

+5V Only RS-232/AppleTalk™ Programmable Transceiver

- +5V Only, Single Supply Operation
- Low Power Shutdown
- 28-Pin SOIC Packaging
- 3 Drivers, 5 Receivers RS-232
- Complete AppleTalk[™] Interface
- High Data Rates5Mbps Differential Transceivers460kbps Single-Ended Transceivers

Now Available in Lead Free Packaging

DESCRIPTION...

The SP333 is a monolithic device that supports both Macintosh™ and PC serial interfaces. RS-232 mode offers three (3) RS-232 drivers and five (5) RS-232 receivers. Mac mode includes a differential driver and a single-ended inverting driver. Receivers in Mac mode include one differential receiver, one non-inverting single-ended receiver and one inverting single-ended receiver. An on-chip charge pump allows +5V-only operation, and a low power Shutdown mode makes the SP333 ideal for battery powered applications. The interface mode can be changed at any time by a mode select pin.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{cc}	+12V
Input Voltages	
Logic	0.3V to (V _{cc} +0.5V)
Drivers	0.3V to (V _{CC} +0.5V)
	±15V
Driver Outputs	±14V
Storage Temperature	
Power Dissipation	1000mW

SPECIFICATIONS

 T_{MIN} to T_{MAX} and $V_{CC} = 5V \pm 5\%$ unless otherwise noted.

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
MAC Mode (pin $25 = +5V$)					
Differential Driver High Level Output Voltage Low Level Output Voltage Differential Output, Load Differential Output, No Load Driver Short Circuit Current	+3.6	±5V ±40	-3.6 ±10 500	Volts Volts Volts Volts mA	$I_{OH} = 8mA$ $I_{OH} = -8mA$ $R_L = 450\Omega$ (TX outputs to GND) $R_L = \infty$ $-7V \le V_O \le +7V$; $V_{IN LOW} \le 0.8V$ or $V_{UNDOM} \ge 2.0V$
Output Leakage Current Input High Voltage Input Low Voltage Input Current Transition Time	2.0	30	±100 0.8 ±20	μΑ Volts Volts μΑ ns	$V_{\text{IN HIGH}} \ge 2.0 \text{V}$ $-7 \text{V} \le \text{V}_{\text{o}} \le +7 \text{V}; \overline{\text{TxEN}} = \text{V}_{\text{CC}}$ Applies to differential driver inputs Applies to differential driver inputs $V_{\text{IN}} = 0 \text{V to V}_{\text{CC}}$ $R_{\text{L}} = 450 \Omega, C_{\text{L}} = 50 \text{pF}; \text{Rise/Fall}$ 10% - 90%
Propagation Delay t _{PHL} t _{PLH} Data Rate	5	100 100		ns ns Mbps	$R_{L} = 450\Omega, C_{L} = 50pF$ $R_{L} = 450\Omega, C_{L} = 50pF$ $R_{L} = 450\Omega, C_{L} = 50pF$
Single-Ended Inverting Driv High Level Output Voltage	er +3.6		+6.0	Volts	$R_L = 450\Omega$ to GND; $V_{INLOW} \le 0.8V$ or
Low Level Output Voltage	-6.0		-3.6	Volts	$V_{\text{IN HIGH}} \ge 2.0 \text{V}$ $R_{\text{L}} = 450\Omega \text{ to GND; } V_{\text{IN LOW}} \le 0.8 \text{V or}$
Driver Open Circuit Voltage Driver Short Circuit Current Input High Voltage Input Low Voltage Input Current Transition Time	2.0	±40	±10 0.8 ±20	Volts mA Volts Volts µA ns	$V_{\text{IN HIGH}}$ ≥2.0V $R_{\text{L}} = \infty$ $-7\text{V} \le V_{\text{O}} \le +7\text{V}$; Infinite duration Applies to single-ended driver inputs Applies to single-ended driver inputs $V_{\text{IN}} = 0\text{V to V}_{\text{CC}}$ $R_{\text{L}} = 450\Omega$, $C_{\text{L}} = 50\text{pF}$; Rise/Fall 10% - 90%
Propagation Delay $ \begin{matrix} \mathbf{t}_{\mathrm{PHL}} \\ \mathbf{t}_{\mathrm{PLH}} \end{matrix} $ Data Rate	5	100 100		ns ns Mbps	$R_L = 450\Omega, C_L = 50pF$ $R_L = 450\Omega, C_L = 50pF$ $R_L = 450\Omega, C_L = 50pF$
Differential Receiver Differential Input Threshold Input Hysteresis Input Resistance Output Voltage High Output Voltage Low Short Circuit Current	-0.2 12 3.5	70	+0.2 0.4 85	Volts mV kΩ Volts Volts mA	$-7V \le V_{CM} \le +7V$ $V_{CM} = 0V$ $-7V \le V_{CM} \le +7V$ $I_{SOURCE} = -4mA$ $I_{SINK} = +4mA$ $0V \le V_{OUT} \le V_{CC}$

SPECIFICATIONS (CONTINUED)

 $\rm T_{MIN}$ to $\rm T_{MAX}$ and $\rm V_{CC}$ = 5V±5% unless otherwise noted.

