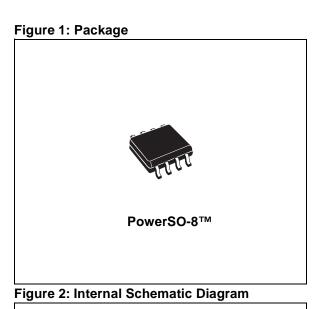


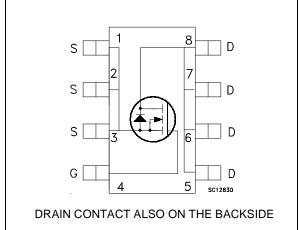
STSJ100NH3LL

N-CHANNEL 30 V - 0.0032 Ω - 25 A PowerSO-8[™] STripFET[™] III MOSFET FOR DC-DC CONVERSION

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	ID
STSJ100NH3LL	30V	< 0.0035Ω	25A


- TYPICAL R_{DS}(on) = 0.0032Ω @ 10V
- OPTIMAL R_{DS}(on) x Qg TRADE-OFF @ 4.5V
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DEVICE
- IMPROVED JUNCTION-CASE THERMAL RESISTANCE


DESCRIPTION

The **STSJ100NH3LL** utilizes the latest advanced design rules of ST's proprietary STripFETTM technology. This process coupled to unique metallization techniques realizes the most advanced low voltage MOSFET in SO-8 ever produced. The exposed slug reduces the R_{thj-c} improving the current capability.

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY CPU CORE DC/DC CONVERTERS FOR MOBILE PCs

Table 2: Order Codes

SALES TYPE	SALES TYPE MARKING		PACKAGING	
STSJ100NH3LL	100H3LL-	PowerSO-8	TAPE & REEL	

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V	
V _{GS}	Gate- source Voltage	± 16	V	
I _D (2)	Drain Current (continuous) at T _C = 25°C	100	A	
$I_D(1)$ Drain Current (continuous) at $T_C = 25^{\circ}C$		25	A	
I _D	Drain Current (continuous) at T _C = 100°C	15.6	A	
I _{DM} (3) Drain Current (pulsed)		100	A	
$P_{tot}(2)$ Total Dissipation at $T_C = 25^{\circ}C$		70	W	
P _{tot} (1)	Total Dissipation at $T_C = 25^{\circ}C$	3	W	

Table 4: Thermal Data

Rthj-	hj-c Thermal Resistance Junction-case pcb(4) Thermal Resistance Junction-ambient T _j Maximum Operating Junction Temperature Storage Temperature	Max Max	1.8 42 150 -55 to 150	ာင်္ဂ သိုင်္ဂ ကို
-------	---	------------	--------------------------------	-------------------------

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AV}	Not-Repetitive Avalanche Current (pulse width limited by T _j max)	12.5	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AV}$, $V_{DD} = 24 \text{ V}$)	1.3	J

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25^{\circ}C$ UNLESS OTHERWISE SPECIFIED) **Table 6: On /Off**

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \mu A, V_{GS} = 0$	30			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} =Max Rating ,T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 16V$			±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1			V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V, I_D = 12.5A$ $V_{GS} = 4.5V, I_D = 12.5A$		0.0032 0.004	0.0035 0.005	$\Omega \ \Omega$

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (5)	Forward Transconductance	V _{DS} =10V, I _D = 12.5A		30		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		4450 655 50		pF pF pF
R _G	Gate Input Resistance	f=1MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain	1	2	3	Ω

Table 8: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{array}{l} V_{DD}=15V,I_{D}=12.5A\\ R_{G}=4.7\Omega\ ,V_{GS}=10V\\ (see \ Figure\ 15) \end{array}$		18 50		ns ns
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} =15V, I _D =25A V_{GS} =4.5V (see Figure 17)		30 12.5 10	40	nC nC nC

Table 9: Switching Off

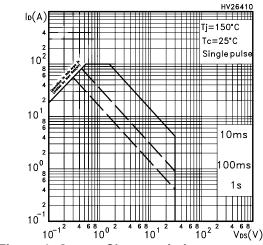
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$V_{DD} = 15V, I_D = 12.5A$ $R_G = 4.7\Omega, V_{GS} = 10V$ (see Figure 15)		75 8		ns ns

Table 10: Source Drain Diode

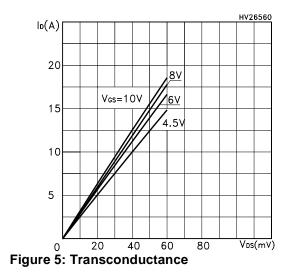
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				25 100	A A
V _{SD} (5)	Forward On Voltage	$I_{SD} = 25A$, $V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 25A, di/dt = 100A/µs V _{DD} = 25V, T _j = 150°C (see Figure 16)		32 34 2.1		ns nC A

