

STSLVDSP27

8-bit low voltage serializer with 1.8V high speed dual differential line drivers and embedded DPLL

Features

- Sub-low voltage differential signaling:
 V_{OD} = 150mV with R_T = 100Ω, C_L = 10pF
- Clock range: 4 to 27 MHz in parallel mode, BYP = Gnd
- Operative frequency serial mode, BYP = V_{DD};
 DIN0 to DOUT, CLKIN to CLKOUT,
 f_{OPB} = 1 to 208 MHz max
- Embedded DPLL requires no external components
- Output voltage rise and fall times
 t_{rVOD} = t_{fVOD} = 610ps typ at f_{OPR} = 208MHz
- High speed propagation delay times t_{pLH}~t_{pHL}= 2.1ns typ at V_{DD} = 3.0V; V_{IO} = 1.8V
- Operating voltage range:
 V_{DD} (OPR) = 2.5V to 3.6V
 V_{IO} (OPR) = 1.65V to 1.95V
- High impedance on driver outputs I_{OZ} = 1µA max; EN = Gnd; V_O = Gnd or V_{IO}
- Low voltage CMOS input threshold (DIN0-DIN7, CLKIN, EN, BYP, DVO, DV1) V_{IL} = 0.3 x V_{DD} max; V_{IH} = 0.7 x V_{DD} min
- 3.6V tolerant on all inputs (DIN0-DIN7, CLKIN, EN, BYP, DV0, DV1)
- Lead-free Flip-Chip package
- SMIA CCP1 (MIPI CSI-1) compatible PHY

Description

The STSLVDSP27 is an 8:1 bit serializer with embedded DPLL. The dual differential line drivers implement the electrical characteristics of sub-low voltage differential signaling (subLVDS), bringing out the serialized data and related synchronous clock signal. The STSLVDSP27

serializer IC is provided with two power supply rails, V_{DD} and V_{IO} . The first supply is related to the logic levels of the input data (DIN0-DIN7, CLKIN) and Enables (EN, BYP, DV0, DV1) pins. VIO provides the power supply to the output current drivers in the device. VIO is always expected to be a nominal 1.8V. V_{DD} depends on the application, but will always be equal to or higher than V_{IO}. In order to minimize static current consumption, it is possible to shut down the transmitters when the interface is not used by setting a power-down (EN) pin. This operation reduces the maximum current consumption to 20µA, making this device ideal for portable applications like mobile phones and portable battery equipment. Simplified functionality can be reached using the BYP select pin, which disables the internal DPLL circuitry. When this pin is High the device can work with serialized signals from DIN0 input only. A synchronous CLKIN signal must be provided and it will be put-out using sub-LVDS level by CLKOUT port; the sub-LVDS data will be put-out by DOUT port at a maximum frequency of 208Mhz. This innovative device provides an optimized high-speed link solution from different CMOS sensor devices (parallel or serial outputs) to more advanced graphic controllers in mobile phone applications. All inputs and outputs are equipped with protection circuits against static discharge, providing ESD immunity from transient excess voltage. The STSLVDSP27 is designed for operation over the commercial temperature range -40°C to 85°C.

Order code

Part number Temperature range		Package	Packaging
STSLVDSP27BJR	-40 to 85 °C	Flip-Chip20 (Tape & Reel)	3000 parts per reel
June 2007		Rev. 1	1/23

Contents

1	Block diagram	3
2	Pin configuration	4
3	Maximum ratings	6
4	Electrical characteristics	7
5	Test circuits and timing diagram 1	3
6	Package mechanical data 1	9
7	Revision history	2

1 Block diagram

Figure 1. Simplified block diagram typical application

2 Pin configuration

Figure 2. Pin configuration and logic diagram (Top view - Bumps are on the other side)