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Differential Receiver					
Propagation Delay					
t _{PHL}		100		ns	$R_L = 450\Omega$, $C_L = 50pF$
t _{PLH}		100		ns	$R_{L}^{L} = 450\Omega, C_{L}^{L} = 50pF$
Data Rate	5			Mbps	$R_{i} = 450\Omega, C_{i} = 50pF$
Single-Ended Inverting Rec	oivor				
Input Voltage Range	- 15		+15	Volts	
Input Threshold Low	0.8	1.2	713	Volts	
Input Threshold High	0.6	1.7	3.0	Volts	
Hysteresis	200	500	1000	mV	
Input Impedance	3	5	7	kΩ	
Output Voltage High	3.5	3	'	Volts	Δ
Output Voltage Low	3.5		0.4	Volts	$I_{SOURCE} = -4mA$ $I_{SINK} = +4mA$
Propagation Delay			0.4	VOIIS	I _{SINK} = 74111A
		100		ns	
t _{PHL}		100		ns	
T _{PLH} Data Rate	5	100			
Dala Nale	3			Mbps	
Single-Ended Non-Inverting	Receive	r r			
Input Voltage Range	-7		+7	Volts	
Input Threshold Low	-0.2			Volts	
Input Threshold High			+0.2	Volts	
Hysteresis		70		mV	
Input Impedance	12	15		kΩ	
Output Voltage High	3.5			Volts	I _{SOURCE} = -4mA
Output Voltage Low			0.4	Volts	I _{SINK} = +4mA
Propagation Delay					On the control of the
t _{PHL}		100		ns	
t _{PLH}		100		ns	
Data Rate	5			Mbps	
PC Mode (pin 25 = GND)					
			1		
RS-232 Driver					
TTL Input Levels			0.0	Volta	Applies to transmitter inputs
TTL Input Levels	2.0		0.8	Volts	Applies to transmitter inputs
TTL Input Levels V _{IL} V _{IH}	2.0			Volts	Applies to transmitter inputs
TTL Input Levels VIL VIH High Level Voltage Output	+5.0		+15.0	Volts Volts	Applies to transmitter inputs $R_1 = 3k\Omega$ to Gnd
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output	1		+15.0 -5.0	Volts Volts Volts	Applies to transmitter inputs $R_L = 3k\Omega$ to Gnd $R_L = 3k\Omega$ to Gnd
TTL Input Levels V _{IL} V _{IH} High Level Voltage Output Low Level Voltage Output Open Circuit Output	+5.0		+15.0 -5.0 ±15	Volts Volts Volts Volts	Applies to transmitter inputs $R_L = 3k\Omega$ to Gnd $R_L = 3k\Omega$ to Gnd $R_1 = \infty$
TTL Input Levels V _{IL} V _{IH} High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current	+5.0 -15.0		+15.0 -5.0	Volts Volts Volts Volts mA	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{OUT} = \text{Gnd}$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance	+5.0	60	+15.0 -5.0 ±15	Volts Volts Volts Volts mA Ohms	Applies to transmitter inputs $R_L = 3k\Omega$ to Gnd $R_L = 3k\Omega$ to Gnd $R_L = \infty$ $V_{OUT} = Gnd$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current	+5.0 -15.0	60	+15.0 -5.0 ±15	Volts Volts Volts Volts mA	Applies to transmitter inputs $R_L = 3k\Omega$ to Gnd $R_L = 3k\Omega$ to Gnd $R_L = \infty$ $V_{\text{OUT}} = \text{Gnd}$ $V_{\text{CC}} = 0V; V_{\text{OUT}} = \pm 2V$ $V_{\text{CC}} = 0V; V_{\text{CC}} = 0V; V_{\text$
TTL Input Levels V _{IL} V _{IH} High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate	+5.0 -15.0	60	+15.0 -5.0 ±15	Volts Volts Volts Volts mA Ohms	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{\text{ouT}} = \text{Gnd}$ $V_{\text{cc}} = \text{OV; } V_{\text{ouT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; \text{From } +3V$ to $-3V$ or $-3V$ to $+3V$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time	+5.0 -15.0	60	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/µs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{\text{ouT}} = \text{Gnd}$ $V_{\text{cc}} = \text{OV}; V_{\text{ouT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; \text{From } +3V$ to -3V or -3V to +3V
