
Product Description

Sirenza Microdevices' SNA-100S is a GaAs monolithic broadband amplifier (MMIC) in die form. This amplifier provides 12.2dB of gain at 1950 MHz and 10.3dB at 10.000 MHz.

These unconditionally stable amplifiers are designed for use as general purpose 50 ohm gain blocks. Its small size (0.350mm x 0.345mm) and gold metallization make it an ideal choice for use in hybrid circuits. The SNA-100S is 100% DC tested and sample tested for RF performance.

External DC decoupling capacitors determine low frequency response. The use of an external resistor allows for bias flexibility and stability.

The SNA-100S is supplied in gel paks of 100 devices. Also available in packaged form (SNA-176 & SNA-186)

SNA-100S

DC-10 GHz, Cascadable GaAs HBT MMIC Amplifier

Product Features

- Cascadable 50 Ohm Gain Block
- 12.2dB Gain, +11dBm P1dB
- 1.5:1 Input and Output VSWR
- Operates From Single Supply
- Through wafer via for ground

Applications

- Broadband Driver Amplifier for Fiber & CATV transmitters
- IF Amplifier or gain stage for VSAT, LMDS, WLAN, and Cellular Systems

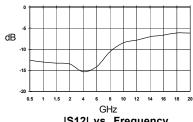
Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
		dB	850 MHz		12.5	
G _p	Small Signal Power Gain [2]	dB	1950 MHz	10.7	12.2	13.7
		dB	2400 MHz		12.0	
		dB	6000 MHz		12.5	
		dB	10000 MHz	8.8	10.3	11.8
G_F	Gain Ripple	dB	0.1-8 GHz		+/- 0.5	
BW3dB	3dB Bandwidth	GHz			10.5	
P _{1dB}	Output Power at 1dB Compression [2]	dBm	1950 MHz	9	11.0	
I 1dB		dBm	10000 MHz	9.5	11.5	
OIP ₃	Output Third Order Intercept Point [2]	dBm	1950 MHz	21	24.0	
011 3		dBm	10000 MHz	21	24.0	
NF	Noise Figure	dB	1950 MHz		5	
RL	Input / Output Return Loss	dB	1950 MHz		13	
ISOL	Reverse Isolation	dB	0.1-10 GHz		16	
V_D	Device Operating Voltage [1]	V		3.1	3.6	4.1
I _D	Device Operating Current [1]	mA		35	40	45
dG/dT	Device Gain Temperature Coefficient	dB/°C			-0.0015	
R _{TH} , j-b	Thermal Resistance (junction to backside)	°C/W			280	

Test Conditions: $V_s = 8 \text{ V}$ $I_D = 40 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1.2 MHz, Pout per tone = 0 dBm $T_1 = 25^{\circ}\text{C}$, $Z_s = Z_1 = 50 \text{ Ohms}$, [1] 100% DC Tested, [2] Sample Tested

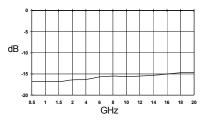
The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights reserved.

303 South Technology Court Broomfield, CO 80021 http://www.sirenza.com

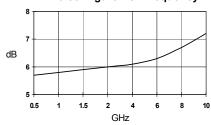
Phone: (800) SMI-MMIC



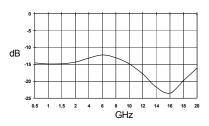
SNA-100S DC-10 GHz Cascadable MMIC Amplifier

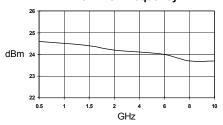

Typical Performance at 25° C (Vds = 3.8V, Ids = 40mA)

(data includes bond wires)


|S11| vs. Frequency


|S12| vs. Frequency


Noise Figure vs. Frequency


|S21| vs. Frequency

|S22| vs. Frequency

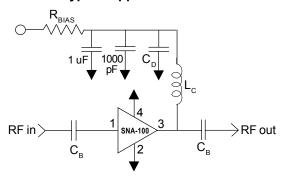
TOIP vs. Frequency

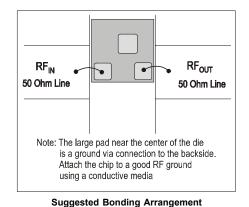
Absolute Maximum Ratings

Parameter	Absolute Limit	
Max. Device Current (I _D)	90 mA	
Max. Device Voltage (V _D)	6 V	
Max. RF Input Power	+20 dBm	
Max. Junction Temp. (T _J)	+200°C	
Operating Temp. Range (T _L)	-40°C to +85°C	
Max. Storage Temp.	+150°C	

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

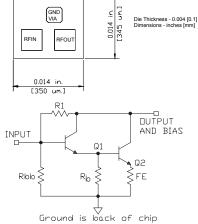
Bias Conditions should also satisfy the following expression: $I_D V_D < (T_J - T_L) / R_{TH}, j-1$


Phone: (800) SMI-MMIC


2

SNA-100S DC-10 GHz Cascadable MMIC Amplifier

Typical Application Circuit



(above configuration used for S-parameter data)

Application Circuit Element Values

Reference	Frequency (Mhz)				
Designator	500	850	1950	2400	3500
C _B	220 pF	100 pF	68 pF	56 pF	39 pF
C _D	100 pF	68 pF	22 pF	22 pF	15 pF
L _c	68 nH	33 nH	22 nH	18 nH	15 nH

Recommended Bias Resistor Values for I_D = 40mA				
$R_{BIAS} = (V_S - V_D) / I_D$				
Supply Voltage (V _S)	6V	8V	10V	12V
R_{BIAS} 60Ω 110Ω 160Ω 210Ω				
Note: R _{BIAS} provides DC bias stability over temperature.				

Simplified Schematic of MMIC

For recommended handling, die attach, and bonding methods, see the following application note at www.sirenza.com.

AN-041 (PDF) Handling of Unpackaged Die

Part Number Ordering Information

Part Number	Gel Pack		
SNA-100S	100 pcs. per pack		

Die are shipped per Sirenza application note AN-039 Visual Criteria For Unpackaged Die