
Rev. 4210D–CAN–05/06

CAN
Microcontrollers

T89C51CC01
CAN Bootloader
Features
• Protocol

– CAN Used as a Physical Layer
– 7 ISP CAN Identifiers
– Relocatable ISP CAN Identifiers
– Autobaud

• In-System Programming
– Read/Write Flash and EEPROM Memories
– Read Device ID
– Full-chip Erase
– Read/Write Configuration Bytes
– Security Setting from ISP Command
– Remote Application Start Command

• In-Application Programming/Self-Programming
– Read/Write Flash and EEPROM Memories
– Read Device ID
– Block Erase
– Read/Write Configuration Bytes
– Bootloader Start

Description
This document describes the CAN bootloader functionalities as well as the CAN proto-
col to efficiently perform operations on the on-chip Flash (EEPROM) memories.
Additional information on the T89C51CC01 product can be found in the T89C51CC01
datasheet and the T89C51CC01 Errata sheet available on the Atmel web site,
www.atmel.com.

The bootloader software package (source code and binary) currently used for produc-
tion is available from the Atmel web site.

Bootloader Revision Purpose of Modifications Date

Revisions 1.0.4 and higher First release 02/12/2001
1

Functional
Description

The T89C51CC01 Bootloader facilitates In-System Programming and In-Application
Programming.

In-System Programming
Capability

In-System Programming allows the user to program or reprogram a microcontroller on-
chip Flash memory without removing it from the system and without the need of a pre-
programmed application.

The CAN bootloader can manage a communication with a host through the CAN net-
work. It can also access and perform requested operations on the on-chip Flash
memory.

In-Application
Programming or Self-
Programming Capability

In-Application Programming (IAP) allows the reprogramming of a microcontroller on-
chip Flash memory without removing it from the system and while the embedded appli-
cation is running.

The CAN bootloader contains some Application Programming Interface routines named
API routines allowing IAP by using the user’s firmware.

Block Diagram This section describes the different parts of the bootloader. Figure 1 shows the on-chip
bootloader and IAP processes.

Figure 1. Bootloader Process Description

ISP Communication
Management

User

Application
CAN Protocol

Communication

Management

Flash
Memory

External Host via the

Flash Memory

IAP

Management
User Call

On-chip
2 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
ISP Communication
Management

The purpose of this process is to manage the communication and its protocol between
the on-chip bootloader and an external device (host). The on-chip bootloader imple-
ments a CAN protocol (see Section “Protocol”, page 10). This process translates serial
communication frames (CAN) into Flash memory accesses (read, write, erase...).

User Call Management Several Application Program Interface (API) calls are available to the application pro-
gram to selectively erase and program Flash pages. All calls are made through a
common interface (API calls) included in the bootloader. The purpose of this process is
to translate the application request into internal Flash Memory operations.

Flash Memory Management This process manages low level accesses to the Flash memory (performs read and
write accesses).

Bootloader Configuration

Configuration and
Manufacturer Information

The following table lists Configuration and Manufacturer byte information used by the
bootloader. This information can be accessed through a set of API or ISP commands.

Mnemonic Description Default Value

BSB Boot Status Byte FFh

SBV Software Boot Vector FCh

SSB Software Security Byte FFh

EB Extra Byte FFh

CANBT1 CAN Bit Timing 1 FFh

CANBT2 CAN Bit Timing 2 FFh

CANBT3 CAN Bit Timing 3 FFh

NNB Node Number Byte FFh

CRIS CAN Relocatable Identifier Segment 00h

Manufacturer 58h

ID1: Family Code D7h

ID2: Product Name BBh

ID3: Product Revision FFh
3
4210D–CAN–05/06

Mapping and Default Value of
Hardware Security Byte

The 4 Most Significant Byte (MSB) of the Hardware Byte can be read/written by soft-
ware (this area is called Fuse bits). The 4 (Least Significant Byte) LSB can only be read
by software and written by hardware in parallel mode (with parallel programmer
devices).

Note: 1. U: Unprogram = 1
P: Program = 0

Security The bootloader has Software Security Byte (SSB) to protect itself from user access or
ISP access.

The Software Security Byte (SSB) protects from ISP accesses. The command ‘Program
Software Security Bit’ can only write a higher priority level. There are three levels of
security:

• Level 0: NO_SECURITY (FFh)
This is the default level.
From level 0, one can write level 1 or level 2.