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay	+5.0 -15.0		+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs	Applies to transmitter inputs $\begin{array}{l} R_{\text{L}} = 3k\Omega \text{ to Gnd} \\ R_{\text{L}} = 3k\Omega \text{ to Gnd} \\ R_{\text{L}} = \infty \\ V_{\text{OUT}} = \text{Gnd} \\ V_{\text{CC}} = 0V; \ V_{\text{OUT}} = \pm 2V \\ R_{\text{L}} = 3k\Omega, \ C_{\text{L}} = 50\text{pF}; \ \text{From } +3V \\ \text{to } -3V \text{ or } -3V \text{ to } +3V \\ \text{Rise/fall time, between } +3V \text{ \& } -3V; \ R_{\text{L}} = 3k\Omega, \ C_{\text{L}} = 2500\text{pF} \end{array}$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time	+5.0 -15.0	60	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/µs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{\text{OUT}} = \text{Gnd}$ $V_{\text{CC}} = \text{OV}; V_{\text{OUT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50p\text{F}; \text{From } +3V \text{ to } -3V \text{ to } +3V$ $Rise/fall \text{ time, between } +3V \text{ & } -3V; R_{L} = 3k\Omega, C_{L} = 2500p\text{F}$ $R_{L} = 3k\Omega, C_{L} = 1000p\text{F}; \text{From } 1.5V$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphL	+5.0 -15.0	1.5	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{\text{OUT}} = \text{Gnd}$ $V_{\text{CC}} = 0V; V_{\text{OUT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; \text{ From } +3V \text{ to } -3V \text{ to } +3V$ $Rise/fall \text{ time, between } +3V \text{ & } -3V; R_{L} = 3k\Omega, C_{L} = 2500pF$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay	+5.0 -15.0		+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{OUT} = Gnd$ $V_{CC} = 0V; V_{OUT} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; From +3V$ to -3V or -3V to +3V Rise/fall time, between +3V & -3V; $R_{L} = 3k\Omega, C_{L} = 2500pF$ $R_{L} = 3k\Omega, C_{L} = 1000pF; From 1.5V$ of $T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$ $R_{L} = 3k\Omega, C_{L} = 1000pF; From 1.5V$ of $T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphL	+5.0 -15.0	1.5	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{\text{OUT}} = \text{Gnd}$ $V_{\text{CC}} = 0V; V_{\text{OUT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; \text{ From } +3V \text{ to } -3V \text{ to } +3V$ $Rise/fall \text{ time, between } +3V \text{ & } -3V; R_{L} = 3k\Omega, C_{L} = 2500pF$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphL tphL tphL Data Rate	+5.0 -15.0 300	1.5 1.3	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs μs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty \text{ Vout} = \text{Gnd}$ $V_{\text{CC}} = \text{OV; } V_{\text{OUT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; \text{ From } +3V$ to -3V or -3V to +3V Rise/fall time, between +3V & -3V; $R_{L} = 3k\Omega, C_{L} = 2500pF$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V \text{ of } T_{IN} \text{ to } 50\% \text{ of } V_{\text{OUT}}$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V \text{ of } T_{IN} \text{ to } 50\% \text{ of } V_{\text{OUT}}$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V \text{ of } T_{IN} \text{ to } 50\% \text{ of } V_{\text{OUT}}$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphl tphl	+5.0 -15.0 300	1.5 1.3	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs μs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{OUT} = \text{Gnd}$ $V_{CC} = \text{OV}; V_{OUT} = \pm 2V$ $R_{L} = 3k\Omega; C_{L} = 50pF; \text{ From } +3V$ to -3V or -3V to +3V Rise/fall time, between +3V & -3V; $R_{L} = 3k\Omega; C_{L} = 2500pF$ $R_{L} = 3k\Omega; C_{L} = 1000pF; \text{ From } 1.5V$ of $T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$ $R_{L} = 3k\Omega; C_{L} = 1000pF; \text{ From } 1.5V$ of $T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$ of $T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphL tphL Data Rate RS-232 Receiver TTL Output Levels	+5.0 -15.0 300	1.5 1.3	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs μs	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{\text{OUT}} = \text{Gnd}$ $V_{\text{CC}} = \text{OV}; V_{\text{OUT}} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50\text{pF}; \text{ From +3V}$ to -3V or -3V to +3V Rise/fall time, between +3V & -3V; $R_{L} = 3k\Omega, C_{L} = 2500\text{pF}$ $R_{L} = 3k\Omega, C_{L} = 1000\text{pF}; \text{ From 1.5V}$ of $T_{\text{IN}} \text{ to 50\% of V}_{\text{OUT}}$ $R_{L} = 3k\Omega, C_{L} = 1000\text{pF}; \text{ From 1.5V}$ of $T_{\text{IN}} \text{ to 50\% of V}_{\text{OUT}}$ $R_{L} = 3k\Omega, C_{L} = 1000\text{pF}$ $R_{L} = 3k\Omega, C_{L} = 1000\text{pF}$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphL tphL Data Rate RS-232 Receiver TTL Output Levels Vol	+5.0 -15.0 300	1.5 1.3	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs μs kbps	Applies to transmitter inputs $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = 3k\Omega \text{ to Gnd}$ $R_{L} = \infty$ $V_{OUT} = \text{Gnd}$ $V_{CC} = 0V; V_{OUT} = \pm 2V$ $R_{L} = 3k\Omega, C_{L} = 50pF; \text{ From } +3V \text{ to } -3V \text{ or } -3V \text{ to } +3V$ $Rise/fall \text{ time, between } +3V \text{ & } -3V \text{ ; } R_{L} = 3k\Omega, C_{L} = 2500pF$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V \text{ of } T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$ $R_{L} = 3k\Omega, C_{L} = 1000pF; \text{ From } 1.5V \text{ of } T_{IN} \text{ to } 50\% \text{ of } V_{OUT}$ $R_{L} = 3k\Omega, C_{L} = 1000pF$
TTL Input Levels VIL VIH High Level Voltage Output Low Level Voltage Output Open Circuit Output Short Circuit Current Power Off Impedance Slew Rate Transition Time Propagation Delay tphL tphL tplH Data Rate RS-232 Receiver TTL Output Levels	+5.0 -15.0 300	1.5 1.3	+15.0 -5.0 ±15 ±100	Volts Volts Volts Volts mA Ohms V/μs μs μs kbps	Applies to transmitter inputs $\begin{aligned} R_{\text{L}} &= 3k\Omega \text{ to Gnd} \\ R_{\text{L}} &= 3k\Omega \text{ to Gnd} \\ R_{\text{L}} &= \infty \\ V_{\text{OUT}} &= \text{Gnd} \\ V_{\text{CC}} &= 0V; \ V_{\text{OUT}} = \pm 2V \\ R_{\text{L}} &= 3k\Omega, \ C_{\text{L}} &= 50\text{pF}; \ \text{From } +3V \\ \text{to } &= 3V \text{ or } &= 3V \text{ to } +3V \\ \text{Rise/fall time, between } &= +3V \& &= 3V \\ ; \ R_{\text{L}} &= 3k\Omega, \ C_{\text{L}} &= 2500\text{pF} \end{aligned}$ $R_{\text{L}} &= 3k\Omega, \ C_{\text{L}} &= 1000\text{pF}; \ \text{From } 1.5V \\ \text{of } T_{\text{IN}} \text{ to } 50\% \text{ of } V_{\text{OUT}} \\ R_{\text{L}} &= 3k\Omega, \ C_{\text{L}} &= 1000\text{pF}; \ \text{From } 1.5V \\ \text{of } T_{\text{IN}} \text{ to } 50\% \text{ of } V_{\text{OUT}} \\ R_{\text{L}} &= 3k\Omega, \ C_{\text{L}} &= 1000\text{pF} \end{aligned}$

