

CMOS SINGLE-COMPONENT 8-BIT MICROCOMPUTER

Description

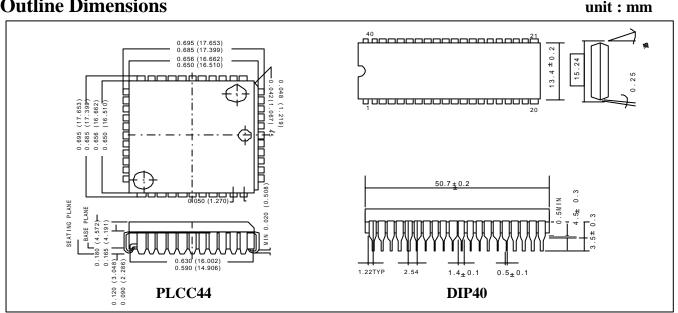
The AUK 60C32/P 60C52/P is a high-performance micro controller fabricated with AUK high-density CMOS technology. The AUK CMOS technology combines the high speed and density characteristics of MOS with the low power attributes of CMOS.

The 60C52 contains a 8K×8 ROM, a 256×8 RAM, 32 I/O lines, three 16bit counter/timers, a six sourc two-priority level nested interrupt structure, a serial I/O port for either multiprocessor communication, I/O expansion or full duplex UART, and on-chip oscillator and clock circuits.

In addition, the device has two software selectable modes of power reduction idle mode and power-down mode. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system to continue functioning.

The power-down mode saves the RAM contents but freezes the oscillator, causing all other chip function to be inoperative.

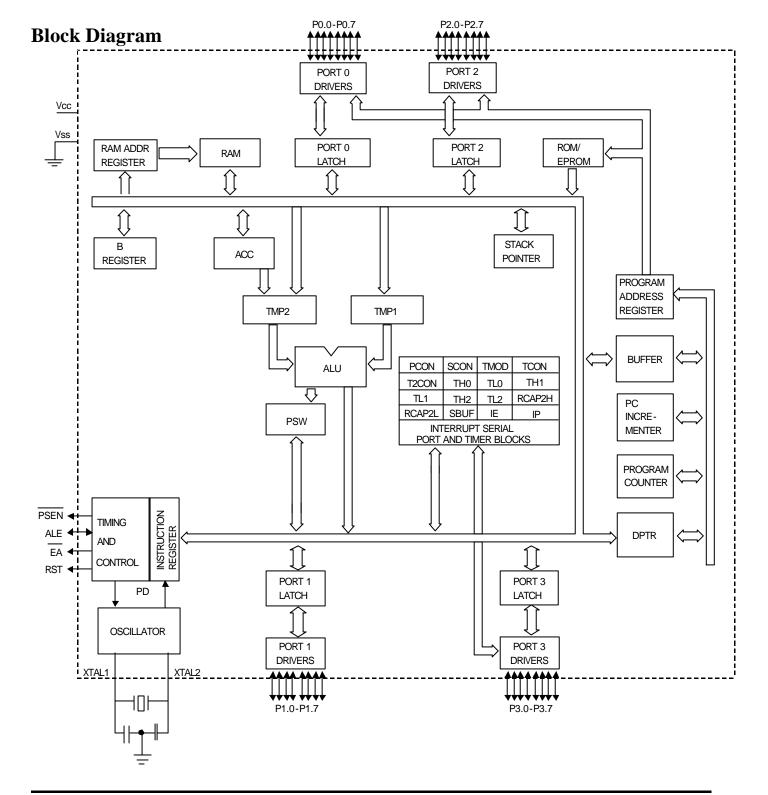
Features

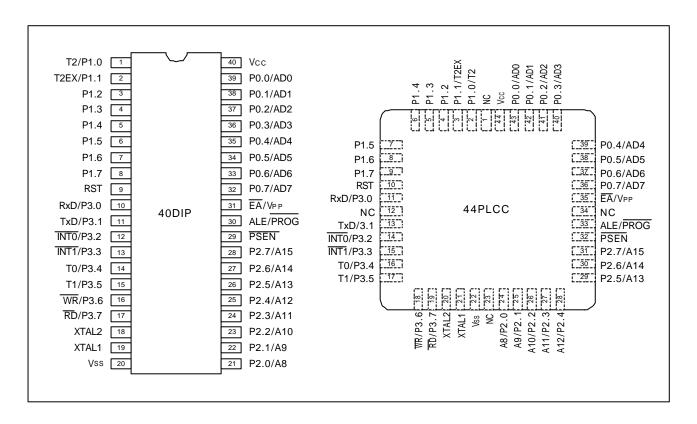

- 8-bit CPU optimized for control applications.
- Pin-to-pin compatible with intel's 80C52/80C32.
- 256 Bytes of on-chip data RAM.
- 60C52 low power CPU only.
- 32 programmable I/O lines.
- Three 16bit timer/counters.

