltage booster circuits like as Voltage Tripler or Doubler using a oscillation circuits output as its clock signal, therefore, the oscillation circuits operation is required when voltage boost operation. The voltage relation regarding the step up circuits is shown in below. When voltage quadrupler operation, the operation voltage V $_{DD}$ should be less than 3.3V.

· Examples for connecting the capacitors

(b) Voltage Adjust Circuits

The step up voltage of V $_{0UT}$ output from V $_{5}$ through the voltage adjust circuits for LCD driving. The output voltage of V $_{5}$ is adjusted by changing the Ra and Rb within the range of | V $_{5}$ | < |V $_{0UT}$ |. The output voltage is calculated by the following formula.

 $V_{LCD} = V_{DD} - V_{5} = (1+Rb/Ra) \cdot V_{REG} \cdots (1)$

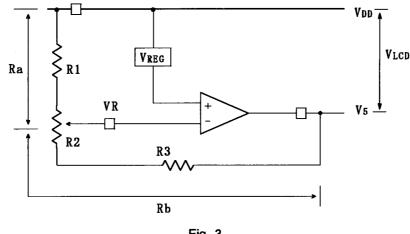


Fig. 3

Where, the V REG is a constant voltage in the NJU6577S like as V REG=2.0V.

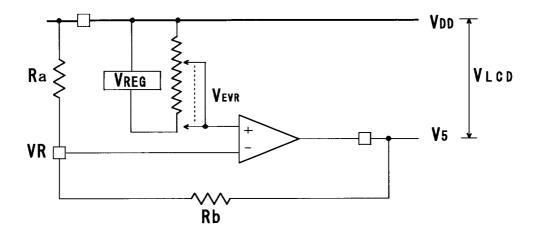
To adjust the output voltage from V s. connect the variable resistance among VR, V $_{DD}$ and V s as shown in Fig. 3. When fine tuning for V s is needed, combine with the fixed resistance of R1, R3 and variable resistance of R2 is recommended as shown in Fig. 3.

[Design example for R1, R2 and R3; V DD = 3V / reference]

- R1+R2+R3=5M Ω (Determined by the current flown between V $_{DD}$ -V $_{5}$)
- Variable voltage range by the R2. $-4V \sim -6V (V_{LCD}=V_{DD}-V_{5} \rightarrow 7V \sim 9V)$ (Determined by the LCD electrical characteristics)
- R1, R2 and R3 are calculated by above conditions and the formula of 1 to mentioned below; R1=1.111M Ω
 - R2=0.318M Ω R3=3.571M Ω

The voltage adjust circuits has a temperature coefficient against the V_{REG} output. If necessary, please connect the thermistor to the voltage adjust circuits serially.

To avoid the noise trouble, short wiring or sealed wiring is required for VR terminal input due to the VR terminal is high impedance.

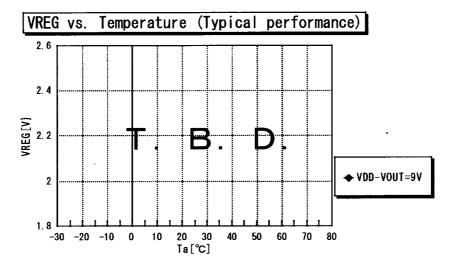


(c) Contrast Adjustment by using the EVR function

The EVR controls voltage of VREG by instruction and changes voltage of V5.

As result ,LCD display contrast is adjusted by V5.The EVR selects a voltage of VREG in the following 32conditions by setting 6bits data into the EVR register.

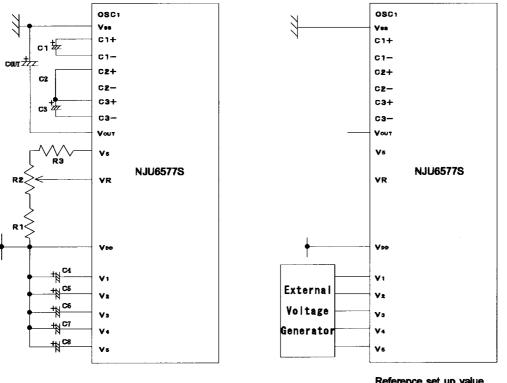
In case of EVR operation ,T1 terminal and T2.require to set couples of value as(L,L),(L,H)and(H,L)excepting for (H,H)and the internal power supply must turn on by instruction.