Table 1.	Pin description
----------	-----------------

PIN N° Symbol		Name and function
B1	DIN0	CMOS parallel/serial data inputs
A1, A2, A3, A4, B4, C4, D4	DIN1-DIN7	CMOS parallel data inputs
D1, C1	DOUT+, DOUT-	SubLVDS driver data outputs
B3	CLKIN	CMOS parallel/serial clock input
D3, C3	CLKOUT+, CLKOUT-	SubLVDS driver clock outputs
C2, D2	DV0, DV1	CMOS data valid inputs
B2	GND	Ground
E1	V _{DD}	Main power supply voltage
E2	V _{IO}	SubLVDS bus output supply voltage
E3	EN	CMOS main chip enable input
E4	BYP	CMOS by-pass select input

Table 2. Truth table (bypass functionality: DIN0 => DOUT, CLKIN => CLKOUT; main chip Enable⁽¹⁾ functionality)

Controls				Input			Differential outputs			
EN	ВҮР	DV0	DV1	DIN0	DIN1-7	CLKIN	N DOUT+ DOUT- CLKOUT+ CLK			CLKOUT-
L	Х	Х	Х	Х	Х	Х	Z	Z	Z	Z
н	Н	Х	Х	L	Х	L	L	Н	L	Н
н	Н	Х	Х	L	Х	Н	L	Н	Н	L
Н	Н	Х	Х	Н	Х	L	Н	L	L	Н
Н	Н	Х	Х	Н	Х	Н	Н	L	Н	L

1. All differential outputs are put in high impedance vs gnd only; the internal DPLL circuit is put in shutdown mode to obtain minimum power consumption.

Note: n:0..1; Z = High Impedance, X = Don't care

Con	trols	Input					Differenti	al outputs		
EN	ВҮР	DV0 ⁽¹⁾	DV1 ⁽¹⁾	DIN0	DIN1-7	CLKIN	DOUT+	DOUT-	CLKOUT+	CLKOUT-
Н	L	L	Х	Х	Х	Х	Н	L	Н	L
н	L	Х	L	Х	Х	Х	Н	L	Н	L

 Table 3.
 Truth table (data valid functionality)

1. An AND gate is designed on Data Valid Inputs (DV0, DV1) to enable the standard functionality; only when the DV0=DV1="H" the device will work according to description in main page

Note: n:0..1; Z = High Impedance, X = Don't care

3 Maximum ratings

|--|

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	-0.5 to 4.6	V
V _{IO}	SubLVDS bus supply voltage	-0.5 to 4.6	V
VI	DC input voltage (DIN0-DIN7, BYP, CLKIN, EN, DV0, DV1)	-0.5 to 4.6	V
Vo	DC output voltage (DOUT+,DOUT-,CLKOUT+,CLKOUT-)	-0.5 to (V _{IO} + 0.5)	V
ESD	Electrostatic discharge protection IEC61000-4-2 Contact R = 330Ω C = 150pF (All Pins vs GND)	± 2	KV
T _{STG}	Storage temperature range	-65 to +150	°C

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{DD}	Main supply voltage ^{(1) (2)}	2.5	3.0	3.6	V
V _{IO}	SubLVDS bus supply voltage	1.65	1.80	1.95	V
V _{DD_NOISE}	Peak-to-peak permitted main supply voltage noise ⁽²⁾			100	mV
R _T	Termination resistance (per pair differential output line)	80	100	120	Ω
CL	Termination capacitance (per line vs GND Pin)		10		pF
T _A	Operating ambient temperature range	-40		85	°C
TJ	Operating junction temperature range	-40		125	°C
t _R , t _F	Rise and fall time (DIN0-DIN7, BYP, CLKIN, EN, DV0, DV1; 10% to 90%; 90% to 10%)			10	ns

Table 5. Recommended operating conditions

1. V_{DD} Main supply voltage in serial mode (BYP = V_{DD}) can be reduced down to 1.65V for typical 1.8V input signals

2. V_{DD} Main supply voltage in parallel mode (BYP = GND) can reach 2.5V when $V_{DD_{-}NOISE}$ = 100mV and V_{DD} = 2.55V