Ordering Information

- TTL and CMOS compatible logic levels
- 64K external program memory space and data memory space.
- MCS-51 fully compatible instruction set
- ONCE[™] (ON-circuit emulation) mode
- Power control modes
 - Idle mode
 - -Power down mode
- 6 interrupt source

Type NO.	Marking	Package Code	Type NO.	Marking	Package Code
SD60C32	SD60C32	PLCC44	SD60C32P	SD60C32	DIP40
SD60C52	SD60C52	PLCC44	SD60C52P	SD60C52	DIP40


Outline Dimensions


KSI-W015-000

Absolute Maximum Ratings

Characteristic	Rating	Unit
Ambient temperature under bias	0 ~ +70	
Storage temperature	- 65 ~ + 150	
Voltage on any pin to V _{SS}	$-0.5 \sim V_{cc} + 0.5$	V
Maximum I _{OL} per I/O pin	15	mA
Power dissipation	1.5	W

Pin Configuration

Pin Description

V_{CC}: PIN 40 (DIP40), PIN 44 (PLCC44)

Supply voltage during normal, Idle and power down operations.

V_{ss}: PIN 20 (DIP 40), PIN 22 (PLCC 44)

Circuit ground.

Port 0: PIN 32~39 (DIP 40), PIN 36~43 (PLCC44)

Port 0 is an 8bit open drain bi-directional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins that have 1's written to them float, and in that state can be used as high impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory.

In this application it uses strong internal pullups when emitting 1's and source and sink several LS TTL inputs. Port 0 outputs the code bytes during program verification on the 60C52 external pullups resistors are required during program verification.

Port 1: PIN 1~8 (DIP 40), PIN 2~9 (PLCC44)

Port 1 output buffers can drive LSI TTL inputs.

Port 1 is an 8bit bi-directional I/O port with internal pullups.

Port 1 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current because of the internal pullups

Pin Description (Continued)

In addition, Port 1 serves the functions of the following special features of the 60C52.

Port Pin	Alternate Function
P1.0	T2(External Count Input to Timer / Counter 2)
P1.1	T2EX(Timer / Counter 2 Capture/Reload Trigger and Direction Control)

Port 1 receives the low-order address bytes during ROM verification.

Port 2: PIN 21~28 (40DIP), PIN 24~31 (44PLCC)

Port 2 is an 8-bit bi-directional I/O port with internal pullups. The port 2 output buffers can drive LS TTL inputs.

Port 2 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as input.

As inputs, port 2 pins that are externally being pulled

low will source current because of the internal pullups.

Port 2 emits the high-order address byte during fetches from external Program Memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8 bit addresses (MOVX @ Ri), port 2 emits the contents of the P2 special function register

Port 3: PIN 10~17 (DIP 40), PIN 13~19 (PLCC44)

Port 3 is an 8bit bi-directional I/O port with internal pullups. The port 3 output buffers can drive LS TTL input. Port 3 pins that have 1's written to them are pulled high by the internal pullups, and in that state can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current because of the pullups.

Port 3 also serves the function of various special feature of the MCS-51 Family, as listed below:

Port PIN	PIN NO.	Alternate Function
P3.0	10	RxD (Serial input port)
P3.1	11	TxD (Serial output port)
P3.2	12	INTO (External interrupt 0)
P3.3	13	INT1 (External interrupt 1)
P3.4	14	T0 (Timer 0 external input)
P3.5	15	T1 (Timer 1 external input)
P3.6	16	WR (External data memory write strobe)
P3.7	17	RD (External data memory read strobe)

RST: PIN 9 (DIP40), PIN 10 (PLCC44)

Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. An internal pulldown resistor permits a power-on reset with only a capacitor connected to V_{CC} .

ALE: PIN 30 (DIP40), PIN 33 (PLCC44)

Address latch enable output pulse for latching the low byte of the address during accesses to external memory.

