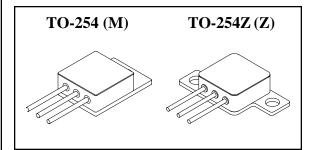


SOLID STATE DEVICES, INC.

14830 Valley View Blvd * La Mirada, Ca 90638 Phone: (562) 404-7855 * Fax: (562) 404-1773


DESIGNER'S DATA SHEET

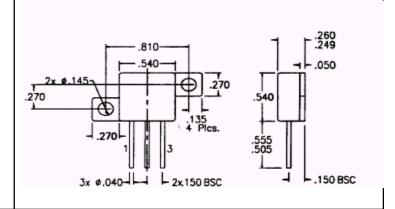
FEATURES:

- Rugged construction with poly silicon gate
- Ultra low RDS (on) and high transconductance
- Excellent high temperature stability
- Very fast switching speed
- Fast recovery and superior dv/dt performance
- Increased reverse energy capability
- · Low input and transfer capacitance for easy paralleling
- Hermetically sealed package
- TX, TXV and Space Level screening available
- Replaces: SMM70N10 Types

SFF70N10M SFF70N10Z

70 AMP 600 VOLT 0.030Ω N-CHANNEL POWER MOSFET

MAXIMUM RATINGS			
CHARACTERISTIC	SYMBOL	VALUE	UNIT
Drain to Source Voltage	$V_{ m DS}$	100	Volts
Gate to Source Voltage	$ m V_{GS}$	± 20	Volts
Continuous Drain Current	I _D	56⊻	Amps
Operating and Storage Temperature	Top & Tstg	-55 to +150	°C
Thermal Resistance, Junction to Case	R ₀ JC	.83	°C/W
Total Device Dissipation @ $TC = 25^{\circ}C$ @ $TC = 55^{\circ}C$	P _D	150 114	Watts



CASE OUTLINE: TO-254Z (Sufix Z)

Pin Out:

Pin 1: Drain Pin 2: Source

Pin 3: Gate

Available with Glass or Ceramic Seals. Contact Facory for details.

NOTE: All specifications are subject to change without notification. SCDs for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: F00247B

SFF70N10M SFF70N10Z

ELECTRICAL CHARACTERIST	TICS @ $T_J = 25^{\circ}C$ (U	nless Other	wise Speci	fied)		
RATING		SYMBOL	MIN	TYP	MAX	UNIT
Drain to Source Breakdown Voltage (VGS =0 V, ID = 250µA)	,	BV _{DSS}	100	-	-	V
Drain to Source on State Resistance (VGS = 10 V,Tc = 150°C)		R _{DS(on)}	-	0.025	0.03	Ω
On State Drain Current (VDS > ID(on) x RDS(on) Max, VGS = 10 V)		I _{D(on)}	70	-	-	A
Gate Threshold Voltage (VDS = VGS, ID = 250µA)		V _{GS(th)}	2	-	4.0	v
Forward Transconductance (VDS > ID(on) X RDS (on) Max, IDS=60% r	ated ID)	gf_s	20	40	-	Smho
Zero Gate Voltage Drain Current $(V_{DS} = 80\% \text{ rated voltage, } V_{GS} = 0V)$ $(V_{DS} = 80\% \text{ rated } V_{DS}, V_{GS} = 0V, T_A = 125 ^{\circ}C$	()	$I_{ m DSS}$	-	- -	250 250	μА
Gate to Source Leakage Forward Gate to Source Leakage Reverse	At rated VGS	I _{GSS}	-	-	+100 -100	nA
Total Gate Charge Gate to Source Charge Gate to Drain Charge	VGS = 10 V 80% rated VDS Rated ID	Qg Qgs Qgd	- - -	110 30 50	140 40 80	nC
Turn on Delay Time Rise Time Turn off DelayTime Fall Time	VDD=50% rated VDS ID=70A RG=8Ω VGS=10V	$t_{ m d~(on)} \ tr \ t_{ m d~(off)} \ tf$	- - -	25 15 80 15	40 180 100 40	nsec
Diode Forvard Voltage $(I_S = \text{rated } I_D, V_{GS} = 0V, T_J = 25^{\circ}C)$		V _{SD}	-	1.0	1.8	v
Diode Reverse Recovery Time Reverse Recovery Charge	$TJ = 25$ °C $IF = ID$ $di/dt = 100A/\mu sec$	t _{rr} Q _{RR}	-	1.25 0.3	200	nsec µC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	VGS =0 Volts VDS =25 Volts f =1 MHz	Ciss Coss Crss	- -	4100 1200 310	-	pF

For thermal derating curves and other characteristic curves please contact SSDI Marketing Department.

NOTES:

1/ Maximum current limited by package, die rated at 70A.