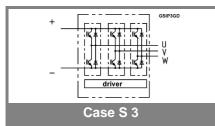

## SKiiP 292GD170-3DU



### SKiiP<sup>®</sup>2

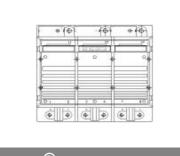
### 6-pack - integrated intelligent Power System

#### **Power section**


SKiiP 292GD170-3DU

#### **Features**

- SKiiP technology inside •
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class • 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- IEC 60068-1 (Gimate) 101
  UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)


| Absolute                                          | Maximum Ratings                                       | $_{\rm s}$ = 25 °C unless otherwise specified |       |  |  |  |
|---------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-------|--|--|--|
| Symbol                                            | Conditions                                            | Values                                        | Units |  |  |  |
| IGBT                                              |                                                       |                                               |       |  |  |  |
| V <sub>CES</sub>                                  |                                                       | 1700                                          | V     |  |  |  |
| V <sub>CES</sub><br>V <sub>CC</sub> <sup>1)</sup> | Operating DC link voltage                             | 1200                                          | V     |  |  |  |
| V <sub>GES</sub>                                  |                                                       | ± 20                                          | V     |  |  |  |
| I <sub>C</sub>                                    | T <sub>s</sub> = 25 (70) °C                           | 250 (188)                                     | А     |  |  |  |
| Inverse diode                                     |                                                       |                                               |       |  |  |  |
| I <sub>F</sub> = - I <sub>C</sub>                 | T <sub>s</sub> = 25 (70) °C                           | 250 (188)                                     | А     |  |  |  |
| I <sub>FSM</sub>                                  | T <sub>j</sub> = 150 °C, t <sub>p</sub> = 10 ms; sin. | 2160                                          | А     |  |  |  |
| I²t (Diode)                                       | Diode, T <sub>j</sub> = 150 °C, 10 ms                 | 23                                            | kA²s  |  |  |  |
| T <sub>j</sub> , (T <sub>stg</sub> )              |                                                       | - 40 (- 25) + 150 (125)                       | °C    |  |  |  |
| V <sub>isol</sub>                                 | AC, 1 min. (mainterminals to heat sink)               | 4000                                          | V     |  |  |  |