 $V_{LCD} = V_{DD} - V_{5} = (1 + Rb/Ra) \cdot V_{EVR}$ (2) [: $V_{EVR} = V_{REG} - n \cdot (V_{REG}/164)$]

E	VR register	n·(V _{REG} /164)	VLCD
(00) _H	(0,0,0,0,0)	0. (V REG/164)	High
(01) ⊦	(0,0,0,0,1)	1·(V REG/164)	1
(02) н	(0,0,0,1,0)	2·(V REG/164)	
(03) н	(0,0,0,1,1)	3·(V REG/164)	
	•	•	
(1E) ⊬	(1,1,1,1,0)	30 [.] (V reg/164)	
(1F)⊩	(1,1,1,1,1)	31·(V REG/164)	Low

When EVR function doesn't use, (D $_4$, D $_3$, D $_2$, D $_1$, D $_0$) of EVR register set to (0, 0, 0, 0, 0) by the RES signal or "EVR Register Set" instruction.

*) V_{REG}, depends on the voltage between V_{DD} and V_{OUT}, the operating temperature. Please refer to the following graphs.


(d) LCD Driving Voltage Generation Circuits

The LCD driving bias voltage of V $_1$, V $_2$, V $_3$, V $_4$ are generated internally by dividing the V $_5$ voltage with internal bleeder resistance. And it is supplied to the LCD driving circuits after the impedance conversion with voltage follower circuit.

As shown in Fig. 4, Five capacitors are required for each LCD driving voltage terminal as a voltage stabilizing. And the value of capacitors C4, C5, C6, C7 and C8 are determined depending on the actual LCD panel display evaluation .

Using the internal Power Supply

Using the external Power Supply

Reference	set up	value	
$V_{LCD} = V_{DD} - V5$	≒7~9	V Changed	

1					
ltem	Value				
Солт	4.7~10µF				
C1,C2, C3	4.7~10µF				
C4 to C8	0. 1~0. 47μF				
R1	1.111MQ				
R2	0.318MQ				
R3	3.571MQ				

- *1 Short wiring or sealed wiring to the VR terminal is required for the VR terminal due to the high impedance of VR terminal.
- *2 Following connection of VOUT is required when external power supply using.
 - When $V_{ss} > V_{5} V_{out} = V_{s}$ When $V_{ss} \le V_{5} - V_{out} = V_{ss}$

New Japan Radio Co., Ltd.

(5) MPU Interface

(5-1) Interface type selection

NJU6577S interfaces with MPU by using both of 8-bit bi-directional data bus (D $_7$ to D $_0$) or serial interface (SI). The 8 bit parallel or serial interface is determined by a condition of the P/S terminal connecting to "H" or "L" level as shown in Table 5. In case of the serial interface, status and RAM data read out operation is impossible.

P/S	Туре	CS	A0	RD	WR	C86	SI	SCL	D o ~ D 7
Н	Parallel	CS	A0	RD	WR	C86	-	-	D o ~ D 7
L	Serial	CS	A0	-	-	-	SI	SCL	OPEN

Т	้ล	b	le	5

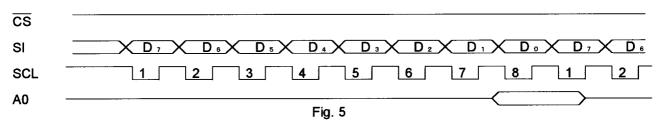
(5-2) Parallel Interface

The NJU6577S interfaces both of 68 or 80 type MPU directly when the parallel interface (P/S="H") is selected. 68 type MPU or 80 type MPU is determined by the condition of C86 terminal connecting to "H" or "L" as shown in table 6.

			Table	6		
C86	Туре	CS	A0	RD	WR	D o ~ D 7
н	68 type MPU	CS	A0	E	R/W	D o ~ D 7
L	80 type MPU	CS	A0	RD	WR	D º ~ D 1

(5-3) Discrimination of Data Bus Signal

The NJU6577S discriminates the mean of signal on the data bus by the combination of A0, E, R/W, and $(\overline{RD},\overline{WR})$ signals as shown in Table 7.

