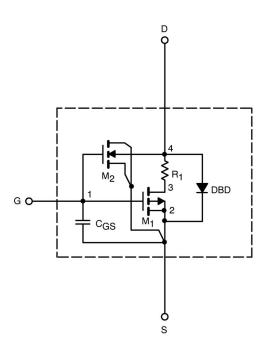


## SPICE Device Model Si4963BDY Vishay Siliconix

# Dual P-Channel 2.5-V (G-S) MOSFET

### CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

#### DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to  $125^{\circ}$ C temperature ranges under the pulsed 0 to 5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

#### SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched  $C_{gd}$  model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.



This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

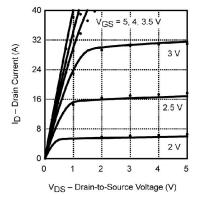


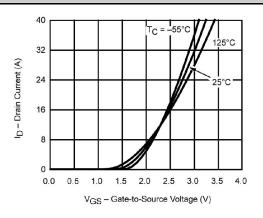
lodel Si4963BDX

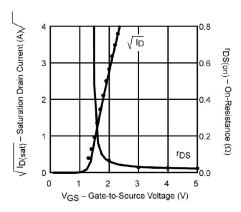
# Vishay Siliconix

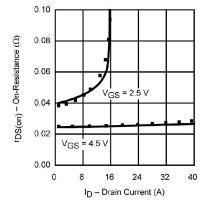


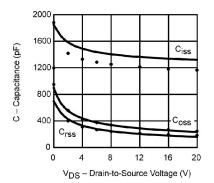
| SPECIFICATIONS (T <sub>J</sub> = $25^{\circ}$ C UNLESS OTHERWISE NOTED) |                        |                                                                                                                                    |                   |                  |      |
|-------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------|
| Parameter                                                               | Symbol                 | Test Conditions                                                                                                                    | Simulated<br>Data | Measured<br>Data | Unit |
| Static                                                                  |                        |                                                                                                                                    |                   |                  |      |
| Gate Threshold Voltage                                                  | V <sub>GS(th)</sub>    | $V_{DS}=V_{GS},\ I_D=-250\ \mu A$                                                                                                  | 1.1               |                  | V    |
| On-State Drain Current <sup>b</sup>                                     | I <sub>D(on)</sub>     | $V_{DS} = -5 \text{ V},  V_{GS} = -4.5 \text{ V}$                                                                                  | 92                |                  | А    |
| Drain-Source On-State Resistance <sup>b</sup>                           | r <sub>DS(on)</sub>    | $V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -6.5 \text{ A}$                                                                          | 0.025             | 0.025            | Ω    |
|                                                                         |                        | $V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -2 \text{ A}$                                                                            | 0.041             | 0.040            |      |
| Forward Transconductance <sup>b</sup>                                   | <b>g</b> <sub>fs</sub> | $V_{DS} = -10 \text{ V}, \text{ I}_{D} = -6.5 \text{ A}$                                                                           | 16                | 18               | S    |
| Diode Forward Voltage <sup>b</sup>                                      | V <sub>SD</sub>        | $I_{\rm S} = -1.7$ A, $V_{\rm GS} = 0$ V                                                                                           | -0.80             | -0.75            | V    |
| Dynamic <sup>a</sup>                                                    |                        |                                                                                                                                    |                   |                  |      |
| Total Gate Charge                                                       | Qg                     | $V_{DS} = -10 \text{ V}, \text{ V}_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -6.5 \text{ A}$                                          | 12                | 14               | nC   |
| Gate-Source Charge                                                      | Q <sub>gs</sub>        |                                                                                                                                    | 2.6               | 2.6              |      |
| Gate-Drain Charge                                                       | $Q_{gd}$               |                                                                                                                                    | 4.6               | 4.6              |      |
| Turn-On Delay Time                                                      | t <sub>d(on)</sub>     | $V_{DD}$ = -10 V, R <sub>L</sub> = 10 $\Omega$ I <sub>D</sub> $\cong$ -1 A, V <sub>GEN</sub> = -4.5 V, R <sub>G</sub> = 6 $\Omega$ | 30                | 25               | ns   |
| Rise Time                                                               | tr                     |                                                                                                                                    | 22                | 30               |      |
| Turn-Off Delay Time                                                     | t <sub>d(off)</sub>    |                                                                                                                                    | 65                | 70               |      |
| Fall Time                                                               | t <sub>f</sub>         |                                                                                                                                    | 20                | 50               |      |

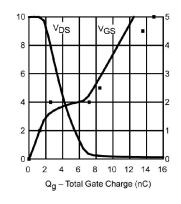

Notes


a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width  $\leq$  300 µs, duty cycle  $\leq$  2%.





## SPICE Device Model Si4963BDY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)














Note: Dots and squares represent measured data.