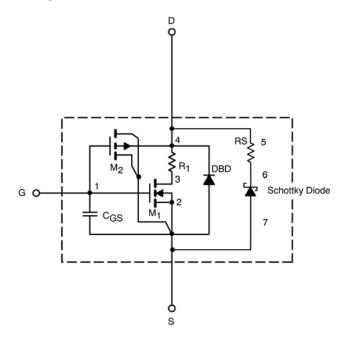


SPICE Device Model Si4736DY Vishay Siliconix

N-Channel 30-V (D-S) MOSFET With Schottky Diode

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

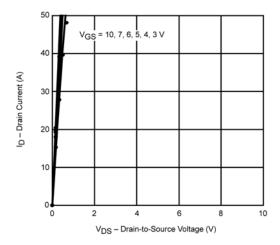
SUBCIRCUIT MODEL SCHEMATIC

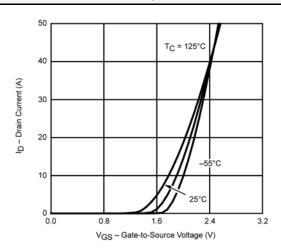
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

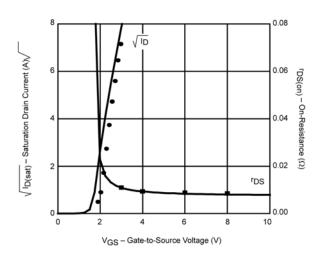
Document Number: 71012 www.vishay.com S-51870—Rev. B, 12-Sep-05

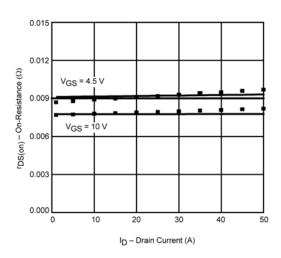
SPICE Device Model Si4736DY

Vishay Siliconix

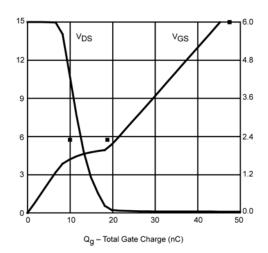

SPECIFICATIONS (T _J = 25°C UN	LESS OTHERV	VISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			- -		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	596		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 13 A	0.0079	0.0070	Ω
		V_{GS} = 4.5 V, I_D = 12 A	0.0090	0.0083	
Forward Transconductance ^a	g _{fs}	$V_{DS} = 15 \text{ V}, I_D = 13 \text{ A}$	62	56	S
Schottky Diode Forward Voltage ^a	V _{SD}	$I_S = 3 A$, $V_{GS} = 0 V$	0.76	0.495	V
		$I_S = 3 \text{ A}, \ V_{GS} = 0 \text{ V}, \ T_J = 125^{\circ}\text{C}$	0.61	0.43	
Dynamic ^b			•		
Total Gate Charge	Qg	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 13 \text{ A}$	37	37	nC
Gate-Source Charge	Q_{gs}		10	10	
Gate-Drain Charge	Q_{gd}		8.8	8.8	
Turn-On Delay Time	t _{d(on)}	$V_{DD}=15~V,~R_L=15~\Omega$ $I_D\cong 1~A,~V_{GEN}=10~V,~R_G=6~\Omega$ $I_F=3~A,~di/dt=100~A/\mu s$	17	17	ns
Rise Time	t _r		6	14	
Turn-Off Delay Time	t _{d(off)}		83	102	
Fall Time	t _f		37	26	
Source-Drain Reverse Recovery Time	t _{rr}		34	42	


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4736DY Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data