SPECIFICATIONS (CONTINUED)

 T_{MN} to T_{MAX} and $V_{\text{CC}} = 5V \pm 5\%$ unless otherwise noted.

$\frac{1_{\text{MIN}} \text{ to } 1_{\text{MAX}} \text{ and } V_{\text{CC}} = 50 \pm 5\% \text{ unless otherwise}}{\text{PARAMETER}}$	MIN.	TYP.	MAX.	UNITS	CONDITIONS
RS-232 Receiver Low Threshold Input Voltage Range Input Impedance Hysteresis Transmission Rate Propagation Delay t _{PHL} t _{PLH} Data Rate	0.8 -15 3 0.2 10	1.2 5 0.5 100 100 600	+15 7 1.0 600 600	Volts Volts kOhms Volts Mbps ns ns kbps	$V_{IN}=\pm15V$ $V_{CC}=+5V$ From 50% of V_{IN} to 1.5V of R_{OUT} From 50% of V_{IN} to 1.5V of R_{OUT}
POWER REQUIREMENTS No Load Supply Current Shutdown Supply Current		15	25 75	mA μA	No load; V_{cc} =5.0V; T_{A} =25°C T_{A} =25°C, V_{cc} =5.0V
AC PARAMETERS Differential Mode t _{PZL} ; Enable to Output low t _{PZH} ; Enable to Output high t _{PLZ} ; Disable from Output low t _{PHZ} ; Disable from Output high		200 200 200 200 200	1000 1000 1000 1000	ns ns ns ns	C_L =100pF, Figures 2 & 4, S_2 closed C_L =100pF, Figures 2 & 4, S_1 closed C_L =15pF, Figures 2 & 4, S_2 closed C_L =15pF, Figures 2 & 4, S_1 closed
Receiver Delay Time from Enable Mode to Tri-state Mode					
Single-Ended Mode t _{PZL} ; Enable to Output low t _{PZH} ; Enable to Output high t _{PLZ} ; Disable from Output low t _{PHZ} ; Disable from Output high		200 200 200 200 200	1000 1000 1000 1000	ns ns ns ns	$\begin{array}{c} \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{1}} \text{ closed} \\ \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{2}} \text{ closed} \\ \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{1}} \text{ closed} \\ \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{2}} \text{ closed} \\ \end{array}$
Differential Mode t _{PZL} ; Enable to Output low t _{PZH} ; Enable to Output high t _{PLZ} ; Disable from Output low t _{PHZ} ; Disable from Output high		200 200 200 200 200	1000 1000 1000 1000	ns ns ns ns	$\begin{array}{c} \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{1}} \text{ closed} \\ \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{2}} \text{ closed} \\ \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{1}} \text{ closed} \\ \textbf{C}_{\text{RL}} \text{=} 15 \text{pF, Figures 1 \& 6, S}_{\text{2}} \text{ closed} \end{array}$

Notes:

Measured from 2.5V of $\rm R_{IN}$ to 2.5V of $\rm R_{OUT}.$ Measured from one–half of $\rm R_{IN}$ to 2.5V of $\rm R_{OUT}.$ Measured from 1.5V of $\rm T_{IN}$ to one–half of $\rm T_{OUT}.$ Measured from 2.5V of $\rm R_{O}$ to 0V of A and B. 1. 2.

3. 4.

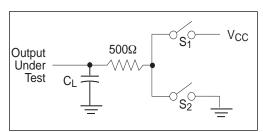


Figure 1. Driver Timing Test Load Circuit

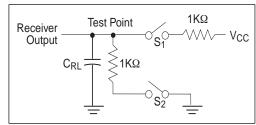


Figure 2. Receiver Timing Test Circuit

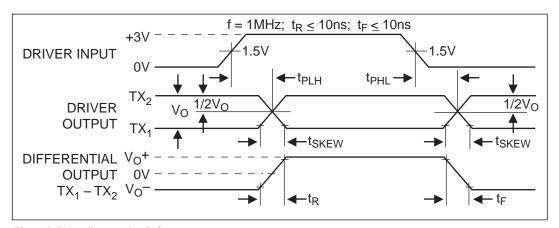


Figure 3. Driver Propagation Delays

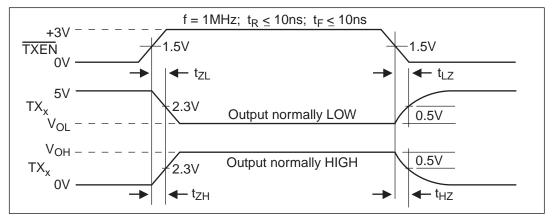


Figure 4. Driver Enable and Disable Times

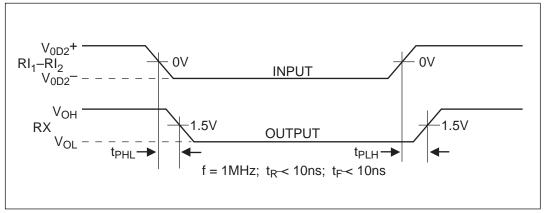


Figure 5. Receiver Propagation Delays

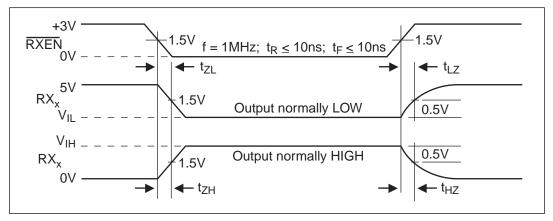


Figure 6. Receiver Enable and Disable Times

THEORY OF OPERATION...

