ADVANCED
POWER
TECHNOLOGYRF ${ }^{\circ}$

SD1485

RF \& MICROWAVE TRANSISTORS TV/LINEAR APPLICATIONS

- 170-230 MHz
- 32 VOLTS
- $\mathrm{P}_{\text {out }}=200$ WATTS
- $G_{p}=11.0 \mathrm{~dB}$ GAIN MINIMUM
- INTERNAL INPUT MATCHING
- COMMON EMITTER CONFIGURATION

The SD1485 is a gold metallized epitaxial silicon NPN planar transistor using diffused emitter ballast resistors for high linearity Class AB operation in VHF and Band III television transmitters and transposers.

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CBO }}$	Collector-Base Voltage	65	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage	35	V
$\mathrm{~V}_{\text {EBO }}$	Emitter-Base Voltage	3.0	V
I_{C}	Device Current	25	A
$\mathrm{P}_{\text {DISS }}$	Power Dissipation	385	W
$\mathrm{~T}_{J}$	Junction Temperature	200	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

$\mathbf{R}_{\text {TH(JJC) }}$	Thermal Resistance Junction-case	0.45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

SD1485

* *

Symbol	Test Conditions		Value			
			Min.	Typ.	Max.	Unit
$\mathrm{BV}_{\text {cBo }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$	65	---	---	V
$\mathrm{BV}_{\text {cer }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{R}_{\text {BE }}=15 \Omega$	60	---	---	V
BV ${ }_{\text {cEO }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}$	35	---	---	V
$\mathrm{BV}_{\text {EBO }}$	$\mathrm{I}_{\mathrm{E}}=20 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{C}}=0 \mathrm{~mA}$	3.0	---	---	V
$\mathrm{I}_{\text {ces }}$	$\mathrm{V}_{\text {CE }}=32 \mathrm{~V}$	$\mathrm{I}_{\mathrm{E}}=0 \mathrm{~mA}$	---	---	10	mA
HFE	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{C}}=4 \mathrm{~A}$	20	---	70	---

Symbol	Test Conditions			Value			
				Min.	Typ.	Max.	Unit
$\mathrm{P}_{\text {out }}$	$\mathrm{f}=230 \mathrm{MHz}$	$\mathrm{V}_{\text {cE }}=32 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CQ}}=2 \times 500 \mathrm{~mA}$	200	---	---	W
G_{P}	$\mathrm{f}=230 \mathrm{MHz}$	$\mathrm{V}_{\text {CE }}=32 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CQ}}=2 \times 500 \mathrm{~mA}$	11	---	---	dB
η_{c}	$\mathrm{f}=230 \mathrm{MHz}$	$\mathrm{V}_{\text {CE }}=32 \mathrm{~V}$	$\mathrm{I}_{\mathrm{CQ}}=2 \times 500 \mathrm{~mA}$	50	---	---	\%
$\mathrm{C}_{\text {OB }}$	$\mathrm{f}=1 \mathrm{MHz}$	$\mathrm{V}_{\text {CB }}=28 \mathrm{~V}$		---	---	190	pF

FREQ	$\mathrm{Z}_{\mathrm{IN}}(\Omega)$	$\mathrm{Z}_{\mathrm{CL}}(\Omega)$
170 MHz	$2.7+\mathrm{j} 1.0$	$3.7+\mathrm{j} 3.0$
200 MHz	$2.1+\mathrm{j} 1.5$	$3.4+\mathrm{j} 3.7$
230 MHz	$1.4+\mathrm{j} 2.2$	$3.0+\mathrm{j} 4.1$

$\mathrm{P}_{\text {out }}=200 \mathrm{~W}$
$\mathrm{V}_{\mathrm{cc}}=32 \mathrm{~V}$

THERMAL RESISTANCE vs CASE TEMPERATURE

BRAODBAND POWER GAIN vs FREQUENCY

COLLECTOR EFFICIENCY

 vs FREQUENCY

场:

PACKAGE STYLE M175

	MINIMUM INCHES/MM	MAXIMUM INCHES/MM		MINIMUM INCHES/MM	MAXIMUM INCHES/MM
A	$.373 / 9,47$	$.385 / 9,78$	I	$.002 / 0,05$	$.006 / 0,15$
B	$.190 / 4,83$		J	$.095 / 2,41$	$.105 / 2,67$
C	$125 / 3,18$		K	$.115 / 2,92$	$.135 / 3,43$
D	$.411 / 10,44$	$.421 / 10,69$	L		$.250 / 6,35$
E	$.825 / 20,96$	$.865 / 21,97$	M	$.445 / 11,30$	$.455 / 11,56$
F	$.525 / 13,34$	$.535 / 13,59$			
G	$1.255 / 31,88$	$1.265 / 32,13$			
H	$1.675 / 42,55$	$1.685 / 42,80$			

