
SKDT 115

SEMIPONTTM 5

Bridge Rectifier

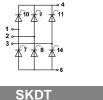
SKDT 115

Target Data

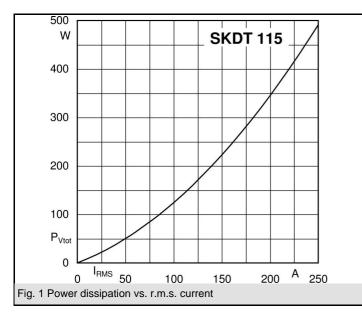
Features

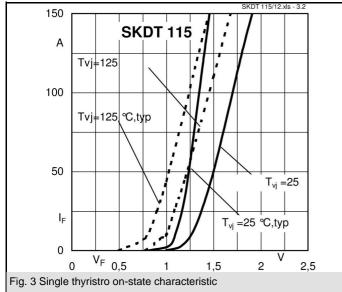
- Compact design
- Two screws mounting •
- Heat transfer and isolation through direct copper board (low R_{th})
- Low resistance in steady-state and high reliability
- High surge currents
- Glass passivated thyristor chips
- Up to 1600 V reverse voltage
- UL -recognized, file no. E 63 532

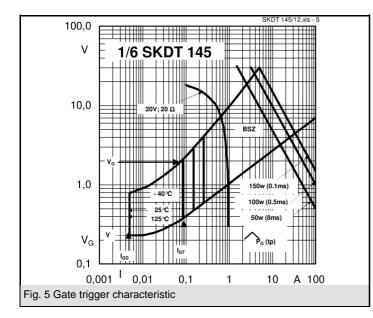
Typical Applications

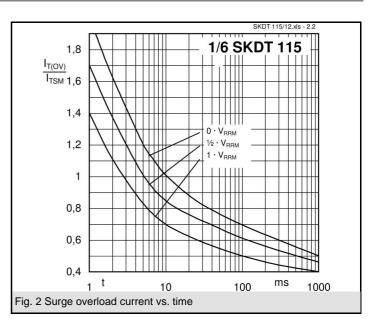

- DC and AC drives
- Controlled field rectifier for DC motors
- Controlled battery charger

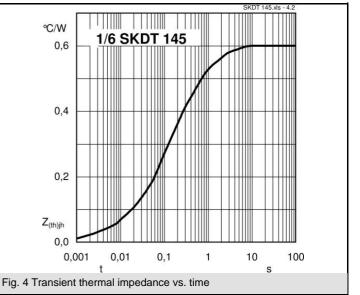
V		V		(T _s = 80 °C)		
v 1300		1200		SKDT 115/12		
1700 1600		SKDT 115/12 SKDT 115/16				
1700		1000		SKD1 115/10		
Symbol	Con	ditions		Values	Unit	
I _D	$T_s = 80 \text{ °C}$		110	A		
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms			1050	A	
1.211, 1.211	$T_{vi} = 125 \text{ °C}; 10 \text{ ms}$		950	A		
i²t	T _{vi} = 25 °C; 8,3 10 ms			5500	A²s	
	- 1	125 °C; 8,3 10 ms		4500	A²s	
V _T , V _F	-1			max. 1,8	V	
V _{T(TO)}				max. 1,1	V	
r _T	T _{vi} = 125 °C			max. 6	mΩ	
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$			max. 20	mA	
t _{gd}	$T_{vj} = °C; I_G = A; di_G/dt = A/\mu s$				μs	
t _{gr}	$V_{D} = \cdot V_{DRM}$				μs	
(dv/dt) _{cr}	T _{vi} = 125 °C			max. 500	V/µs	
(di/dt) _{cr}	T _{vi} = 125 °C; f = 5060 Hz			max. 50	A/µs	
t _q	T _{vi} = 125 °C; typ.			150	μs	
I _H	T _{vj} = 25 °C; typ. / max.			- / 200	mA	
I _L	T_{vj} = 25 °C; R _G = 33 Ω			- / 400	mA	
V _{GT}	T _{vi} = 25 °C; d.c.			min. 3	V	
I _{GT}	T _{vj} = 25 °C; d.c.			min. 150	mA	
V _{GD}	T _{vj} = 125 °C; d.c.			max. 0,25	V	
I _{GD}	T _{vj} = 125 °C; d.c.			max. 5	mA	
					K/W	
_					K/W	
R _{th(j-s)}	per th	nyristor		0,84	K/W	
T _{vj}				- 40 + 125	°C	
rstg			- 40 + 125	°C		
T _{solder}	terminals			260	°C	
V _{isol}	a. c.	50 Hz; r.m.s.; 1 s / 1 r	nin.	3600 (3000)	V	
M _s		atsink		2,5	Nm	
Mť					Nm	
m	approx.			75	g	
Case				G 58		

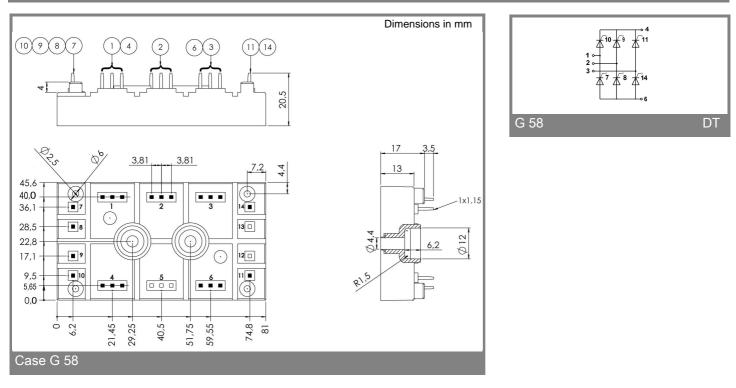

 $I_D = 110 \text{ A}$ (full conduction)


V_{RRM}, V_{DRM}


V_{RSM}




SKDT 115



SKDT 115

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.