

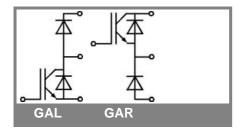
SEMITOP® 2

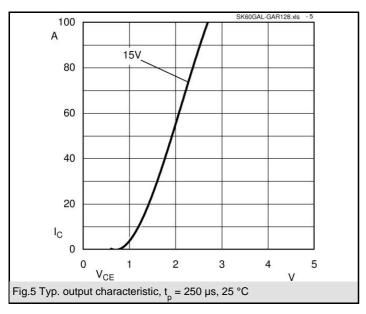
IGBT Module

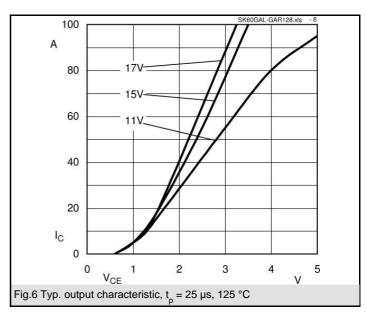
SK 60 GAR 128 SK 60 GAL 128

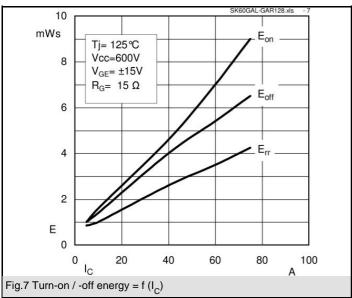
Target Data

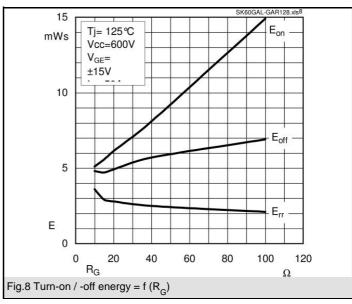
Features

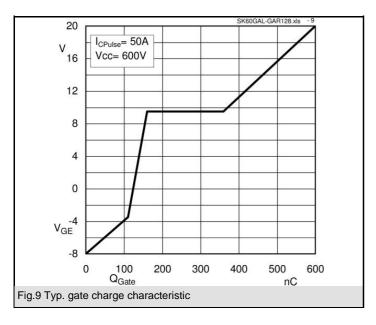

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonding aluminium oxide ceramic (DBC)
- High short circuit capability
- SPT=Soft-Puntch-Through technology
- V_{ce(sat)} with positive coefficient

