SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773 ## DESIGNER'S DATA SHEET ### **FEATURES:** - Rugged construction with poly silicon gate - Low RDS (on) and high transconductance - Excellent high temperature stability - Very fast switching speed - Fast recovery and superior dv/dt performance - · Increased reverse energy capability - Low input and transfer capacitance for easy paralleling - Hermetically sealed surface mount package - TX, TXV and Space Level screening available - Replaces 4x IRF120 Types in One Package ## **SFF120-28Q** 9.2 AMPS 100 VOLTS 0.35Ω QUAD N-CHANNEL POWER MOSFET | MAXIMUM RATINGS | | | | |--|--------------------|-------------|-------| | CHARACTERISTIC | SYMBOL | VALUE | UNIT | | Drain to Source Voltage | $ m V_{DS}$ | 100 | Volts | | Gate to Source Voltage | $ m V_{GS}$ | ±20 | Volts | | Continuous Drain Current | I _D 9.2 | | Amps | | Operating and Storage Temperature | Top & Tstg | -55 to +150 | °C | | Thermal Resistance, Junction to Case (All Four) | $R_{ heta JC}$ | 10 | °C/W | | Total Device Dissipation @ $TC = 25^{\circ}C$ @ $TC = 70^{\circ}C$ | P _D | 12.5
9.5 | Watts | # SFF120-28Q ## **PRELIMINARY** SOLID STATE DEVICES, INC. 14005 Stage Road * Santa Fe Springs, Ca 90670 Phone: (562) 404-4474 * Fax: (562) 404-1773 | ELECTRICAL CHARACTERISTICS @ $T_J = 25$ °C (Unless Otherwise Specified) | | | | | | | | | | |--|--|--|-------------|----------------------|----------------------|--------------|--|--|--| | RATING | | SYMBOL | MIN | TYP | MAX | UNIT | | | | | Drain to Source Breakdown Voltage
(VGS =0 V, ID =250µA) | | BV _{DSS} | 100 | - | - | V | | | | | Drain to Source ON State Resistance (VGS = 10 V, 60% of Rated ID) | | R _{DS(on)} | - | - | 0.35 | Ω | | | | | ON State Drain Current
(VDS > ID(on) x RDS(on) Max, VGS = 10 V) | | I _{D(on)} | 9.2 | - | - | A | | | | | Gate Threshold Voltage
(VDS = VGS, ID = 250 µA) | | V _{GS(th)} | 2.0 | - | 4.0 | V | | | | | Forward Transconductance
(VDS > ID(on) x RDS (on) Max, IDS =60% rated ID) | | gf _s | 2.7 | 4.1 | - | S (0) | | | | | $\label{eq:Zero Gate Voltage Drain Current} \begin{aligned} \textbf{(V}_{DS} &= \text{max rated Voltage, V}_{GS} = 0 \textbf{V}) \\ \textbf{(V}_{DS} &= 80\% \text{ rated V}_{DS}, \textbf{V}_{GS} = 0 \textbf{V}, \textbf{T}_{A} = 125^{\circ} \textbf{C}) \end{aligned}$ | | $I_{ m DSS}$ | - | -
- | 25
250 | μΑ | | | | | Gate to Source Leakage Forward
Gate to Source Leakage Reverse | At rated VGS | I_{GSS} | | - | +100
-100 | nA | | | | | Total Gate Charge
Gate to Source Charge
Gate to Drain Charge | VGS = 10 V
80% rated VDS
60% rated ID | Qg
Qgs
Qgd | | 10.7
2.9
5.1 | 16
4.4
7.7 | nC | | | | | Turn on Delay Time Rise Time Turn off DELAY Time Fall Time | VDD=50%
rated VDS
50% rated ID
RG = 18 Ω | $\begin{array}{c} t_{d~(on)} \\ tr \\ t_{d~(off)} \\ tf \end{array}$ | -
-
- | 13
30
19
20 | 20
45
29
30 | nsec | | | | | Diode Forvard Voltage (I _S = rated I _D , V _{GS} = 0V, T _J = 25°C) | | V _{SD} | - | - | 2.5 | V | | | | | Diode Reverse Recovery Time
Reverse Recovery Charge | TJ =25°C
IF = rated ID
di/dt = 100A/μsec | t _{rr}
Q _{RR} | 55
0.25 | 140
0.65 | 260
1.3 | nsec
μC | | | | | Input Capacitance
Output Capacitance
Reverse Transfer Capacitance | VGS =0 Volts
VDS =25 Volts
f =1 MHz | Ciss
Coss
Crss | - | 350
130
36 | - | pF | | | | For thermal derating curves and other characteristic curves please contact SSDI Marketing Department. **NOTES:**