In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes.

Note: However, that one ALE pulse is skipped during each access to external data memory.

This pin is also the program pulse input PROG during EPROM programming.

PSEN: PIN 29 (DIP 40), PIN 32 (PLCC44)

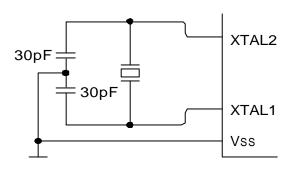
Program store enable is the read strobe to external program memory. When the 60C52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.

EA: PIN 31 (DIP 40), PIN 35 (PLCC44)

External access enable. EA must be strapped to V_{SS} in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. If \overline{EA} is strapped to V_{CC} the device executes from internal program memory unless the program counter contains an address greater than 0FFFH.

XTAL1: PIN 19 (DIP 40), PIN 21 (PLCC44)

Input to the Inverting oscillator amplifier and input to the internal clock generator circuits.


XTAL2: PIN 18 (DIP 40), PIN 20 (PLCC44)

Output from the inverting oscillator amplifier

O Crystal Oscillator

NC: PIN1, 12, 23, 34 (PLCC44)

Non connection pins.

Idle Mode

In the Idle mode, the CPU puts itself to sleep while all the on chip peripherals stay active. The instruction that invokes the Idle mode is the last instruction executed in the normal operating mode before Idle mode is activated.

The content of the on-chip RAM and all the special function registers remain intact during this mode. The Idle mode can be terminated either by any enabled interrupt, at which time the process is picked up at the interrupt service routine and continued, or by a hardware reset which starts the processor the same as a power on reset.

Power Down Mode

In the power down mode the oscillator is stopped, and the instruction that invokes power down is the last instruction executed. The on-chip RAM and special function register retain their values until the power down mode is terminated.

The only exit from power down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before $V_{\rm cc}$ is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.

The control bits for the reduced power modes are in the special function register PCON.

Table. Status of the external pins during Idle and power down modes.

Mode	Program Memory	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power Down	Internal	0	0	Data	Data	Data	Data
Power Down	External	0	0	Float	Data	Data	Data

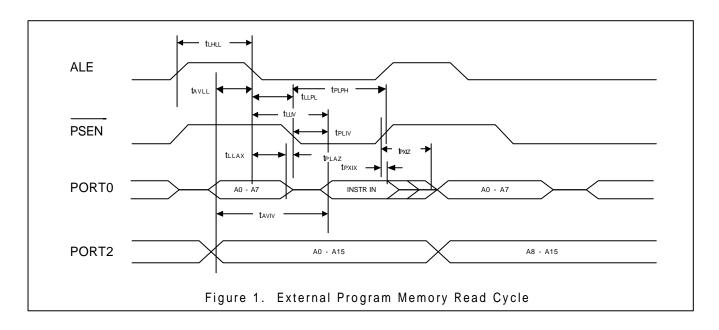
Electrical Characteristics (DC)

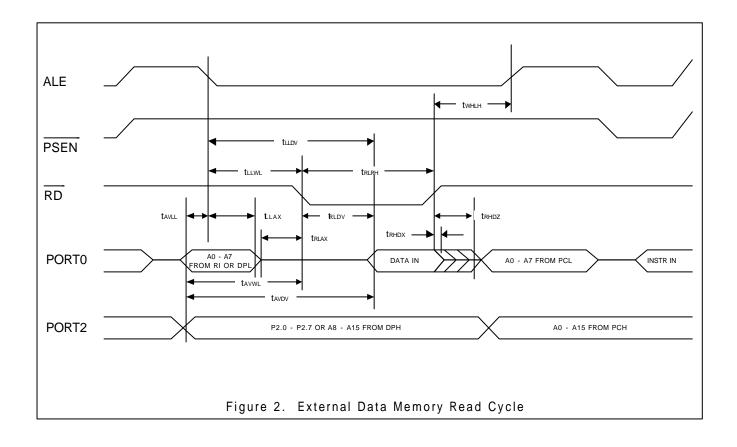
 $(T_a=0 ~\sim 70 ~\text{or -40} ~\sim 85~,~V_{\text{CC}}=5V \pm 20\%,~V_{\text{SS}}{=}0V)$