| Characteristics T <sub>s</sub> = 25 °C unless of |                                           |                                      |         |           |                       | otherwise                | specified  |       |
|--------------------------------------------------|-------------------------------------------|--------------------------------------|---------|-----------|-----------------------|--------------------------|------------|-------|
| Symbol                                           | Conditions                                |                                      |         |           | min.                  | typ.                     | max.       | Units |
| IGBT                                             |                                           |                                      |         |           |                       |                          |            |       |
| V <sub>CEsat</sub>                               | I <sub>C</sub> = 200 A                    | A, T <sub>j</sub> = 25 (1            | 25) °C  |           |                       | 3,3 (4,3)                |            | V     |
| V <sub>CEO</sub>                                 | T <sub>j</sub> = 25 (1                    |                                      |         |           |                       |                          | 2 (2,3)    | V     |
| r <sub>CE</sub>                                  | $T_j = 25 (1)$                            |                                      |         |           |                       | 8,1 (11,7)               | 9,6 (13,2) | mΩ    |
| I <sub>CES</sub>                                 | V <sub>GE</sub> = 0 V                     | ', V <sub>CE</sub> = V <sub>CE</sub> | s,      |           |                       | (15)                     | 1          | mA    |
|                                                  | T <sub>j</sub> = 25 (1                    |                                      |         |           |                       |                          |            |       |
| E <sub>on</sub> + E <sub>off</sub>               | I <sub>C</sub> = 200 A                    | A, V <sub>CC</sub> = 900             | V       |           |                       |                          | 173        | mJ    |
|                                                  | T <sub>j</sub> = 125 °                    | C, V <sub>CC</sub> = 12              | 200 V   |           |                       |                          | 254        | mJ    |
| R <sub>CC' + EE'</sub>                           | terminal chip, T <sub>i</sub> = 125 °C    |                                      |         |           |                       | 0,5                      |            | mΩ    |
| L <sub>CE</sub>                                  | top, botto                                |                                      |         |           |                       | 15                       |            | nH    |
| C <sub>CHC</sub>                                 | per phase                                 | e, AC-side                           |         |           |                       | 0,8                      |            | nF    |
| Inverse o                                        | Inverse diode                             |                                      |         |           |                       |                          |            |       |
| $V_F = V_{EC}$                                   | I <sub>F</sub> = 200 A                    | , T <sub>i</sub> = 25 (12            | 25) °C  |           |                       | 2,3 (2,1)                | 2,9        | V     |
| V <sub>TO</sub>                                  | T <sub>j</sub> = 25 (1                    | 25) °C                               |         |           |                       | 1,3 (1)                  | 1,6 (1,3)  | V     |
| r <sub>T</sub>                                   | T <sub>i</sub> = 25 (1                    | 25) °C                               |         |           |                       | 5 (5,6)                  | . ,        | mΩ    |
| Err                                              | Ũ                                         | A, V <sub>CC</sub> = 900             |         |           |                       |                          | 21         | mJ    |
|                                                  | T <sub>j</sub> = 125 °                    | C, V <sub>CC</sub> = 12              | 200 V   |           |                       |                          | 25         | mJ    |
| Mechani                                          | cal data                                  |                                      |         |           |                       |                          |            |       |
| M <sub>dc</sub>                                  |                                           | nals, SI Unit                        |         |           | 6                     |                          | 8          | Nm    |
| $M_{ac}$                                         |                                           | als, SI Unit                         |         |           | 13                    |                          | 15         | Nm    |
| w                                                | SKiiP <sup>®</sup> 2 System w/o heat sink |                                      |         |           | 2,7                   |                          | kg         |       |
| w                                                | heat sink                                 |                                      |         |           |                       | 6,6                      |            | kg    |
|                                                  |                                           |                                      | P16 hea | t sink; 2 | 95 m <sup>3</sup> /h) | ; " <sub>,</sub> " refei | rence to   |       |
| temperat                                         |                                           | sor                                  |         |           |                       | I                        |            |       |
| R <sub>th(j-s)I</sub>                            | per IGBT                                  |                                      |         |           |                       |                          | 0,08       | K/W   |
| R <sub>th(j-s)D</sub>                            | per diode                                 |                                      |         |           |                       |                          | 0,267      | K/W   |
| R <sub>th(s-a)</sub>                             | per modu                                  | le                                   |         |           |                       |                          | 0,036      | K/W   |
| Z <sub>th</sub>                                  | R <sub>i</sub> (mK/W) (max. values)       |                                      |         |           | tau <sub>i</sub> (s)  |                          |            |       |
|                                                  | 1                                         | 2                                    | 3       | 4         | 1                     | 2                        | 3          | 4     |
| Z <sub>th(j-r)I</sub>                            | 9                                         | 62                                   | 10      | 0         | 1                     | 0,13                     | 0,001      | 1     |
| Z <sub>th(j-r)D</sub>                            | 29                                        | 205                                  | 32      | 0         | 1                     | 0,13                     | 0,001      | 1     |
| Z <sub>th(r-a)</sub>                             | 11,1                                      | 18,3                                 | 3,5     | 3,1       | 204                   | 60                       | 6          | 0,02  |