4 Electrical characteristics

Table 6.	Electrical characteristics (over recommended operating conditions unless otherwise
	noted. All typical values are at $T_A = 25^{\circ}$ C, and $V_{DD} = 3.0$ V, $V_{IO} = 1.8$ V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CM}	Common mode output voltage (<i>Figure 3.</i>)	$R_{T} = 100\Omega \pm 1\%$	V _{IO} /2- 0.1	V _{IO} /2	V _{IO} /2+ 0.1	v
V _{CM(SS)}	Common mode output voltage change between logic state ("L" and "H") (<i>Figure 5.</i>)	R _T = 100Ω ± 1%	-20		20	mV
V _{CM(PP)}	Common mode peak-to- peak output voltage change between logic state ("L" and "H") (<i>Figure 5</i> .)	R _T = 100Ω ± 1%	-40		40	mV
IV _{OD} I	Differential output voltage (<i>Figure 3</i> .)	$R_{T} = 100\Omega \pm 1\%$	100	150	200	mV
ΔV _{OD}	Differential output voltage change between logic state ("L" and "H")	$R_{T} = 100\Omega \pm 1\%$	-20		20	mV
DC _{VOD}	Clock duty cycle@208MHz differential output voltage CLKOUT+, CLKOUT-, DOUT+, DOUT-	$R_T = 100\Omega \pm 1\%$ BYP=V _{DD} ; EN=V _{DD} f _{CLKIN} = 208MHz, f _{DIN0} = 208MHz	45	50	55	%
I _{IO}	Driver output current CLKOUT+, CLKOUT-, DOUT+, DOUT-	$R_{T} = 100\Omega \pm 1\%$	1	1.5	2	mA
R _O	Driver output impedance (Single ended) CLKOUT+, CLKOUT-, DOUT+, DOUT- (<i>Figure 8.</i>)	$V_{CM} = V_{IO}/2 + 100mV$ and $V_{IO}/2 - 100mV$	40	100	140	Ω
D _{RO}	Driver output impedance mismatch between R _{ODOUT} , R _{OCLKOUT}				10	%

Table 6.	Electrical characteristics (over recommended operating conditions unless otherwise
	noted. All typical values are at $T_A = 25^{\circ}C$, and $V_{DD} = 3.0V$, $V_{IO} = 1.8V$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		$EN=V_{DD}$, $BYP=V_{DD}$ or GND , DIN0-DIN7= V_{DD} or GND No load ($R_T = \infty$)			15	
I _S Suppl		$EN=V_{DD}$, BYP= V_{DD} or GND, DIN0-DIN7= V_{DD} or GND $R_T = 100\Omega \pm 1\%$			15	
	Supply current (I _{IO} + I _{DD})	$ \begin{array}{l} EN=V_{DD, BYP=V_{DD}(DPLL="OFF")} \\ R_{T} = 100\Omega \pm 1\%, \ C_{L} = 10pF \ per \ line, \\ DV0=DV1=V_{DD,} \\ f_{DIN0 \ and \ CLKIN} = 208 \ MHz \\ (V_{IL} \ and \ V_{IH} \ levels) \end{array} $			12	Unit mA μA V μA μA μA
		$ EN=V_{DD}, BYP=Gnd(DPLL="ON") R_T \\ = 100\Omega \pm 1\%, C_L = 10pF per line, \\ DV0 = DV1=V_{DD}, f_{CLKOUT} = 160MHz \\ f_{DIN0-DIN7,CLKIN} = 22 MHz \\ (V_{IL} and V_{IH} levels) $			20	
I _{SOFF}	Shutdown supply current (I _{IO} + I _{DD})	$EN = GND, V_{DD} = 2.7V \text{ to } 3.6V$ $V_{IO} = 1.65V \text{ to } 1.95V$ $DIN0\text{-}DIN7, CLKIN, BYP = GND \text{ or }$ V_{DD}			20	μΑ
V _{IH}	High level input voltage (DIN0-DIN7, BYP, CLKIN, EN, DV0, DV1)	V _{DD} = 2.7V to 3.6V, V _{IO} = 1.65V to 1.95V	0.7xV _{DD}		3.6	v
V _{IL}	Low level input voltage (DIN0-DIN7, BYP, CLKIN, EN, DV0, DV1)	V _{DD} = 2.7V to 3.6V, V _{IO} = 1.65V to 1.95V	0		0.3xV _{DD}	V
IIH	High level input current (DIN0-DIN7, BYP, CLKIN, EN, DV0, DV1)	$V_{IH} = 0.7 \times V_{DD}$			± 1	μA
IIL	Low level input current (DIN0-DIN7, BYP, CLKIN, EN, DV0, DV1)	$V_{IL} = 0.3 \times V_{DD}$			± 1	μA
I _{OZ}	High impedance output current CLKOUT+,CLKOUT-, DOUT+, DOUT-	$V_{O} = 0 \text{ or } V_{CC}$			± 1	μA

