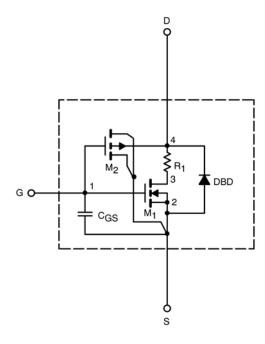


SPICE Device Model Si7380DP Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

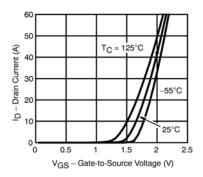
Document Number: 70118 www.vishay.com 24-May-04 1

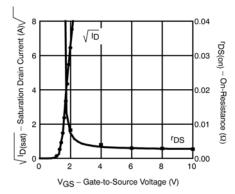
SPICE Device Model Si7380DP

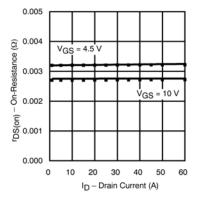
Vishay Siliconix

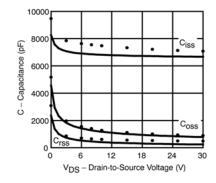
SPECIFICATIONS (T _J = 25°C UN	LESS OTHER\	WISE NOTED)			
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	V_{DS} = V_{GS} , I_D = 250 μA	0.81		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS}$ = 10 V	1652		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D = 29 \text{ A}$	0.0028	0.0027	Ω
		V_{GS} = 4.5 V, I_{D} = 25 A	0.0032	0.0032	
Forward Transconductance ^a	g _{fs}	V_{DS} = 6 V, I_{D} = 29 A	110	110	S
Diode Forward Voltage ^a	V _{SD}	$I_S = 4.5 A, V_{GS} = 0 V$	0.75	0.68	V
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 29 A	54	46	nC
Gate-Source Charge	Q_{gs}		11.5	11.5	
Gate-Drain Charge	Q_{gd}		11.5	11.5	
Turn-On Delay Time	$t_{d(on)}$	$V_{DD} = 15 \text{ V}, \text{ R}_L = 15 \Omega$ $I_D \cong 1 \text{ A}, \text{ V}_{GEN} = 4.5 \text{ V}, \text{ R}_G = 6 \Omega$ $I_F = 2.9 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	32	20	Ns
Rise Time	t _r		19	15	
Turn-Off Delay Time	$t_{\text{d(off)}}$		185	220	
Fall Time	t _f		61	85	
Source-Drain Reverse Recovery Time	t _{rr}		29	55	

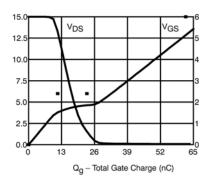
www.vishay.com Document Number: 70118


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si7380DP Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.