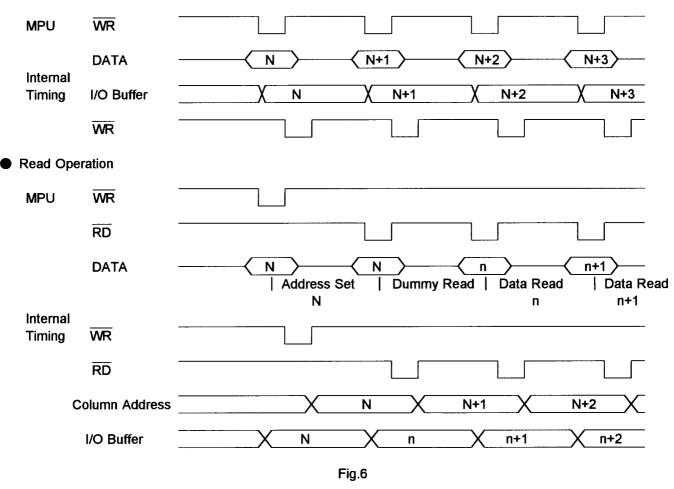

	Table 7										
Common	68 type	80 ty	vpe	Function							
A0	R/W	RD	WR								
1	1	0	1	Read Display Data							
1	0	1	0	Write Display Data							
0	1	0	1	Status Read							
0	0	1	0	Write into the Register(Instruction)							

(5-4) Serial Interface.(P/S="L")

Serial interface circuits consist of 8 bits shift register and 3 bits counter. SI and SCL input are activated when the chip select terminal \overline{CS} set to "L" and P/S terminal set to "L". The 8 bits shift register and 3 bits counter are reset to the initial condition when the chip is not selected. The data input from SI terminal is MSB first like as the order of D₇,D₆,....D₀. and the data are entered into the shift register synchronizing with the rise edge of the serial clock SCL.. The data in the shift register are

converted to parallel data at the 8th serial clock rise edge input. discrimination of the display data or instruction of the serial input data is executed by the condition of A0 at the 8th serial clock rise edge .A0="H" is display data and A0="L" is instruction. When RES terminal becomes "L" or CS terminal becomes "H" before 8th serial clock rise edge .NJU6577S recognizes them as a instruction data incorrectly. Therefore a unit of serial data must be structured by 8-bit. The time chart for the serial interface is shown in Fig. 5. To avoid the noise trouble, the short wiring is required for the SCL input. Note) The read out function, such as the status or RAM data read out, is not supported in this serial

interface .


New Japan Radio Co., Ltd.

(5-5) Access to the Display Data RAM and Internal Register.

The NJU6577S is operating as one of pipe-line processor by the bus-holder connecting to the internal data bus to adjust the operation frequency between MPU and the Display Data RAM or Internal Register. For example, When the MPU reads out the data from the Display Data RAM, the data read out in the data read cycle(dummy read) is held in the bus-holder at once then read out from the bus-holder to the system bus at the next data read cycle. When the MPU writes the data into the Display Data RAM, the data write cycle. Therefore high speed data transmission between MPU and NJU6577S is available because of it is not limited by the tACC and tDS as display data RAM access time and is limited by the system cycle time (R) or (W). If the cycle time is not be kept in the MPU operation, NOP should be inserted to system instead of the waiting operation.

Please note that the read out data is a address data when the read out execution just after the address. The read out operation does not read the data in the pointed address just after the address set operation. And second read out operation can read out the data correctly from the pointed address.Therefore, one dummy read is required after address setting or write cycle as shown in Fig. 6.

Write Operation

(5-6) Chip Select

 \overline{CS} is Chip Select terminal. The Chip Select is executed by the setting of \overline{CS} ="L". Only the select mode, the interface with MPU is available. In the non select period, the D_o to D₇ are high impedance and A0, \overline{RD} , \overline{WR} , SI and SCL input are put on the disable state. If the serial interface is selected in the non select period, the shift register and counter are reset. The reset input is regardless with the condition of \overline{CS} .