Table 7.Serial switching characteristics (DPLL = "OFF", $R_T = 100\Omega \pm 1\%$, $C_L = 10$ pF, over
recommended operating conditions unless otherwise noted. Typical values are referred to
 $T_A = 25^{\circ}$ C and $V_{DD} = 3.0$ V, $V_{IO} = 1.8$ V)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{rVOD}	Rise time differential output voltage (20% to 80%) (<i>Figure 4</i> .)	t _{rDIN} = 4.9ns (10% to 90%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns	400	610	1000	ps
t _{fVOD}	Fall time differential output voltage (80% to 20%) (<i>Figure 4.</i>)	t _{rDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns	$t_{rDIN} = 4.2ns (90\% \text{ to } 10\%);$ $f_{DIN} = 10MHz, PulseWidth_{DIN} = 50ns$ 400			ps
t _{PLHD}	Differential propagation delay time (DIN to DOUT) (Low to High) (<i>Note: 1</i>) (<i>Figure 4.</i>)	t _{rDIN} = 4.9ns (10% to 90%); t _{fDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns		2.1	2.8	ns
t _{PHLD}	Differential propagation delay time (DIN to DOUT) (Low to High) (<i>Note: 1</i>) (<i>Figure 4.</i>)	t _{fDIN} = 4.2ns (10% to 90%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns	1.0	2.1	2.8	ns
t _{EN}	Enable delay time (EN to DOUT: t _{PLZ} , t _{PHZ}) (<i>Figure 7</i> .)	t _{rEN} = 2.0ns (10% to 90%); t _{fEN} = 2.0ns (90% to 10%)			20	μs
t _{DIS}	Disable delay time (EN to DOUT: t _{PLZ} , t _{PHZ}) (<i>Figure 7</i> .)	t _{rEN} = 2.0ns (10% to 90%); t _{fEN} = 2.0ns (90% to 10%)			1000	ns
fopr	Operating frequency serial mode without DPLL	$\begin{array}{l} BYP = V_{DD} \\ t_{rDIN0,CLKIN} = 1 ns \ (10\% \ to \ 90\%); \\ t_{fDIN0,CLKIN} = 1 ns \ (90\% \ to \ 10\%) \\ f_{DIN0,CLKIN} = 208 MHz \\ PulseWidth_{DIN0,CLKIN} = 2.4 ns \end{array}$	1		208	MHz
t _{SKEW1}	Differential skew between signals on each differential pair (t _{PLHD} - t _{PHLD})	t _{rDIN} = 4.9ns (10% to 90%); t _{fDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns			150	ps
t _{SKEW2}	Channel to channel skew between any two signals on each different differential pair (<i>Figure 6.</i>)	t _{rDIN} = 4.9ns (10% to 90%); t _{fDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns			200	ps

