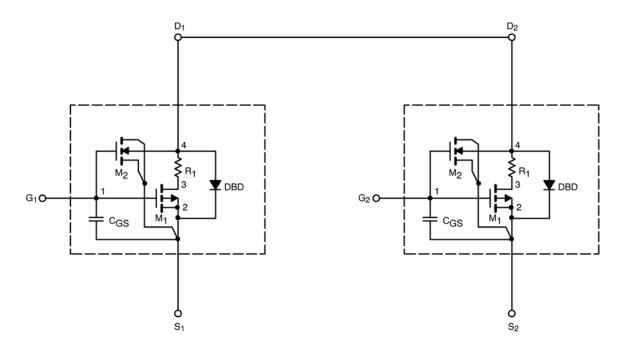


SPICE Device Model Si4927DY Vishay Siliconix

Dual P-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

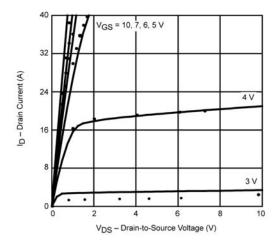
SUBCIRCUIT MODEL SCHEMATIC

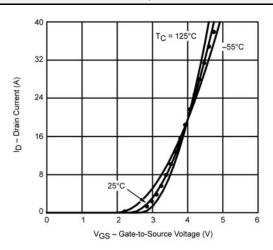
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

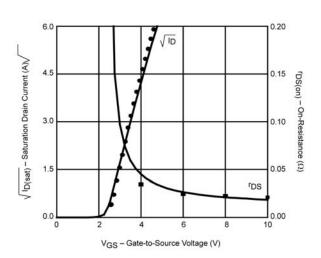
SPICE Device Model Si4927DY

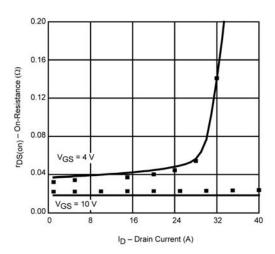
Vishay Siliconix

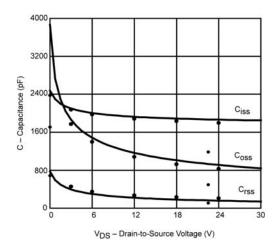
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Condition	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	1.91	V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge -5 \text{ V}, V_{GS}$ = -10 V	242	Α
Drain-Source On-State Resistance ^a	Γ _{DS} (on)	V _{DS} = -10 V, V _{GS} = -7.4 V	0.017	Ω
		$V_{GS} = -4.5 \text{ V}, I_D = -5.8 \text{ A}$	0.038	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -15 \text{ V}, I_{D} = -7.4 \text{ A}$	15	S
Diode Forward Voltage ^a	V _{SD}	I _S = -2.1 A, V _{GS} = 0 V	0.78	V
Dynamic ^b	;			
Total Gate Charge	Qg	$V_{DS} = -15 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -7.4 \text{ A}$	39	nC
Gate-Source Charge	Q_{gs}		8	
Gate-Drain Charge	Q_{gd}		7	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = -15 \text{ V}, \text{ R}_L = 15 \Omega$ $I_D \cong -1 \text{ A}, \text{ V}_{GEN} = -10 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = -2.1 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	14	ns
Rise Time	t _r		9	
Turn-Off Delay Time	$t_{d(off)}$		43	
Fall Time	t _f		47	
Source-Drain Reverse Recovery Time	t _{rr}		50	

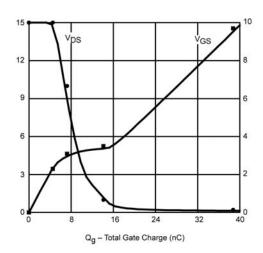

Notes


- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4927DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.