

DC Input PhotoSCR

DESCRIPTION

The SPT601 consists of an AlGaAs LED optically coupled to a photo-sensitive SCR. Optical coupling provides high isolation levels while maintaining low-level DC signal control capability. With high load voltage and low input current, the SPT601 is an ideal solution to drive SCR Triacs and Solid State Relays.

FEATURES

- Low input control current (5mA MAX)
- High blocking voltage (400V MIN)
- 400mA maximum continuous current
- High input-to-output isolation (3.75kV MIN, 5.3kV MAX)
- High Transient Immunity (dV/dt = 400V/us MIN)
- RoHS compliant / LeadFree Component
- Solid state reliability

OPTIONS/SUFFIXES*

- -H High Input-Output Isolation (5.3kVrms)
- -S Surface Mount Leadform Option
- -TR Tape and Reel Option

NOTE: Suffixes listed above are not included in marking on device for part number identification.

SCHEMATIC DIAGRAM

APPLICATIONS

- Valve control
- Solenoids
- Remote switching
- Home appliances
- Metering equipment
- Heating elements

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	UNIT	MIN	TYP	MAX
Storage Temperature	°C	-55		125
Operating Temperature	°C	-40		85
Continuous Input Current	mA			40
Transient Input Current	mA			400
Reverse Input Control Voltage	V	6		
Total Package Power Dissipation	mW			500
Surge Current Rating	A			10

*The values indicated are absolute stress ratings. Functional operation of the device is not implied at these or any conditions in excess of those defined in electrical characteristics section of this document. Exposure to Absolute Ratings may cause permanent damage to the device and may adversely affect reliability.

APPROVALS

UL, C-UL Pending

DC Input PhotoSCR

ELECTRICAL CHARACTERISTICS - 25°C

PARAMETER	UNIT	MIN	ТҮР	MAX	TEST CONDITIONS
INPUT SPECIFICATIONS					
LED Forward Voltage	V		1.2	1.5	lf = 10mA
LED Reverse Voltage	V	6	12		Ir = 10uA
Must Operate Current	m A		2.5	5	lo = 400mA, resistive load
Reverse Current	μA			10	Vr = 6.0V
Junction Capacitance	рF		5		Vf = 0V
OUTPUT SPECIFICATIONS					
Forward Blocking Voltage	V	400			RGK = 10KΩ, TA = 100°C, Id = 150µA
Reverse Blocking Voltage	V	400			RGK=10KΩ, TA=100°C, Id=150μA
Continuous Load Current	m A			400	lf = 5mA
Surge Current Rating	А			10	T = 16us
Holding Current	μΑ			500	RGK = 27KΩ, VFX = 50V
On-Voltage	V		1.1	1.4	lo = 400mA
Leakage Current	μΑ			10	Vo = 400V, Rgk = 47k
Gate Trigger Voltage	V		0.6	1	VFX=100V, RGK=27KΩ, RL=10KΩ
Forward Leakage Current	μΑ		1	10	RGK=10KΩ, VRX=400V, IF=0, TA=100°C
Reverse Leakage Current	μΑ		1	10	RGK=10KΩ, VRX=400V, IF=0, TA=100°C
Gate Trigger Current	μΑ		20	50	VFX=100V, RRG=27KΩ, RL=10KΩ
COUPLED SPECIFICATIONS					
Isolation Voltage	V	3750			T = 1 minute
-H Suffix	V	5300			T = 1 minute
Isolation Resistance	GΩ	100			
Coupled Capacitance	рF		2		

DC Input PhotoSCR

PERFORMANCE DATA

SPT601

DC Input PhotoSCR

MECHANICAL DIMENSIONS

6 PIN DUAL IN-LINE PACKAGE

6 PIN SURFACE MOUNT DEVICE

END VIEW

SPT601

DC Input PhotoSCR

DISCLAIMER

Solid State Optronics (SSO) makes no warranties or representations with regards to the completeness and accuracy of this document. SSO reserves the right to make changes to product description, specifications at any time without further notice. SSO shall not assume any liability arising out of the application or use of any product or circuit described herein. Neither circuit patent licenses nor indemnity are expressed or implied.

Except as specified in SSO's Standard Terms & Conditions, SSO disclaims liability for consequential or other damage, and we make no other warranty, expressed or implied, including merchantability and fitness for particular use.

LIFE SUPPORT POLICY

SSO does not authorize use of its devices in life support applications wherein failure or malfunction of a device may lead to personal injury or death. Users of SSO devices in life support applications assume all risks of such use and agree to indemnify SSO against any and all damages resulting from such use. Life support devices are defined as devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when used properly in accordance with instructions for use can be reasonably expected to result in significant injury to the user, or (d) a critical component in any component of a life support device or system whose failure can be reasonably expected to cause failure of the life support device or system, or to affect its safety or effectiveness.