Note: 1 50% V_{DIN} to 50% V_{DOUT}

57

Table 8.Parallel switching characteristics (DPLL = "ON", $R_T = 100\Omega \pm 1\%$, $C_L = 10$ pF, over
recommended operating conditions unless otherwise noted. Typical values are referred to
 $T_A = 25^{\circ}$ C and $V_{DD} = 3.0$ V, $V_{IO} = 1.8$ V)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{rVOD}	Rise time differential output voltage (20% to 80%) (<i>Figure 4</i> .)	t _{rDIN} = 4.9ns (10% to 90%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns	400	610	1000	ps
t _{fVOD}	Fall time differential output voltage (80% to 20%) (<i>Figure 4</i> .)	t _{rDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns	400	610	1000	ps
t _{PLHDIN0}	Differential propagation delay time DIN0 (CLKIN to DOUT) (Low to High) (<i>Note 2</i>) (<i>Figure 10</i> .)	$ t_{rDIN0-DIN7,CLKIN} = 4.9ns (10\% to 90\%); \\ t_{fDIN0-DIN7,CLKIN} = 4.2ns (90\% to 10\%); \\ f_{DIN0-DIN7,CLKIN} = 22MHz, \\ PulseWidth_{DIN} = 50ns $	rDIN0-DIN7,CLKIN=4.9ns (10% to 90%); fDIN0-DIN7,CLKIN= 4.2ns (90% to 10%); DIN0-DIN7,CLKIN=22MHz, PulseWidth _{DIN} = 50ns			ns
t _{PHLDIN0}	Differential propagation delay time DIN0 (CLKIN to DOUT) (High to Low) (<i>Note 2</i>) (<i>Figure 10</i> .)	rDIN0-DIN7,CLKIN=4.2ns (90% to 10%); fDIN0-DIN7,CLKIN= 4.2ns (90% to 10%); f _{DIN0-DIN7,CLKIN} =22MHz, PulseWidth _{DIN} = 50ns		8		ns
t _{PLHDIN7}	Differential propagation delay time DIN7 (CLKIN to DOUT) (Low to High) (<i>Note 2</i>) (<i>Figure 10</i> .)	t _{rDIN0-DIN7,CLKIN} =4.9ns (10% to 90%); t _{fDIN0-DIN7,CLKIN} = 4.2ns (90% to 10%); f _{DIN0-DIN7,CLKIN} =22MHz, PulseWidth _{DIN} = 50ns			ns	
t _{PHLDIN7}	Differential propagation delay time DIN7 (CLKIN to DOUT) (High to Low) (<i>Note 2</i>) (<i>Figure 10</i> .)	$ \begin{array}{l} t_{rDIN0-DIN7,CLKIN} = 4.2ns (90\% \ to \ 10\%); \\ t_{fDIN0-DIN7,CLKIN} = 4.2ns (90\% \ to \ 10\%); \\ f_{DIN0-DIN7,CLKIN} = 10MHz, \\ PulseWidth_{DIN} = 50ns \end{array} $		53		ns
tocd	Differential propagation delay time (CLKIN to DOUT first positive edge) (Low to High) (<i>Figure 10</i> .)	$ \begin{array}{l} t_{rDIN0-DIN7,CLKIN} \!$		11		ns
t _{SU_CLK}	Set-up time (DIN0-DIN7, DV to CLKIN) (LH or HL to positive CLKIN edge) (<i>Figure 11</i> .)		12			ns
^t h_clk	Hold time (CLKIN to DINO- DIN7, DV) (positive CLKIN edge to LH or HL DIN,DV transition) (<i>Figure 11</i> .)	$ \begin{array}{l} t_{rDIN0\text{-}DIN7,CLKIN} = 4.9 \text{ns} (10\% \text{ to } 90\%); \\ t_{fDIN0\text{-}DIN7,CLKIN} = 4.2 \text{ns} (90\% \text{ to } 10\%); \\ f_{DIN0\text{-}DIN7,CLKIN} = 4 \text{ to } 22 \text{MHz}, \\ \text{PulseWidth}_{DIN} = 50 \text{ns} \end{array} $	10			ns
t _{EN}	Enable delay time (EN to DOUT: t _{PLZ} , t _{PHZ}) (<i>Figure 7</i> .)	t _{rEN} = 2.0ns (10% to 90%); t _{fEN} = 2.0ns (90% to 10%)			20	μs
t _{DIS}	Disable delay time (EN to DOUT: t _{PLZ} , t _{PHZ}) (<i>Figure 7</i> .)	t _{rEN} = 2.0ns (10% to 90%); t _{fEN} = 2.0ns (90% to 10%)			1000	ns
f _{OPR}	Operating frequency parallel mode with DPLL	$\begin{split} & BYP = GND, \ensuremath{f_{DIN0}}\ensuremath{DIN0}\ensuremath{CLKIN}\xspace = 4 \ \text{to} \\ & 27MHz \ PulseWidth\xspace DIN0\ensuremath{CLKIN}\xspace = 50\% \\ & t_{rDIN0\ensuremath{CLKIN}\xspace = 3ns} \ (10\% \ \text{to} \ 90\%); \\ & t_{fDIN0\ensuremath{CLKIN}\xspace = 3ns} \ (90\% \ \text{to} \ 10\%) \end{split}$	4		27	MHz