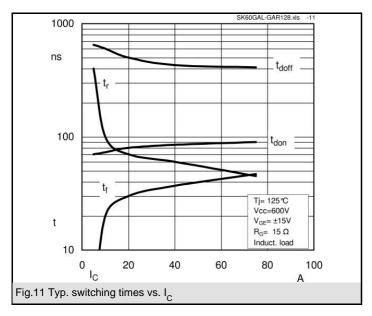

Typical Applications

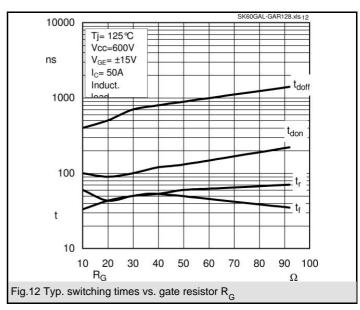

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

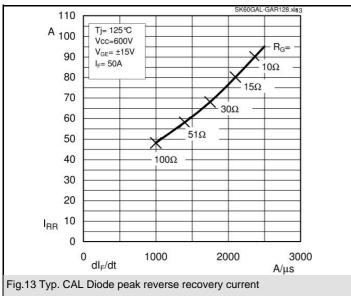

Absolute	Maximum Ratings	T _s = 25 °C, unless otherwise	T _s = 25 °C, unless otherwise specified				
Symbol	Conditions	Values	Units				
IGBT							
V_{CES}		1200	V				
V_{GES}		± 20	V				
I _C	$T_s = 25 (80) ^{\circ}C;$	63 (44)	Α				
I _{CM}	$t_p < 1 \text{ ms}; T_s = 25 (80) °C;$	130 (90)	Α				
T _j	·	- 40 + 150	°C				
Freewheeling CAL diode							
I _F	$T_s = 25 (80) ^{\circ}C;$	57 (38)	Α				
$I_{FM} = -I_{CM}$	$t_p < 1 \text{ ms; } T_s = 25 (80) ^{\circ}\text{C;}$	114 (38)	Α				
T _j		- 40 + 150	°C				
T _{stg}		- 40 + 125	°C				
T _{sol}	Terminals, 10 s	260	°C				
V _{isol}	AC 50 Hz, r.m.s. 1 min. / 1 s	2500 / 3000	V				

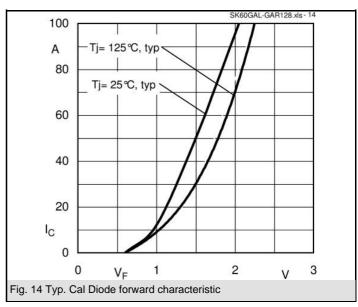

Characteristics		T _s = 25 °C	T _s = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT			•			
$\begin{matrix} V_{CE(sat)} \\ V_{GE(th)} \\ C_{ies} \\ R_{th(j-s)} \end{matrix}$	$\begin{split} & I_{\text{C}} = 40 \text{ A, } T_{\text{j}} = 25 \text{ (125) } ^{\circ}\text{C} \\ & V_{\text{CE}} = V_{\text{GE}}; I_{\text{C}} = 0,002 \text{ A} \\ & V_{\text{CE}} = 25 \text{ V; } V_{\text{GE}} = 0 \text{ V; 1 MHz} \\ & \text{per IGBT} \\ & \text{per module} \end{split}$	4,5	1,8 (1,94) 5,5 4,5	6,5 0,6	V V nF K/W	
$t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f} $E_{on} + E_{off}$	under following conditions: $V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$ $I_{C} = 50 \text{ A}, T_{j} = 125 \text{ °C}$ $R_{Gon} = R_{Goff} = 15 \Omega$ Inductive load		80 50 420 40 10,4		ns ns ns ns mJ	
-	eling CAL diode					
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$	$I_F = 50 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$ $T_j = (125) ^{\circ}\text{C}$ $T_j = (125) ^{\circ}\text{C}$		2 (1,8) (1) (16)	(1,2) (22) 0,9	V V mΩ K/W	
I _{RRM} Q _{rr} E _{off}	under following conditions: $I_F = 50 \text{ A}; V_R = 600 \text{ V}$ $dI_F/dt = -800 \text{ A}/\mu\text{s}$ $V_{GE} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$		40 8 2		Α μC mJ	
Mechani	cal data	<u>'</u>				
M1	mounting torque		40	2	Nm	
W			19		g	
Case	SEMITOP® 3		T 18			

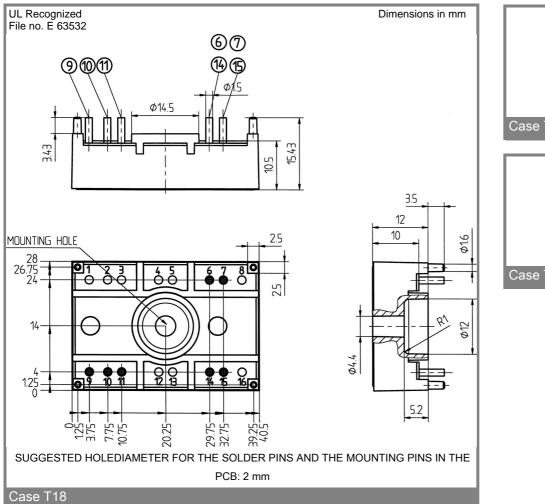


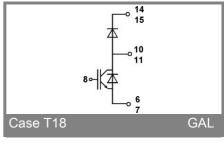


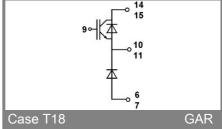












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.