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT				
Supply Voltage (1)	V	- 0.3 ~ + 7.0 - 0.3 ~ + 3.3 (used Tripler)	V				
Supply Voltage (2)	۷ 5	V dd -10.8 ~ V dd +0.3	V				
Supply Voltage (3)	V 1 ~ V 4	V 5 ~ V DD+0.3	V				
Input Voltage	VIN	- 0.3 ~ V ⊳₀+0.3	V				
Operating Temperature	Topr	- 30 ~ + 80	°C				
Storage Temperature	Tstg	- 55 ~ + 125(Chip) - 55 ~ + 100(TCP)	٦°				

Note 1) If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability.

Note 2) All voltage values are specified as $V_{SS} = 0 V$.

Note 3) The relation : $V_{DD} \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$; $V_{DD} > V_{SS} \ge V_{OUT}$ must be maintained.

Note 4) Decoupling capacitor should be connected between V $_{DD}$ and V $_{SS}$ due to the stabilized operation for the voltage converter.

ELECTRICAL CHARACTERISTICS (1) $(V_{DD}=3V \pm 10\%, V_{SS}=0V, Ta=-20 \sim +75 ^{\circ}C)$										
PARA	METER	SYMBOL	CONDI	TIONS	MIN	TYP	MAX	UNIT	Note	
Operating	Recommend	V DD			2.7	3.0	3.3	v	5	
Voltage(1)	Available	V DD			2.4		5.5	v	5	
	Recommend	V 5			V dd -10		V DD -3.5			
Operating	Available	V 5			V dd -10			v		
Voltage(2)	Available	V 1 ,V 2	V LCD =V DD -V	5	V DD -0.6xV L	CD	V DD	v		
	Available	V 3,V 4					V DD -0.4xV LCD			
Input	High Level	VIHC	D0, <u>D1</u> D7, A0, CS, RES,		0.8xV ⊳⊳		VDD	v		
Voltage	Low Level	VILC	RD, WR, C86, SI,SCL,P/S Terminals	V DD=2.7V	V ss		0.2xV □□	v		
Output	High Level	V онс	D0,D1D7,	l o=-0.5mA	0.8xV DD		V DD	.,		
Voltage	Low Level	V OLC	Terminals V □□=2.7V	l o= 0.5mA	V ss		0.2xV DD	V		
		1.1	All input term	ninals	-1.0		1.0	uА		
прит сеака	Input Leakage Current		All I/O term.(D0D7)	-3.0		3.0	uA	6	
Driver On-r	resistance	R _{ON1}		/ LCD=10V		2.0	3.0	kΩ	7	
			ext. power supply	/ LCD=8.0V		3.0	4.5	N 32	,	
Stand-by C	urrent	DDQ1	during stand	by Mode		0.05	5	uA	8	

 $(1/2)^{-2}(1+100/2)/2 = 0)/2 = 20$ 175 °C

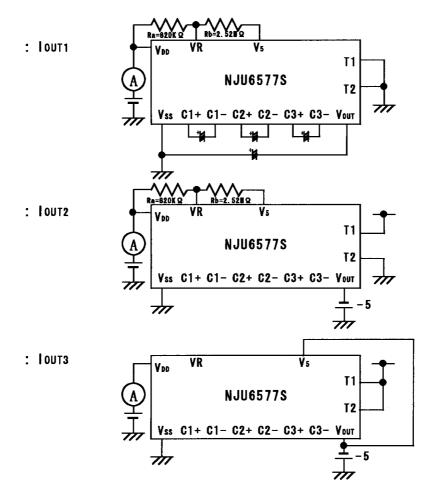
(Ta=25 °C)

ELECTRICAL CHARACTERISTICS (2)