Table 8.Parallel switching characteristics (DPLL = "ON", $R_T = 100\Omega \pm 1\%$, $C_L = 10$ pF, over
recommended operating conditions unless otherwise noted. Typical values are referred to
 $T_A = 25^{\circ}$ C and $V_{DD} = 3.0$ V, $V_{IO} = 1.8$ V)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
fclkout	CLKOUT frequency parallel mode with DPLL	$\begin{array}{l} \text{BYP} = \text{GND, } f_{\text{DIN0-DIN7,CLKIN}} = 4 \text{ to} \\ 27\text{MHz} \text{ PulseWidth}_{\text{DIN0,CLKIN}} = 50\% \\ t_{\text{rDIN0,CLKIN}} = 3\text{ns} \ (10\% \text{ to} \ 90\%); \\ t_{\text{fDIN0,CLKIN}} = 3\text{ns} \ (90\% \text{ to} \ 10\%) \end{array} $		216	MHz	
t _{SKEW1}	Differential skew between signals on each differential pair (t _{PLHD} - t _{PHLD})	t _{rDIN} = 4.9ns (10% to 90%); t _{fDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns			150	ps
t _{SKEW2}	Channel to channel skew between any two signals on each different differential pair (<i>Figure 6</i> .)	t _{rDIN} = 4.9ns (10% to 90%); t _{fDIN} = 4.2ns (90% to 10%); f _{DIN} = 10MHz, PulseWidth _{DIN} = 50ns			200	ps
t _{DV}	Data valid before CLKOUT time (<i>Figure 12.</i>)	$\begin{split} & \text{BYP} = \text{GND}, \ f_{\text{DIN0-DIN7,CLKIN}} = 4 \ \text{to} \\ & \text{27MHz} \ \text{PulseWidth}_{\text{DIN0,CLKIN}} = 50\% \\ & \text{t}_{\text{rDIN0,CLKIN}} = 3\text{ns} \ (10\% \ \text{to} \ 90\%); \\ & \text{t}_{\text{fDIN0,CLKIN}} = 3\text{ns} \ (90\% \ \text{to} \ 10\%) \end{split}$	1			ns
t _{DH}	Data valid hold after CLKOUT time (<i>Figure 12</i> .)	$\begin{split} & \text{BYP} = \text{GND}, \ f_{\text{DIN0-DIN7,CLKIN}} = 4 \ \text{to} \\ & \text{27MHz} \ \text{PulseWidth}_{\text{DIN0,CLKIN}} = 50\% \\ & \text{t}_{\text{rDIN0,CLKIN}} = 3\text{ns} \ (10\% \ \text{to} \ 90\%); \\ & \text{t}_{\text{fDIN0,CLKIN}} = 3\text{ns} \ (90\% \ \text{to} \ 10\%) \end{split}$	2			ns
t _{PLLS}	DPLL settling time (EN to CLKOUT) 50% LH EN to 50% CLKOUT (first negative edge) (<i>Figure 9.</i>)	$t_{rEN} = 2.0ns (10\% to 90\%)$ $t_{fEN} = 2.0ns (90\% to 10\%)$ DV0=DV1=V _{DD} ; BYP= Gnd; DIN1- DIN7=V _{DD} or Gnd; $f_{CLKIN} = 4$ to 27MHz		70		μs
Joyoy	RMS cycle-to-cycle jitter between CLKIN and CLKOUT signals	$ t_{rCLKIN} = 4.9ns (10\% to 90\%); \\ t_{fCLKIN} = 4.2ns (90\% to 10\%); \\ f_{CLKIN} = 4 to 27MHz, \\ PulseWidth_{CLKIN} = 50\% $		100		ns
J _{CY-CY}	Peak cycle-to-cycle jitter between CLKIN and CLKOUT signals			600		μa

