RF2362

PCS CDMA/TDMA 3V PA DRIVER AMPLIFIER

Typical Applications

- TDMA/CDMA/FM PCS Tx Amplifier
- Low Noise Transmit Driver Amplifier
-2.4GHz WLAN Systems

- General Purpose Amplification

- Commercial and Consumer Systems

Product Description

The RF2362 is a low noise CDMA/TDMA PA driver amplifier with a very high dynamic range designed for transmit digital PCS applications at 1880 MHz . The device functions as an outstanding PA driver amplifier in the transmit chain of digital subscriber units where low transmit noise power is a concern. The IC includes a power down feature that can be used to completely turn off the device. The IC is featured in a standard SOT 5-lead plastic package.

Optimum Technology Matching® Applied $\begin{array}{lll}\square \text { Si BJT } & \square \text { GaAs HBT } & \square \text { GaAs MESFET } \\ \square \text { Si Bi-CMOS } & \square \text { SiGe HBT } & \square \text { Si CMOS }\end{array}$

Functional Block Diagram

Package Style: SOT 5-Lead Package

Features

- Low Noise and High Intercept Point
- Adjustable Bias Current
- Power Down Control
- Single 2.5 V to 6.0 V Power Supply
- 150 MHz to 2500 MHz Operation
- Extremely Small SOT23-5 Package

Ordering Information

RF2362 PCS CDMA/TDMA 3V PA Driver Amplifier RF2362 PCBA Fully Assembled Evaluation Board

RF2362

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +8.0	$\mathrm{~V}_{\mathrm{DC}}$
Input RF Level	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does no assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall RF Frequency Range		150 to 2500		MHz	
1880 MHz Performance					$\begin{aligned} & \text { Schematic per Evaluation Board, } \mathrm{T}=25^{\circ} \mathrm{C}, \\ & \mathrm{RF}=1880 \mathrm{MHz}, \mathrm{~V}_{\mathrm{PD}}=2.8 \mathrm{~V} \end{aligned}$
Gain	19	20.1	21.5	dB	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$
	19	20.1	21.5	dB	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
	19	20.1	21.5	dB	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
Output IP3	+24	+25.5	+35	dBm	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$
		+25.0		dBm	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
		+24.5		dBm	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
Noise Figure		2.2	2.5	dB	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$
		2.2	2.5	dB	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
		2.2	2.5	dB	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
Reverse Isolation		32		dB	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$
		32		dB	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
		32		dB	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
Input VSWR		1.8:1	2.0:1		
Output VSWR		1.6:1	2.0:1		Using External LC network used on Evaluation Board
$\mathrm{P}_{1 \mathrm{~dB}}$	14	14.5		dBm	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V}$
	12.5	14		dBm	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
	11	13.5		dBm	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
Power Supply					$\mathrm{T}=25^{\circ} \mathrm{C}$
Voltage (V_{CC})		2.5 to 6.0		V	
Voltage (V_{PD})	2.7	2.8	2.9	V	
Current Consumption	24	35	43	mA	$\mathrm{V}_{\mathrm{CC}}=3.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}}=2.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}}+\mathrm{V}_{\mathrm{CC}}-$ Current Consumption from V_{PD} is 8.5 mA Typ. @ $\mathrm{V}_{\mathrm{PD}}=2.8 \mathrm{~V}$ and $12 \mathrm{~mA} \operatorname{Max} @ \mathrm{~V}_{\mathrm{PD}}=2.9 \mathrm{~V}$
	24	32	38	mA	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}}+\mathrm{V}_{\mathrm{CC}}$
	29	37	43	mA	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}}=2.9 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}}+\mathrm{V}_{\mathrm{CC}}$
- Power Down			10	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=3.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{PD}} \leq 0.9 \mathrm{~V}$

Pin	Function	Description	Interface Schematic
1	RF IN	RF input pin. This pin is DC-coupled and matched to 50Ω at 1880 MHz .	
2	GND1	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	
3	VPD	Power Down for the IC. $\mathrm{V}_{\mathrm{PD}}=2.8 \mathrm{~V}+/-0.1 \mathrm{~V}$ turns on the part. $\mathrm{V}_{\mathrm{PD}}<0.9 \mathrm{~V}$ turns off the part. External RF bypassing is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane. Nominal current required for $\mathrm{V}_{\mathrm{PD}}=2.8 \mathrm{~V}$ is 8.5 mA typical and 12 mA Max ($@ \mathrm{~V}_{\mathrm{PD}}=2.9 \mathrm{~V}$).	
4	RF OUT	Amplifier Output pin. This pin is an open-collector output. It must be biased to either V_{CC} or pin 4 through a choke or matching inductor. This pin is typically matched to 50Ω with a shunt bias/matching inductor and series blocking/matching capacitor. Refer to application schematics.	
5	GND2	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane.	

Application Schematic: $\sim 1880 \mathrm{MHz}$ Operation, Internal Collector Bias

Evaluation Board Schematic

(Download Bill of Materials from www.rfmd.com.)

Evaluation Board Layout Board Size 1" x 1"

Board Thickness 0.014"; Board Material FR-4

RF2362

Noise Figure versus V_{PD}

Gain versus V_{PD}
(Averaged)

P1dB versus V_{PD} (Averaged)

