Low EMI Spread Spectrum Multiplier IC

FEATURES

- Spread Spectrum Clock Generator/Multiplier with output selectable from 1x to 8x.
- 13 MHz to 224 MHz output with output enable.
- 13 MHz to 30 MHz input frequency from crystal or external clock signal.
- Reduced EMI from Spread Spectrum Modulation, with selectable modulation magnitude for Center Spread, Down Spread or Asymmetric Spread.
- TTL/CMOS compatible outputs.
- 3.3V Operating Voltage.
- 150 ps maximum cycle-to-cycle jitter.
- Available in 16 -Pin 150 mil SSOP.

DESCRIPTION

The PLL701-50 is a low EMI Clock Generator and Multiplier for high-speed digital systems. It uses PhaseLink's unique (Patent Pending) Spread Spectrum Technology (SST) and permits different levels of EMI reduction by selecting the amplitude of the applied SST. The SST feature can be disabled. The chip operates with input frequencies ranging from 13 to 30 MHz and provides 1 x to 8 x multiplication at its output.

OUTPUT CLOCK (FOUT) SELECTION

M2	M1	M0	FIN/XIN $($ MHz $)$	Multiplier	FOUT $($ MHz $)$
0	0	0	$13 \sim 28$	X1	$13 \sim 28$
0	0	1	$13 \sim 28$	X2	$26 \sim 56$
0	1	0	$14 \sim 30$	X3	$42 \sim 90$
0	1	1	$13 \sim 28$	X4	$52 \sim 112$
1	0	0	$20 \sim 30$	X5	$100 \sim 150$
1	0	1	$17 \sim 30$	X6	$102 \sim 180$
1	1	0	$15 \sim 30$	X7	$105 \sim 210$
1	1	1	$13 \sim 28$	X8	$104 \sim 224$

BLOCK DIAGRAM

DIE PAD CONFIGURATION

DIE SPECIFICATIONS

Name	Value
Size	$104 \times 69 \mathrm{mil}$
Reverse side	GND
Pad dimensions	80 micron $\times 80$ micron
Thickness	10 mil

Low EMI Spread Spectrum Multiplier IC

SPREAD SPECTRUM SELECTION TABLE

Notes: C: Center Spread. A: Asymmetric Spread. D: Down Spread.

FUNCTIONAL DESCRIPTION

Selectable spread spectrum and modulation magnitude

The PLL701-50 provides selectable multiplier factors (1 x to 8 X), selectable spread spectrum modulation type, as well as selectable modulation magnitude. Selection is made by connecting specific input pins to a logical "zero" or "one". Pins 6 (SC0), 7 (SC1), 8 (SC2) and 12 (SC3) are used as inputs to select the spread spectrum modulation magnitude as shown on the spread spectrum selection table (page 2). Pins 3 (M2), 4 (M1), 5 (M0) are used as inputs to select the multiplication factor as shown on the output clock selection table (page 1). Pin 11 is the output enable pin, which tri-states all outputs when low (logical "zero").

In order to reduce the number of pins on the chip, the PLL701-50 uses pins 2 and 14 (XOUT/SD0 and REF/SD1) as bi-directional pins. The pins serve as modulation type selector inputs (SD0 and SD1) upon power-up (see spread spectrum selection table on page 2), and as XOUT crystal connection (pin 2), and REF output signal (pin 14) as soon as the inputs have been latched.

Connecting a selection pin to a logical "one"

All selection pins have an internal pull-up resistor ($30 \mathrm{k} \Omega$ for pins $3,4,5,6,7,8,11,12,14$ and $120 \mathrm{k} \Omega$ for pin 2). This internal pull-up resistor will pull the input value to a logical "one" (pull-up) by default, i.e. when no resistive load is connected between the pin and GND. No external pull-up resistor is therefore required for connecting a logical "one" upon power-up.

Connecting a selection pin to a logical "zero"

For an input only pin, i.e. all input pins except XOUT/SD0 (pin 2) and REF/SD1 (pin 14), the pin simply needs to be grounded to pull the input down to a logical "zero". For the Bidirectional pins (pins 2 and 14) you will need an external resistor. For pin 2 a $27 \mathrm{k} \Omega$ resistor is recommended and for pin 14 a $4.7 \mathrm{k} \Omega$ resistor is recommended.

ELECTRICAL SPECIFICATIONS

1. Absolute Maximum Ratings

PARAMETERS	SYMBOL	MIN.	MAX.	UNITS
Supply Voltage	V_{DD}		4.6	V
Input Voltage, dc	V_{I}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Output Voltage, dc	V_{o}	-0.5	$\mathrm{~V}_{\mathrm{DD}}+0.5$	V
Storage Temperature	T_{s}	-65	150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature*	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}		125	${ }^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
ESD Protection, Human Body Model			2	kV

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied.

* Note: Operating Temperature is guaranteed by design for all parts (COMMERCIAL and INDUSTRIAL), but tested for COMMERCIAL grade only.