SYMBOL	PARAMETER	TEST		UNIT		
STRIBOL	TAKAWETEK	CONDITIONS	MIN	TYP.	MAX	UNII
V _{IL}	Input low voltage, except EA		-0.5		0.2V _{cc} - 0.1	V
V _{IL1}	Input low voltage to EA		0		0.2V _{cc} - 0.3	V
V _{IH}	Input high voltage, except XTAL1,RST		0.2V _{cc} +0.9		V _{cc} +0.5	V
V _{IH1}	Input high voltage to XTAL1, RST		0.7 V _{cc}		V _{CC} +0.5	V
V _{oL}	Output low voltage to ports 1,2,3	I _{OL} =1.6mA			0.45	V
V _{OL1}	Output low vol <u>tage t</u> o ports 0, ALE, PSEN	$I_{OL} = 3.2 \text{mA}$			0.45	V
V _{OH}	Output high volt <u>age to</u> ports 1,2,3,ALE,PSEN	I _{OH} =-60μA I _{OH} =-30μA I _{OH} =-10μA	V _{cc} -0.3 V _{cc} -0.7 V _{cc} -1.5			V
V _{OH1}	Output high voltage (port 0 in external bus mode)	$I_{OH} = -200\mu A$ $I_{OH} = -3.2mA$ $I_{OH} = -7.0mA$	V _{cc} -0.3 V _{cc} -0.7 V _{cc} -1.5			V
I _{IL}	Logical 0 input current to ports 1,2,3	V _{IN} =0.45V		-10	-50	μΑ
Ι _π	Logical 1 to 0 transition current to ports 1,2,3	VI _N =2V		- 265	-650	μΑ
I _{LI}	Input leakage current to port 0, EA	$0 < V_{IN} < V_{CC}$		0.02	±10	μΑ
I _{cc}	Power supply current Active mode @ 12MHz Idle mode @ 12MHz Power-down mode			15 5 5	30 7.5 75	mA mA μA
R _{RST}	Internal reset pull-down resistor		40	100	225	kohm
C ₁₀	Pin capacitance			10		pF

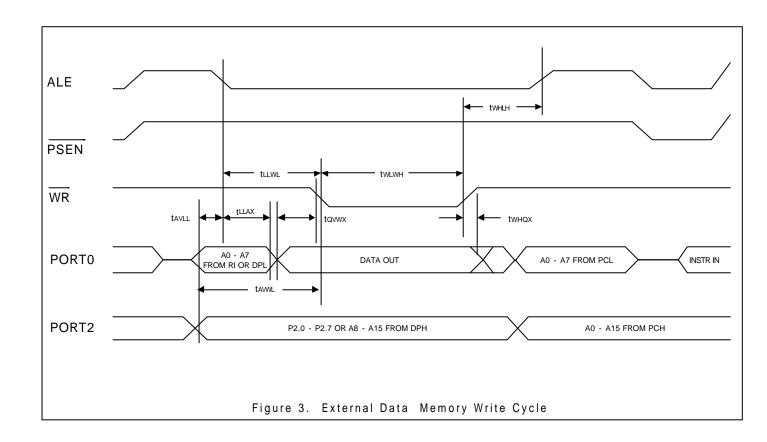
Electrical Characteristics (AC)

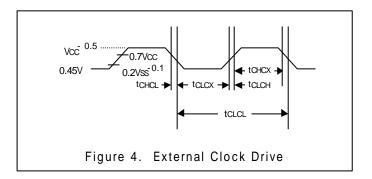
 $(T_a=0 ~\sim 70 ~\text{or -40} ~\sim 85~,~V_{\text{CC}}=5V \pm 20\%,~V_{\text{SS}}{=}0V)$