The SP333 is a single chip device that can be configured via software for either RS-232 or AppleTalkTM interface modes at any time. The SP333 is made up of three basic circuit elements: single-ended drivers and receivers, differential drivers and receivers, and charge pump.

APPLETALK™ DRIVERS/RECEIVERS...

To program the SP333 for MacMode, Pin 25 should be connected to a logic HIGH. In MacMode, the SP333 offers a complete AppleTalk serial interface.

The driver section of the AppleTalk interface is made up of a differential driver and a single-ended inverting driver. The differential driver has voltage swings that are typically $\pm 5V$ on each output pin under loaded conditions, and typically $\pm 8V$ under no-load conditions. The differential driver can maintain $\pm 3.6V$ (minimum) swings (per pin) under worst case load conditions of 450Ω between the differential output.

The differential driver is equipped with a tristate control pin. When TXEN is a logic LOW, the differential driver is active. When the TXEN pin is a logic HIGH, the differential driver outputs are tri-stated. The TXEN pin only functions in MacMode. The differential AppleTalk driver can support data rates up to 5Mbps.

The single-ended AppleTalk driver also has typical voltage output swings of $\pm 5V$ under loaded conditions, and $\pm 8V$ under no-load conditions. The single-ended AppleTalk driver can maintain $\pm 3.6V$ (minimum) swings under worst case conditions of 450Ω to ground. The single-ended AppleTalk driver can support data rates up to 5Mbps.

The receiver section of the SP333 is made up of a differential receiver, a single-ended non-inverting receiver , and a single-ended inverting receiver. The differential receiver has an input sensitivity of $\pm 200 mV$ over a common mode range of $\pm 7V$. The receivers have a typical input resistance of $15k\Omega$ (12k Ω minimum). The differential receiver can receive data up to 5Mbps.

The single-ended non-inverting receiver has a $\pm 200 \text{mV}$ input threshold, however, the input voltage can vary between $\pm 7\text{V}$. The typical input resistance of the single-ended non-inverting receiver is $15 \text{k}\Omega$ ($12 \text{k}\Omega$ minimum). The single-ended non-inverting receiver can also receive data up to 5Mbps.

The SP333 also has a single-ended inverting receiver input. This receiver is basically an RS-232 receiver (R5 receiver) and is typically used as a GPI (General Purpose Input) in the AppleTalk interface. The GPI input has TTL-compatible input thresholds that can receive signals up to $\pm 15 V$. The input resistance of the single-ended inverting receiver is typically $5 k\Omega$ (3k Ω to $7 k\Omega$). The GPI receiver can operate up to 5Mbps.

SINGLE ENDED DRIVERS/RECEIVERS...

RS-232 (V.28) Drivers...

The single-ended drivers and receivers comply the with the RS-232E and V.28 standards. The drivers are inverting transmitters which accept either TTL or CMOS inputs and output the RS-232 signals with an inverted sense relative to the input logic levels. Typically, the RS-232 driver output voltage swing is ±9V with no load and is guaranteed to be greater than ±5V under full load. The drivers rely on the V+ and V- voltages generated by the on-chip charge pump to maintain proper RS-232 output levels. With worst case load conditions of $3k\Omega$ and 2500pF, the four RS-232 drivers can still maintain ±5V output levels. The drivers can operate over 400kbps; the propagation delay from input to output is typically 1.5 µs. During shutdown, the driver outputs will be put into a high impedance tri-state mode.

RS-232 (V.28) Receivers...

The RS-232 receivers convert RS-232 input signals to inverted TTL signals. Each of the four receivers features 500mV of hysteresis margin to minimize the affects of noisy tranmission lines. The inputs also have a $5k\Omega$ resistor to ground, in an open circuit situation the input of the receiver will be forced low, committing the

 $V_{CC} = +5V$ $C_1 = +10V$ $C_2 = +10V$ $C_2 = +10V$ $C_3 = +10V$

Figure 7. Charge Pump Phase 1

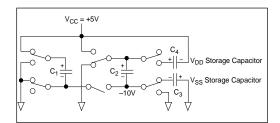


Figure 9. Charge Pump Phase 3

output to a logic HIGH state. The input resistance will maintain $3k\Omega$ - $7k\Omega$ over a $\pm 15V$ range. The maximum operating voltage range for the receiver is $\pm 30V$, under these conditions the input current to the receiver must be limited to less than 100mA. Due to the on-chip ESD protection circuitry, the receiver inputs will be clamped to $\pm 15V$ levels; this should not affect operation at $\pm 30V$ olts. The RS-232 receivers can operate over 400kbps.