				TIONS	MAINI	TYP	MAX	1.16.11.77	Note
	PARAMETER Operating Current		C O N D I Display	V DD=2.7V, V DD=8V	MIN	20	40	UNIT uA	8
	9	DD2	Accessing fcyc=200kHz	V DD=2.7V		120	240	uA	9
Input Ter	minal Capacitance	C 1 N	A0, CS, RES, RD SCL, P/S, T1, T2, Ta=25 °C	,₩R,C86,SI, D ₀ ~ D ⁊		10		рF	
Oscillatio	on Frequency	fosc	Ta=25 °C	V _{DD} =3. 0V	13.1	16	18.9	kHz	
	La activ	V	N/ N/		2.4		5.5		
	Input		V dd -V ss		2.4		5.5	v	
	Voltage	V_{DD2}	V DD -V ss, used	Tripler	2.4		3.3		10
	Output Volt.	V ουτ	Vss-V∟co,used	Tripler	-6.6			V	
	ON -Resistance	Rstep	V ⊳⊳=3V, C=4 used Tripler	4.7uF	-	600	1000	Ω	
Voltage	Adjustment range of LCD Driving Volt	ν ουτ	Tripler Circui	t "OFF"	V₀₀−10		V₀₀ −5. 0	V	11
Tripler	Voltage Follower	۷ 5	Voltage Adju Cir	stment cuit "OFF"	V₀₀ −10		V₀₀ −5. 0	V	11
		 OUT1	VDD=3. 3V, VLCC	,=7. 4 V		80	160		
	Operating Current		COM/SEG Term.	Open,		30	60	uA	12
	Current	ОПТЗ	No Access ours Display check. pattern			25	50		
	Voltage Reg.	V REG	V □D=3.0V, T	a=25 ℃			3.0	%	13

Note 5) NJU6577S can operate wide operating range, but it is not guarantee immediate voltage changing during the accessing of the MPU.

- Note 6) Apply to the High-impedance state of D $_{\circ}$ to D $_{7}$ terminals.
- Note 7) R ON is the resistance values between power supply terminals(V 1, V 2, V 3, V 4) and each output terminals of common and segment supplied by 0.1V. This is specified within the range of supply voltage (2).
- Note 8,9,12) Apply to current after "LCD Driving Voltage Set"
- Note 8) Apply to the external display clock operation in no access from the MPU and no use internal power supply circuits.
- Note 9) Apply to the condition of cyclic (tcyc) inverted data input continuously in no use internal power supply circuits. The operating current during the accessing is proportionate to the access frequency. In the no accessing period, it is as same as I DDDTX.
- Note 10) Supply voltage (V DD) range for internal Voltage Tripler operation.
- Note 11) LCD driving voltage V $_{\rm 6}$ can be adjusted within the voltage follower operating range.
- Note 12) Each operating current of voltage supply circuits block is specified under below table


conditions.	($V DD=3.3V$; $V LCD=8V$; COM/SEG	Terminals Open ; No Access	; display checkered pattern)
-------------	--------------------------------------	----------------------------	------------------------------

	Status		Operating Condition				External	
SYMBOL	т	т	Internal	Voltage	Voltage	Voltage	Voltage Supply	
	11	2	Oscillator	Tripler	Adjustment	Follower	(Input Terminal)	
OUT 1	L	*	Validity	Validity	Validity	Validity	Unuse	
OUT2	Н	L	Validity	Invalidity	Validity	Validity	Use(Vour)	* = Don't
ОЛТЗ	Н	Н	Validity	Invalidity	Invalidity	Validity	Use(Vout,V₅)	Care

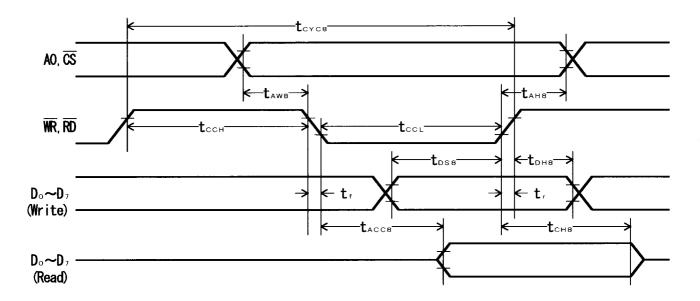
Note 13) Apply to the precision of the voltage between V_{DD} and V_{5} with EVR function.

MEASUREMENT BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (3)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	Note
Reset time	t R	RES Terminal	1.0			us	14
Reset "L" Level Pulse Width	t RW	RES Terminal	10			us	15

Note 14) Specified from the rising edge of RES to finish the internal circuit reset.