PLL701-50
Low EMI Spread Spectrum Multiplier IC

2. DC/AC Specifications

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Supply Voltage	$V_{\text {D }}$		2.97		3.63	V
Input High Voltage	$\mathrm{V}_{\text {IH }}$		$0.7 * V_{\text {DD }}$			V
Input Low Voltage	VIL				$0.3^{*} \mathrm{~V}_{\mathrm{DD}}$	V
Input High Current	IH				100	$\mu \mathrm{A}$
Input Low Current	$1 /$				100	$\mu \mathrm{A}$
Output High Voltage	Vor	$\mathrm{I}_{\text {OH }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {DD }}=3.3 \mathrm{~V}$	2.4			
Output Low Voltage	VoL	$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}$			0.4	
Input Frequency	Fxin	When using a crystal	See Output Clock Selection table on page 1			MHz
	Fin	When using reference clock	See Output Clock Selection table on page 1			MHz
Maximum interruption of FIN		When using reference clock			100	$\mu \mathrm{S}$
Load Capacitance	CL	Between Pin XIN and XOUT*		18		pF
Pull-up Resistor	Rup	PIN 2		120		k Ω
Pull-up Resistor	Rup	PIN 3,4,5,6,7,8,11,12,14		30		k Ω
Short Circuit Current	Isc			50		mA
3.3V Dynamic Supply Current	Icc	No Load		20		mA

*Note: Pin XIN and XOUT each has a 36 pF capacitance. When used with a XTAL, the two capacitors combined load the crystal with 18 pF . If driving XIN with a reference clock signal, the load capacitance will be 36 pF (typical).

3. Timing Characteristics

PARAMETERS	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS
Rise Time	T_{r}	Measured at 0.8V ~2.0V @ 3.3V	0.8	0.95	1.1	ns
Fall Time	T_{f}	Measured at 2.0V $\sim 0.8 \mathrm{~V} @ 3.3 \mathrm{~V}$	0.78	0.85	0.9	ns
Output Duty Cycle	D_{T}		45	50	55	$\%$
Cycle to Cycle Jitter	$\mathrm{T}_{\text {cyc-cyc }}$	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 4, \mathrm{X} 8$ FOUT @ 3.3V			100	ps
Cycle to Cycle Jitter	$\mathrm{T}_{\text {cyc-cyc }}$	$\mathrm{X} 3, \mathrm{X} 5, \mathrm{X} 6, \mathrm{X} 7$ FOUT @ 3.3V			150	ps

Low EMI Spread Spectrum Multiplier IC

PAD ASSIGNMENT (LOWER LEFT CORNER: $X=0, Y=0$)

Pad \#	Name	X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$	Description
1	SC2	338.9	104.7	Digital control input to select SS modulation magnitude.30k 隹ternal pull-up.
2	N/C	569	104.7	
3	N/C	780.5	104.7	
4	GND	1027.6	104.7	Ground.
5	GND	1127.3	104.7	Ground.
6	GND	1284.5	104.7	Ground.
7	GNDBUF	1595.1	139.7	Ground, Buffer Circuitry
8	FOUT	1595.1	381.7	Modulated Clock Frequency Output. The input frequency is multiplied per $\mathrm{M}(0: 2)$, modulation type is selected per $\mathrm{SD}(0: 1)$ and modulation rate is selected per SC(0:3).
9	N/C	1595.1	596.3	
10	OE	1595.1	811.9	Output Enable. When low, Tri-states all outputs. $30 \mathrm{k} \Omega$ internal pull-up.
11	N/C	1595.1	970.3	
12	SC3	1595.1	1069.3	Digital control input to select SS modulation magnitude.30k internal pull-up.
13	VDD (Optional)	1595.1	1312.3	3.3V power supply, Optional
14	VDD (Optional)	1595.1	1555.6	3.3V power supply, Optional
15	VDD	1595.1	1656.8	3.3 V power supply.
16	REF/SD1	1595.1	1879.9	At power-up, this pin acts as input pin to select the modulation type and is latched in. After the input sampling, this pin provides a buffered Reference Clock Output of the same frequency as the crystal or clock input. $30 \mathrm{k} \Omega$ internal pull-up.
17	AVDD	1595.1	2093	3.3V Analog power supply.
18	AVDD	1595.1	2390.6	3.3V Analog power supply.
19	AVDD	1369.2	2435	3.3V Analog power supply.
20	GND (Optional)	1037.3	2435	Ground, Optional
21	GND (Optional)	824.7	2435	Ground, Optional
22	XIN	529.7	2435	Crystal input to be connected to fundamental parallel mode crystal. ($\mathrm{C}_{\mathrm{L}}=18 \mathrm{pF}$) or clock input.
23	XOUT/SD0	105.6	2343.5	At power-up, this pin is acts as input pin to select the modulation type. After the input sampling, it is used as crystal output connector. $120 \mathrm{k} \Omega$ internal pull up resistor.
24	N/C	105.6	2136.1	
25	GNDOSC	105.6	2035.6	Ground, Oscillator Circuitry
26	N/C	105.6	1934.9	
27	N/C	105.6	1741.5	
28	M2	105.6	1641.4	Digital control input to select multiplier. $30 \mathrm{k} \Omega$ internal pull-up.
29	M1	105.6	1396.2	Digital control input to select multiplier. $30 \mathrm{k} \Omega$ internal pull-up.
30	M0	105.6	1180.3	Digital control input to select multiplier. $30 \mathrm{k} \Omega$ internal pull-up.
31	N/C	105.6	993.5	
32	N/C	105.6	836.7	
33	TESTB	105.6	680.1	Disables multiplication and SST when pulled low. For crystal fine tuning. Internal pull up.
34	SC0	105.6	354.9	Digital control input to select SS modulation magnitude.30k Ω internal pull-up.
35	SC1	105.6	110.7	Digital control input to select SS modulation magnitude. $30 \mathrm{k} \Omega$ internal pull-up.

ORDERING INFORMATION

For part ordering, please contact our Sales Department:

47745 Fremont Blvd., Fremont, CA 94538, USA
Tel: (510) 492-0990 Fax: (510) 492-0991
PART NUMBER
The order number for this device is a combination of the following: Device number, Package type and Operating temperature range

Order Number	Marking	Package Option
PLL701-50DC	P701-50DC	Die -Waffle Pack

[^0]
[^0]: PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

 LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.