CHARGE PUMP...

The charge pump is a Sipex-patented design (5,306,954) and uses a unique approach compared to older less-efficient designs. The charge pump still requires four external capacitors, but uses a four-phase voltage shifting technique to attain symmetrical 10V power supplies. The capacitor values of the SP333 can be as low as $0.1\mu\text{F}$. Figure 11a shows the waveform found on the positive side of capacitor C2, and Figure 11b shows the negative side of capacitor C2. There is a free-running oscillator that controls the four phases of the voltage shifting. A description of each phase follows.

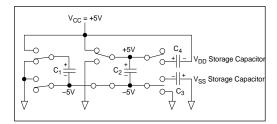


Figure 8. Charge Pump Phase 2

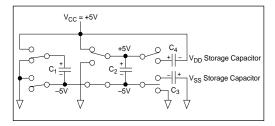


Figure 10. Charge Pump Phase 4

Phase 1

-Vss charge storage- During this phase of the clock cycle, the positive side of capacitors C1 and C2 are initially charged to +5V. C1+ is then switched to ground and charge in C1- is transferred to C2-. Since C2+ is connected to +5V, the voltage potential across capacitor C2 is now 10V.

Phase 2

-Vss transfer- Phase two of the clock connects the negative terminal of C2 to the Vss storage capacitor and the positive terminal of C2 to ground, and transfers the generated -10V to C3. Simultaneously, the positive side of capacitor C1 is switched to +5V and the negative side is connected to ground.

Phase 3

-Vdd charge storage- The third phase of the clock is identical to the first phase- the transferred charge in C1 produces -5V in the negative terminal of C1, which is applied to the negative side of capacitor C2. Since C2+ is at +5V, the voltage potential across C2 is 10V.

Phase 4

-Vdd transfer- The fourth phase of the clock connects the negative terminal of C2 to ground and transfers the generated 10V across C2 to C4,

the Vdd storage capacitor. Simultaneously with this, the positive side of capacitor C1 is switched to +5V and the negative side is connected to ground, and the cycle begins again.

Since both V+ and V- are separately generated from Vcc in a no load condition, V+ and V- will be symmetrical. Older charge pump approaches that generate V- from V+ will show a decrease in the magnitude of V- compared to V+ due to the inherent inefficiencies in the design.

The clock rate for the charge pump typically operates at 15kHz. The external capacitors should be $0.1\mu F$ with a 16V breakdown rating.

External Power Supplies

For applications that do not require +5V only, external supplies can be applied at the V+ and V- pins. The value of the external supply voltages must be no greater than $\pm 10V$. The current drain from the $\pm 10V$ supplies is used for the RS-232 drivers. For the RS-232 driver, the current requirement is 3.5mA per driver. The external power supplies should provide a power supply sequence of either: $\pm 10V$, $\pm 10V$, and then $\pm 5V$; or $\pm 10V$, and then $\pm 5V$. It is critical that the $\pm 10V$ supplies are on before V_{CC} .

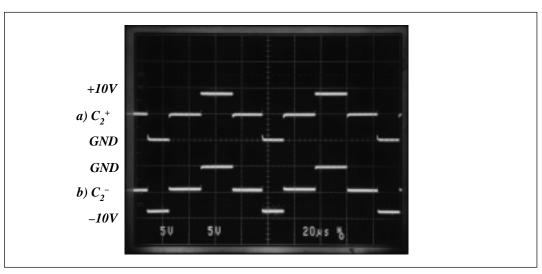
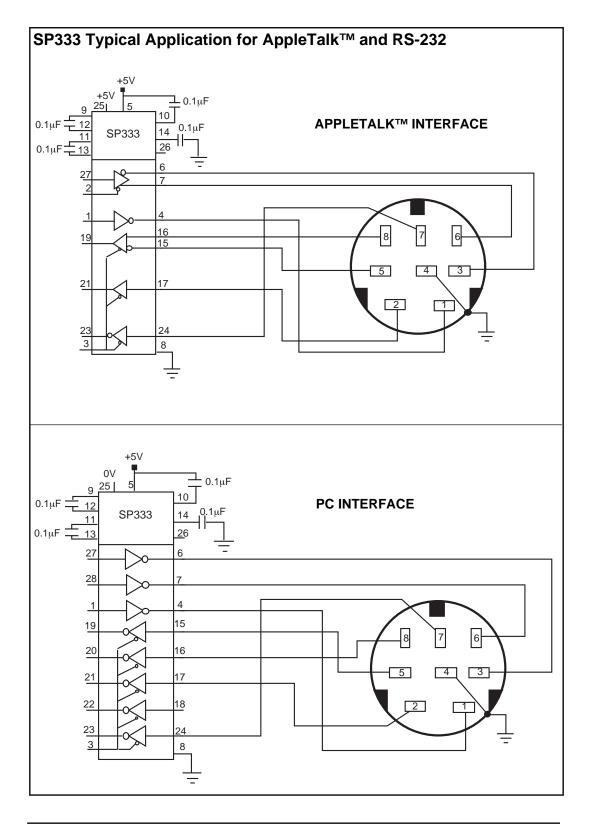
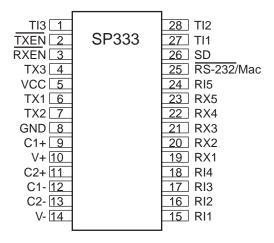