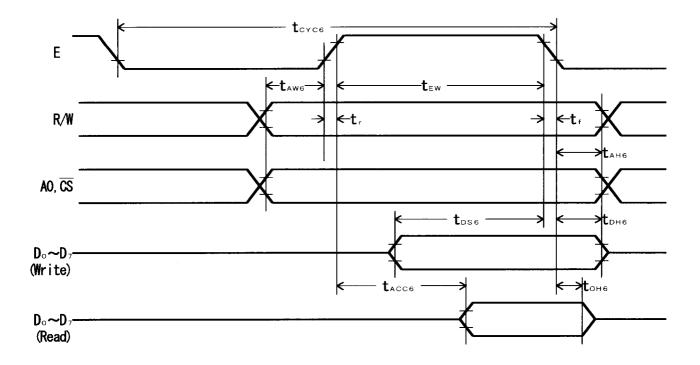

Note 15) Specified minimum pulse width of RES signal. Over than t RW "L" input should be required for correct reset operation.

New Japan Radio Co., Ltd.

BUS TIMING CHARACTERISTICS

Read/Write operation sequence (80 Type MPU)

			(V DD =3.0	$V \pm 10\%$	∕⁄₀, Ta=-20 ~	75 ℃)
PARAMETER			SYMBOL	MIN	MAX	CONDITION	UNIT
Address Hold Time		A0, CS	t AHB	25			
Address Set Up Time		Terminals	t AWB	25			
System Cycle Time			t cycs	450			
Control	₩R,"L"	WR, RD Terminals	t ccl (W)	50			
	RD ,"L"	Terminars	t _CCL (R)	200			ns
	"H"		t ссн	220			
Data Set Up Time			t DS8	120			
Data Hold Time		D • ~ D 7	t ons	35			
RD Access Time		Terminals	t ACC8		140	CL=100pF	
Output Disable Time			t снв	0	35	UL-TOOPF	
Rise Time,Fall Time A0,D		CS,WR,RD A0,D ₀∼ D ァ Terminals	tr,tr		15		

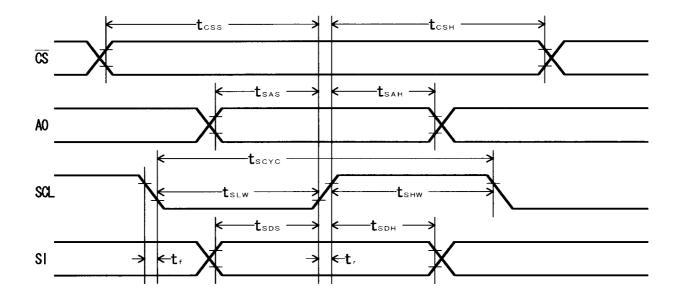

Note 16) Rise time(tr) and fall time(tf) of input signal should be less than 15ns.

Note 17) Each timing is specified based on 0.2xV DD and 0.8xV DD.

New Japan Radio Co., Ltd.

· Read/Write operation sequence (68 Type MPU)

			(\	$(V = 3.0V \pm 10\%, Ta = -20 \sim 75 ^{\circ}C)$ SYMBOL MIN MAX CONDITION UNIT						
PARAMETER			SYMBOL	MIN	MAX	CONDITION	UNIT			
Address Hold Time A0, CS		AO, \overline{CS} , R/W	t AH6	25						
Address Set Up Time		Terminals	t AW6	25			ľ			
System Cycle Time			t cyce	450						
Enable	Read			200						
Pulse Width	Write	E Terminal	tεw	50			ns			
Data Set Up Time			t _{DS6}	120						
Data Hold Time		D • ~ D 7	t DH6	40						
Access Time		Terminals	t ACC6		140	CL=100pF				
Output Disable Time			t cH6	0	45	UL-100pr				
Rise Time,Fall Time E,D		A0, CS, R/W E, D ₀ ~ D ァ Terminals	tr,tr		15					


Note 18) t cros indicates the E signal cycle during the \overline{CS} activation period. The System Cycle Time must be required after \overline{CS} becomes active.

- Note 19) Rise time(tr) and fall time(tf) of input signal should be less than 15ns.
- Note 20) Each timing is specified based on 0.2xV $_{\rm DD}$ and 0.8xV $_{\rm DD}.$

New Japan Radio Co., Ltd.