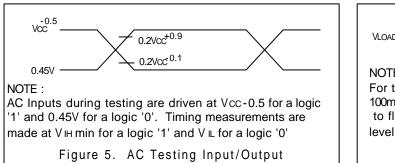

SYSBOL	FIGURE	PARAMETER	12MHz CLOCK		VARIABLE CLOCK		UNIT
			MIN	MAX	MIN	MAX	
1/t _{cLCL}		Oscillator frequency : Speed Versions 60C32/60C52			3.5	16	MHz
t _{LHLL}	1	ALE pulse width	127		2t _{cLCL} -40		ns
t _{AVLL}	1	Address valid to ALE low	43		t _{CLCL} -40		ns
t _{LLAX}	1	Address hold after ALE low	53		t _{CLCL} -30		ns
t _{LLIV}	1	ALE low to valid instruction in		234		4t _{CLCL} -100	ns
t _{LLPL}	1	ALE low to PSEN low	53		t _{CLCL} -30		ns
t _{PLPH}	1	PSEN pulse with	205		3t _{cLCL} -45		ns
t _{PLIV}	1	PSEN low to valid instruction in		145		3 _{CLCL} -105	ns
t _{PXIX}	1	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	1	Input instruction float after PSEN		59		t _{CLCL} -25	ns
t _{AVIV}	1	Address to valid instruction in		312		5t _{CLCL} -105	ns
t _{PLAZ}	1	PSEN low to address float		10		10	ns
Data Memor	у		•		•		•
t _{rlrh}	2, 3	RD pulse width	400		6t _{CLCL} -100		ns
t _{wLWH}	2, 3	WR pulse width	400		6t _{CLCL} -100		ns
t _{RLDV}	2, 3	RD low to valid data in		252		5t _{cLCL} -165	ns
t _{RHDX}	2, 3	Data hold after RD	0		0		ns
t _{RHDZ}	2, 3	Data float after RD		107		2t _{cLCL} -70	ns
t _{LLDV}	2, 3	ALE low to valid data in		517		8t _{cLCL} -150	ns
t _{AVDV}	2, 3	Address to valid data in		585		9t _{cLCL} -165	ns
t _{LLWL}	2, 3	ALE low to RD or WR low	200	300	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	2, 3	Address valid to WR low or RD low	203		4t _{cLCL} -130		ns
t _{ovwx}	2, 3	Data valid to WR transition	33		t _{cLCL} -50		ns
t _{whox}	2, 3	Data hold after WR	33		t _{cLCL} -50		ns
t _{ovwh}	2, 3	Data valid to WR High	433		7t _{cLCL} -150		ns
t _{RLAZ}	2, 3	RD low to address float		0		0	ns
t _{whlh}	2, 3	RD or WR high to ALE high	43	123	t _{cLCL} -40	t _{CLCL} -40	ns
External Clo	1			1			
t _{chcx}	4	High time	20		20		ns
t _{CLCX}	4	Low time Rise time	20	20	20	20	ns
t _{clcH}		Fall time		20		20	ns
t _{chcL}	4	raii ume		20		20	ns

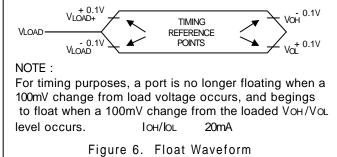

Electrical Characteristics (Continued)