Figure 11. Charge Pump Waveforms

Shutdown Mode

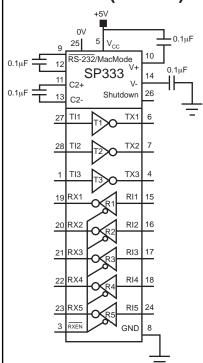

The SP333 can be put into a low power shutdown mode by connecting the Shutdown pin (SD, Pin 26) to a logic HIGH. During Shutdown, the driver outputs are put into a high impedance tri-state, and the charge pump is put into stand-by mode. The supply current drops to less than 10µA during shutdown and can be activated in either RS-232 or AppleTalk mode. For normal operation, the SD pin should be connected to a logic LOW.

Receiver Enable

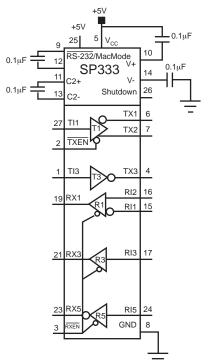

The SP333 has a control line to enable or disable the receiver outputs. Pin 3 (RXEN) is active LOW; a logic LOW on Pin 3 will enable the receiver outputs. A logic HIGH on Pin 3 will disable the receiver outputs. The receiver enable function can be initiated in either RS-232 or AppleTalk mode.

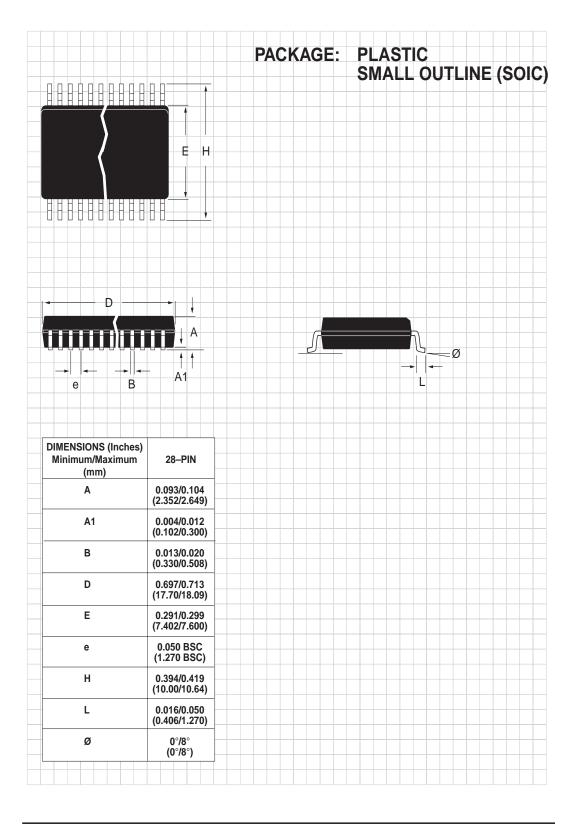
Wake-Up

The SP333 also features a "wake-up" function. The wake up function allows the RS-232 receivers to remain active during Shutdown mode unless they are disabled by the Receiver Enable control pin (Pin 3). The wake-up feature allows users to take advantage of the low power Shutdown mode and keep the receivers active to accept an incoming "ring indicator" signal.



SP333 PIN CONFIGURATION




SP333 TYPICAL OPERATING CIRCUIT

PC Mode (RS-232)

Mac Mode (AppleTalk)

ORDERING INFORMATION

Model	Temperature Range	Package Types
SP333CT		28-Pin SOIC
SP333ET	-40°C to +85°C	28-Pin SOIC

Available in lead free packaging. To order, add "-L" suffix to the part number. Example: SP33CT= standard. SP333CT-L = lead free.

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Sales Office 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

Sales Office233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 934-7500
FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.