• Write operation sequence (Serial Interface)

(V₀p→3, VV±10%, Ta→20~73 C							
PARAMETER		SYMBOL	MIN	MAX	CONDITION	UNIT	
Serial Clock cycle		t scyc	1000				
SCL "H" pulse width	SCL Terminal	t _{s+w}	300				
SCL "L" pulse width		t slw	300				
Address Set Up Time	AO Terminal	tsas	250				
Address Hold Time		tsah	400		-	ns	
Data Set Up Time	SI Terminal	t _{sos}	250				
Data hold Time		t sdh	100				
CS-SCL Time	CS Terminal	t css	60				
		t csH	800				
Rise Time, Fall Time	SCL, AO, CS , SI Terminals	t r, t r		15			

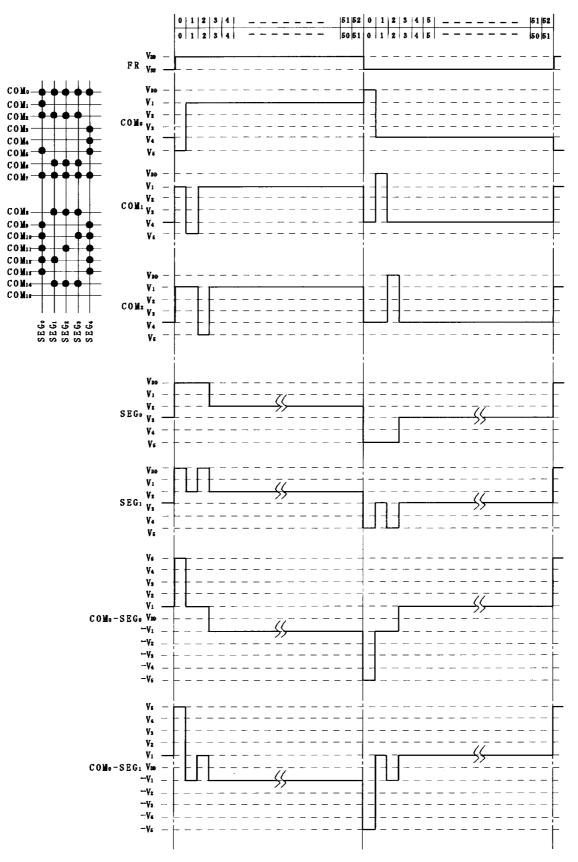
 $(V_{DD}=3.0V\pm10\%, Ta=-20\sim75^{\circ}C)$

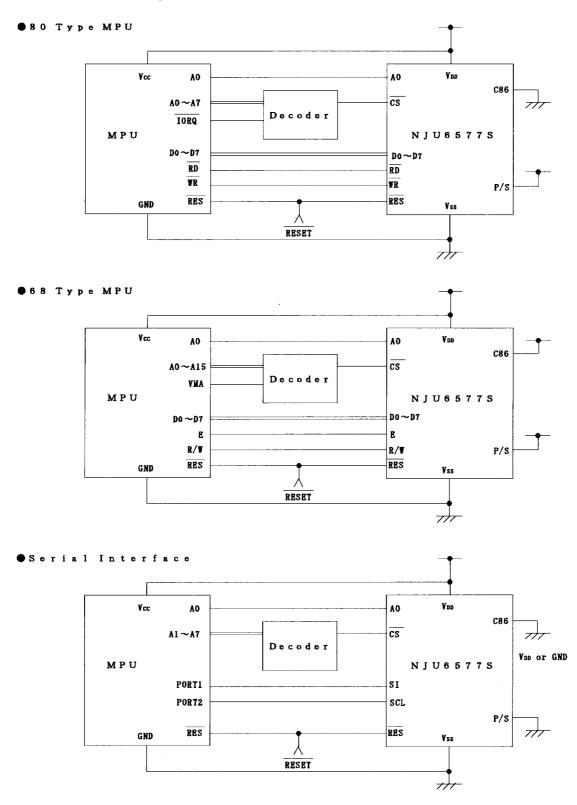
Note 21) Rise time(tr) and fall time(tf) of input signal should be less than 15ns.

Note 22) Each timing is specified based on 0.2xV $_{\text{DD}}$ and 0.8xV $_{\text{DD}}$.

New Japan Radio Co., Ltd.

LCD DRIVING WAVEFORM




Fig. 7

■ APPLICATION CIRCUIT

·Microprocessor Interface Example

The NJU6577S can interface with both of 80 type and 68 type MPU by the serial format directly. Therefore minimum wiring for the MPU interface is available.

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.