 $(T_a=0 ~\sim 70 ~\text{or -40} ~\sim 85~,~V_{\rm CC}=5V \pm 20\%,~V_{SS}{=}0V)$

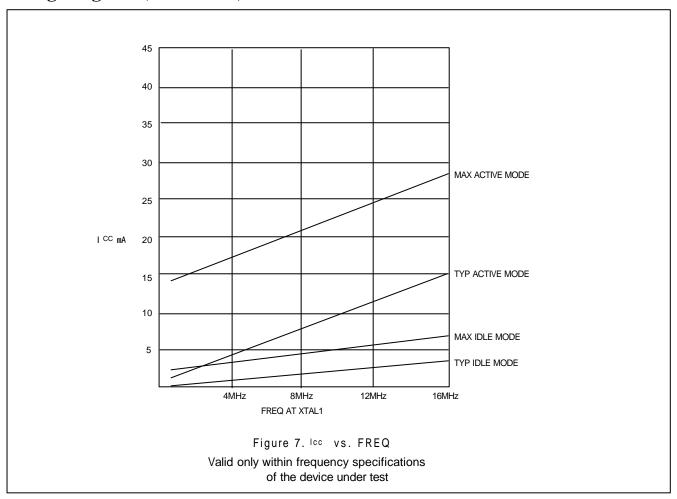

SYMB FIG		PARAMETER		MHz OCK	VARIABLE CLOCK		UNI
OL	E		MIN	MAX	MIN	MAX	T
1/t _{clcl}		Oscillator frequency: Speed Versions 60C52/60C32			3.5	16	MHz
$t_{\scriptscriptstyleLHLL}$	1	ALE pulse width	85		2t _{CLCL} -40		ns
t_{AVLL}	1	Address valid to ALE low	23		t _{CLCL} -40		ns
t_{LLAX}	1	Address hold after ALE low	33		t _{CLCL} -30		ns
$t_{\scriptscriptstyle LLIV}$	1	ALE low to valid instruction in		150		4t _{CLCL} -100	ns
t_{LLPL}	1	ALE low to PSEN low	23		t _{cLCL} -40		ns
t_{PLPH}	1	PSEN pulse with	143		3t _{CLCL} -45		ns
t _{PLIV}	1	PSEN low to valid instruction in		83		3 _{CLCL} -105	ns
t _{PXIX}	1	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	1	Input instruction float after PSEN		38		t _{cLCL} -25	ns
t _{AVTV}	1	Address to valid instruction in		208		5t _{cLCL} -105	ns
t _{PLAZ}	1	PSEN low to address float		10		10	ns
Data M	emory			1	l	1	
t _{RLRH}	2, 3	RD pulse width	275		6t _{CLCL} -100		ns
t _{wLWH}	2, 3	WR pulse width	275		6t _{CLCL} -100		ns
t _{RLDV}	2, 3	RD low to valid data in		148		5t _{cLCL} -165	ns
t _{RHDX}	2, 3	Data hold after RD	0		0		ns
t _{RHDZ}	2, 3	Data float after RD		55		2t _{cLCL} -70	ns
t _{LLDV}	2, 3	ALE low to valid data in		350		8t _{cLCL} -150	ns
t _{AVDV}	2, 3	Address to valid data in		398		9t _{cLCL} -165	ns
t _{LLWL}	2, 3	ALE low to RD or WR low	138	238	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	2, 3	Address valid to WR low or RD low	120		4t _{CLCL} -130		ns
t _{zvwx}	2, 3	Data valid to WR transition	13		t _{clcl} -50		ns
t _{WHQX}	2, 3	Data hold after WR	13		t _{cLCL} -50		ns
t _{ovwh}	2, 3	Data valid to WR High	288		7t _{cLCL} -150		ns
t _{RLAZ}	2, 3	RD low to address float		0		0	ns
t _{WHLH}	2, 3	RD or WR high to ALE high	23	103	t _{cLCL} -40	t _{CLCL} +40	ns
Externa	al Clock		1	1			
t _{CHCX}	4	High time	20		20		ns
t _{CLCX}	4	Low time	20		20		ns
t _{CLCH}	4	Rise time		20		20	ns
t _{CHCL}	4	Fall time		20		20	ns

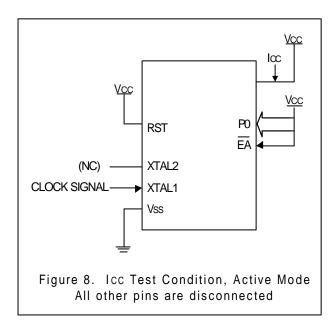

Timing Diagram

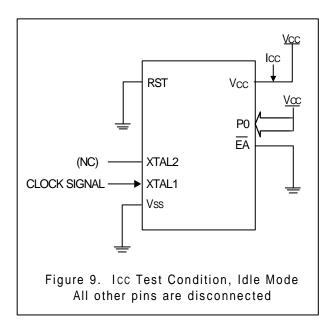


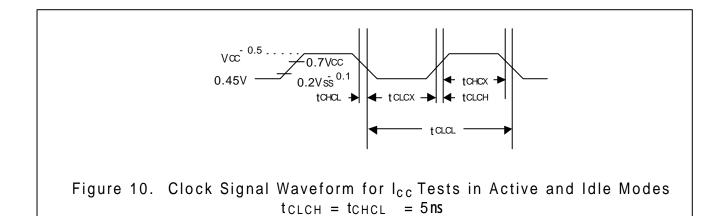


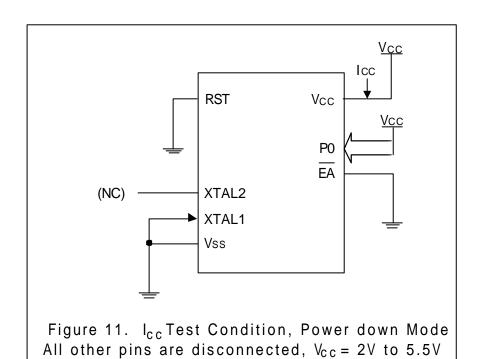
Timing Diagram (Continued)








Timing Diagram (Continued)



Timing Diagram (Continued)