Notes

1. This value is noted according to Rthj-pcb


2. This value is noted according to Rthj-c

3. Pulse width limited by safe operating area


4. When Mounted on 1 inch² FR-4 board, 2 oz Cu (t \leq 10 sec.)

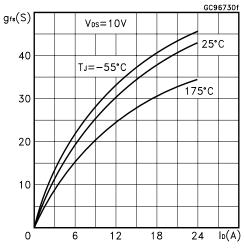

5. Pulsed: pulse duration=300µs, duty cycle 1.5%

Figure 3: Safe Operating Area

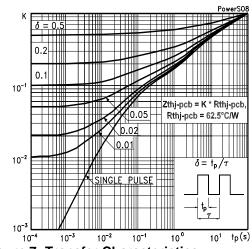


Figure 4: Output Characteristics

Figure 6: Thermal Impedance

Figure 7: Transfer Characteristics

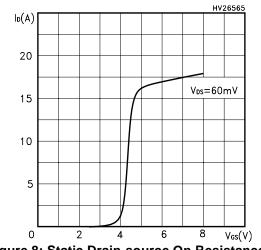
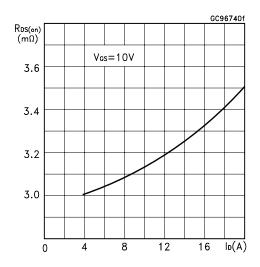



Figure 8: Static Drain-source On Resistance

47/

Figure 9: Gate Charge vs Gate-source Voltage

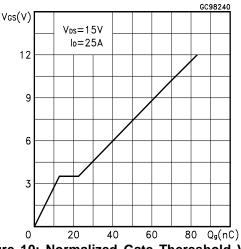


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

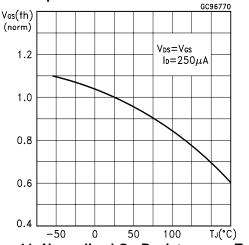
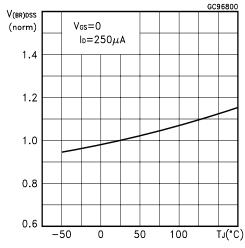



Figure 11: Normalized On Resistance vs Temperature

57.

Figure 12: Capacitance Variations

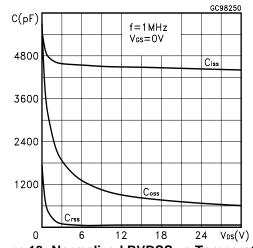


Figure 13: Normalized BVDSS vs Temperature

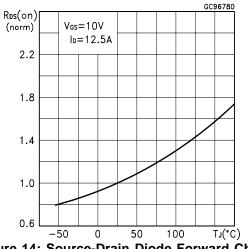
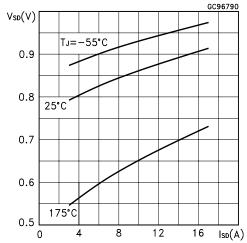
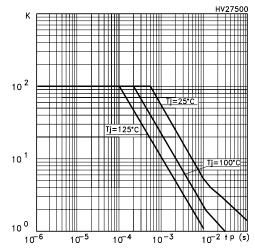




Figure 14: Source-Drain Diode Forward Characteristics

Table 11: Allowable lav vs. Time in Avalanche

The previous curve gives the single pulse safe operating area for unclamped inductive loads, under the following conditions:

<u>لرکم</u>

$$\begin{split} & \mathsf{P}_{D(AVE)} = & 0.5^* (1.3^* \mathsf{BV}_{DSS} \ ^* I_{AV} \) \\ & \mathsf{E}_{AS(AR)} = & \mathsf{P}_{D(AVE)} \ ^* t_{AV} \end{split}$$

Where:

 I_{AV} is the Allowable Current in Avalanche $P_{D(AVE)}$ is the Average Power Dissipation in Avalanche (Single Pulse) t_{AV} is the Time in Avalanche

Figure 15: Switching Times Test Circuit For Resistive Load

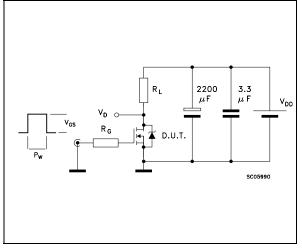
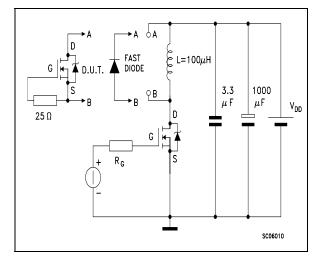
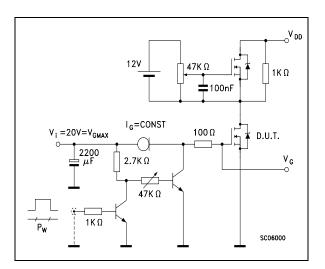
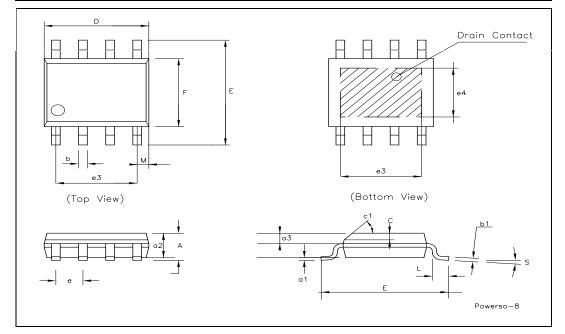




Figure 16: Test Circuit For Diode Recovery Times


Figure 17: Gate Charge Test Circuit

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1			45°	(typ.)	•	
D	4.8		5.0	0.188		0.196
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		3.81			0.150	
e4		2.79			0.110	
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S			8° (r	nax.)	•	•

Table 12: Revision History

Date	Revision	Description of Changes
14-Sep-2004	2	Preliminary Data.
23-May-2005	3	New values on table 5
29-Jun-2005	4	New R _G value on table 6
16-Nov-2005	5	Complete version

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America