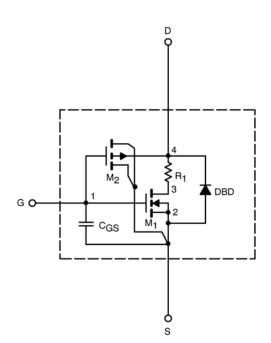


N-Channel 20-V (D-S) 175°C MOSFET

CHARACTERISTICS

- N- and P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

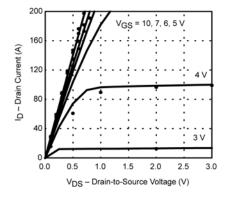
SUBCIRCUIT MODEL SCHEMATIC

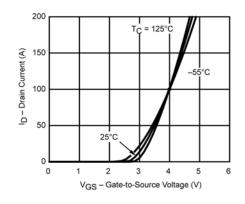
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

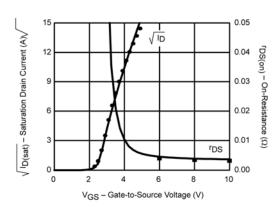
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

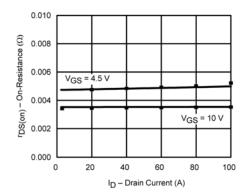
SPICE Device Model SUD50N02-04P Vishay Siliconix

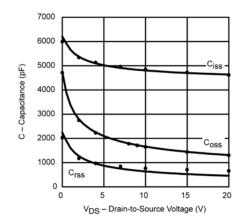
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	1.7		V
On-State Drain Current ^a	I _{D(on)}	V_{DS} = 5 V, V_{GS} = 10 V	1190		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I_D = 20 A	0.0035	0.0035	Ω
		V_{GS} = 10 V, I _D = 20 A, T _J = 125°C	0.0048		
		V_{GS} = 4.5 V, I _D = 20 A	0.0049	0.0048	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 20 A	68		S
Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 50 A, $V_{\rm GS}$ = 0 V	0.91	0.90	V
Dynamic ^b					
Input Capacitance	C _{iss}	V_{GS} = 0 V, V_{DS} = 10 V, f = 1 MHz	4807	5000	Pf
Output Capacitance	C _{oss}		1664	1650	
Reverse Transfer Capacitance	Crss		641	770	
Total Gate Charge ^c	Qg	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 50 A	40	40	NC
Gate-Source Charge ^c	Q _{gs}		14	14	
Gate-Drain Charge ^c	Q _{gd}		13	13	
Turn-On Delay Time ^c	t _{d(on)}	V_{DD} = 10 V, R_L = 0.20 Ω I_D \cong 50 A, V_{GEN} = 10 V, R_G = 2.5 Ω	31	20	Ns
Rise Time ^c	tr		18	20	
Turn-Off Delay Time ^c	$t_{d(off)}$		34	50	
Fall Time ^c	t _f		31	15	

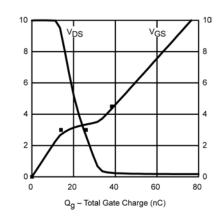

Notes


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. c. Independent of operating temperature.




SPICE Device Model SUD50N02-04P Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.