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

## SKiiP 292GD170-3DU



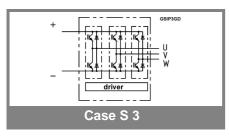
# SKiiP<sup>®</sup> 2

### 6-pack - integrated intelligent Power System

#### 6-pack integrated gate driver

SKiiP 292GD170-3DU

### Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 25/85/56

| Absolute Maximum Ratings |                                             | <sub>a</sub> = 25 °C unless otherwise specified |       |  |
|--------------------------|---------------------------------------------|-------------------------------------------------|-------|--|
| Symbol                   | Conditions                                  | Values                                          | Units |  |
| V <sub>S1</sub>          | stabilized 15 V power supply                | 18                                              | V     |  |
| V <sub>S2</sub>          | unstabilized 24 V power supply              | 30                                              | V     |  |
| V <sub>iH</sub>          | input signal voltage (high)                 | 15 + 0,3                                        | V     |  |
| dv/dt                    | secondary to primary side                   | 75                                              | kV/μs |  |
| V <sub>isollO</sub>      | input / output (AC, r.m.s., 2s )            | 4000                                            | Vac   |  |
| V <sub>isol12</sub>      | output 1 / output 2 (AC, r.m.s., 2s)        | 1500                                            | Vac   |  |
| f <sub>sw</sub>          | switching frequency                         | 20                                              | kHz   |  |
| f <sub>out</sub>         | output frequency for I=I <sub>C</sub> ;sin. | 1                                               | kHz   |  |
| $T_{op} (T_{stg})$       | operating / storage temperature             | - 40 + 85                                       | °C    |  |

| Characte               | Characteristics $T_a = 25 ^{\circ}C$                     |                                                      |                                                      |      |       |  |
|------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------|-------|--|
| Symbol                 | Conditions                                               | min.                                                 | typ.                                                 | max. | Units |  |
| V <sub>S1</sub>        | supply voltage stabilized                                | 14,4                                                 | 15                                                   | 15,6 | V     |  |
| V <sub>S2</sub>        | supply voltage non stabilized                            | 20                                                   | 24                                                   | 30   | V     |  |
| I <sub>S1</sub>        | V <sub>S1</sub> = 15 V                                   | 410+560                                              | 410+560*f/f <sub>max</sub> +3,6*(I <sub>AC</sub> /A) |      |       |  |
| I <sub>S2</sub>        | V <sub>S2</sub> = 24 V                                   | 300+430*f/f <sub>max</sub> +2,6*(I <sub>AC</sub> /A) |                                                      |      | mA    |  |
| V <sub>iT+</sub>       | input threshold voltage (High)                           |                                                      |                                                      | 12,3 | V     |  |
| V <sub>iT-</sub>       | input threshold voltage (Low)                            | 4,6                                                  |                                                      |      | V     |  |
| R <sub>IN</sub>        | input resistance                                         |                                                      | 10                                                   |      | kΩ    |  |
| t <sub>d(on)IO</sub>   | input-output turn-on propagation time                    |                                                      |                                                      | 1,5  | μs    |  |
| t <sub>d(off)IO</sub>  | input-output turn-off propagation time                   |                                                      |                                                      | 1,4  | μs    |  |
| t <sub>pERRRESET</sub> | error memory reset time                                  | 9                                                    |                                                      |      | μs    |  |
| t <sub>TD</sub>        | top / bottom switch : interlock time                     |                                                      | 2,3                                                  |      | μs    |  |
| I analogOUT            | 8 V corresponds to max. current of 15 V supply voltage   |                                                      | 250                                                  |      | A     |  |
| I <sub>Vs1outmax</sub> | (available when supplied with 24 V)                      |                                                      |                                                      | 50   | mA    |  |
| I <sub>A0max</sub>     | output current at pin 13/20/22/24/26                     |                                                      |                                                      | 5    | mA    |  |
| V <sub>0I</sub>        | logic low output voltage                                 |                                                      |                                                      | 0,6  | V     |  |
| V <sub>0H</sub>        | logic high output voltage                                |                                                      |                                                      | 30   | V     |  |
| I <sub>TRIPSC</sub>    | over current trip level (I <sub>analog OUT</sub> = 10 V) |                                                      | 313                                                  |      | A     |  |
| I <sub>TRIPLG</sub>    | ground fault protection                                  |                                                      | 72                                                   |      | A     |  |
| T <sub>tp</sub>        | over temperature protection                              | 110                                                  |                                                      | 120  | °C    |  |
| U <sub>DCTRIP</sub>    | trip level of U <sub>DC</sub> -protection                | 1200                                                 |                                                      |      | V     |  |
|                        | ( U <sub>analog OUT</sub> = 9 V); (option)               |                                                      |                                                      |      |       |  |

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