Note: 1 50% V_{DIN} to 50% V_{DOUT}

- 2 50% CLKIN (positive edge) to 50% V_{DOUT} (DIN0 will be referred to CLKOUT first positive edge; DIN7 will be referred to CLKOUT eighth positive edge)
- 3 Power down can be guaranteed when V_{IO} =1.8V, EN = GND, if low impedance < 1M Ω vs GND is guaranteed on V_{DD} pin

Table 9. Capacitive characteristics

		т	est condition				
Symbol Parameter		V _{DD}		T _A = 25°C		25°C	
		(V)		Min.	Тур.	Max.	
C _{IN}	Input capacitance (DIN0-DIN7, CLKIN, EN, BYP, DV0, DV1)	2.7 to 3.6	V_{IO} = 1.65V to 1.95V, V_{I} = GND or V_{DD}		4		pF

5 Test circuits and timing diagram

Note: $R_T = 100 \ \Omega \pm 1\%$

57

Note: $R_T = 100 \ \Omega \pm 1\%$; $C_L = 10pF$; $t_{rDIN} = 4.9ns$; $t_{fDIN} = 4.2ns$; $f_{DIN} = 10MHz$; PulseWidth_{DIN} = 50ns.

Figure 5. Test circuit and definitions for the driver common mode output voltage

Note: $R_T = 100 \ \Omega \pm 1\%$; $C_L = 10 pF$; $t_{rDIN} = 4.9 ns$; $t_{fDIN} = 4.2 ns$; $f_{DIN} = 10 MHz$; PulseWidth_{DIN} = 50 ns.

Note: $R_T = 100 \ \Omega \pm 1\%$; $C_L = 10pF$; $t_{rDIN} = 4.9ns$; $t_{fDIN} = 4.2ns$; $f_{DIN} = 10MHz$; PulseWidth_{DIN} = 50ns

Figure 7. t_{EN} (t_{PZL}, t_{PZH}); t_{DIS} (t_{PHZ}, t_{PLZ})

Note: $R_T = 100 \ \Omega \pm 1\%; C_L = 10pF$ $\Delta V_{X+} = V_{D+(VCM=1.0V)} - V_{D+(VCM=0.8V)}; \ \Delta V_{X-} = V_{D-(VCM=1.0V)} - V_{D-(VCM=0.8V)};$ $R_{0+} = (R_T/2 \ x \ \Delta V_{X+})/(200mV - \Delta V_{X+}); R_{0-} = (R_T/2 \ x \ \Delta V_{X-})/(200mV - \Delta V_{X-})$

Note: During t_{PLLS} test DV0=DV1=V_{DD}

Figure 10. General timing diagram (parallel mode)

Figure 11. t_{CLKIN}

Note: t_{CLKOUT}

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Fli	p-Chi	p20	Mechar	nical	Data
		PEU	MCCHAI	noui	Pata

Dim	mm.			mils.		
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
A	0.81	0.89	1.00	31.9	35.0	39.4
A1	0.15	0.24	0.35	5.9	9.4	13.8
A2		0.65			25.6	
b	0.25	0.30	0.35	9.8	11.8	13.8
D	2.41	2.46	2.51	94.9	96.9	98.8
D1		2.00			78.7	
E	1.93	1.98	2.03	76.0	78.0	79.9
E1		1.5			59.1	
е		0.50			19.7	
SE		0.25			9.8	

Tape & Reel Flip-Chip20 Mechanical Data	
---	--

				-		
Dim	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A			180			7.086
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			14.4			0.567
Ao	2.13	2.23	2.33	0.084	0.088	0.092
Во	2.62	2.72	2.82	0.103	0.107	0.111
Ко	1.05	1.15	1.25	0.041	0.045	0.049
Po	3.9		4.1	0.153		0.161
Р	3.9		4.1	0.153		0.161

7 Revision history

Table 10. Revision history

Date	Revision	Changes
01-Jun-2007	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