• Level 1: WRITE_SECURITY (FEh)
In this level it is impossible to write in the Flash memory, BSB and SBV.
The Bootloader returns ID_ERROR message.
From level 1, one can write only level 2.

• Level 2: RD_WR_SECURITY (FCh)
Level 2 forbids all read and write accesses to/from the Flash memory.
The Bootloader returns ID_ERROR message.

Only a full chip erase command can reset the software security bits.

Bit Position Mnemonic Default Value Description

7 X2B U To start in x1 mode

6 BLJB P To map the boot area in code area between F800h-FFFFh

5 Reserved U

4 Reserved U

3 Reserved U

2 LB2 P

To lock the chip (see datasheet)1 LB1 U

0 LB0 U

Level 0 Level 1 Level 2

Flash/EEPROM Any access allowed Read only access allowed All access not allowed

Fuse bit Any access allowed Read only access allowed All access not allowed

BSB & SBV & EB Any access allowed Read only access allowed All access not allowed

SSB Any access allowed Write level2 allowed Read only access allowed

Manufacturer info Read only access allowed Read only access allowed All access not allowed

Bootloader info Read only access allowed Read only access allowed All access not allowed

Erase block Allowed Not allowed Not allowed

Full chip erase Allowed Allowed Allowed

Blank check Allowed Allowed Allowed
4 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Software Boot Vector The Software Boot Vector (SBV) forces the execution of a user bootloader starting at
address [SBV]00h in the application area (FM0).

The way to start this user bootloader is described in Section “Boot Process”.

Figure 2. Software Boot Vector

FLIP Software Program FLIP is a PC software program running under Windows® 9x/2000/XP Windows NT® and
LINUX® that supports all Atmel Flash microcontroller and CAN protocol communication
media.

Several CAN dongles are supported by FLIP (for Windows).

This software program is available free of charge from the Atmel web site.

CAN Bootloader

Application
User Bootloader

[SBV]00h
FM1

FM0
5
4210D–CAN–05/06

In-System
Programming

ISP allows the user to program or reprogram a microcontroller’s on-chip Flash memory
through the CAN network without removing it from the system and without the need of a
pre-programmed application.

This section describes how to start the CAN bootloader and the higher level protocols
over the CAN.

Boot Process The bootloader can be activated in two ways:

• Hardware condition

• Regular boot process

Hardware Condition The Hardware conditions (EA = 1, PSEN = 0) during the RESET falling edge force the
on-chip bootloader execution. In this way the bootloader can be carried out whatever the
user Flash memory content.

As PSEN is an output port in normal operating mode (running user application or boot-
loader code) after reset, it is recommended to release PSEN after falling edge of reset
signal. The hardware conditions are sampled at reset signal falling edge, thus they can
be released at any time when reset input is low.
6 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Figure 3. Regular Boot Process

RESE T

B LJB = 1

Hardware
Condit ion

S tart Bootloader

FCON = 00h

S BV < 7Fh

S tart User BootloaderS tart Applica tion

Yes

No

Yes

Yes

No

No

H
ar

dw
ar

e
B

oo
t P

ro
ce

ss
S

of
tw

ar
e

B
oo

t P
ro

ce
ss

b it ENBOO T in AUXR1 Regis ter is
in itia lized with B LJB inverted

ENBOO T = 1
PC = F800h
FCO N = F0h

ENBOO T = 0
PC = 0000h

E NBOOT = 1
P C = F800h
FCON = 00hYes

No
7
4210D–CAN–05/06

Physical Layer The CAN is used to transmit information has the following configuration:

• Standard Frame CAN format 2.0A (identifier 11-bit)

• Frame: Data Frame

• Baud rate: autobaud is performed by the bootloader

CAN Controller Initialization Two ways are possible to initialize the CAN controller:

• Use the software autobaud

• Use the user configuration stored in the CANBT1, CANBT2 and CANBT3

The selection between these two solutions is made with EB:

• EB = FFh: the autobaud is performed.

• EB not equal to FFh: the CANBT1:2:3 are used.

CANBT1:3 and EB can be modified by user through a set of API or with ISP commands.

The figure below describes the CAN controller flow.

Figure 4. CAN Controller Initialization

CAN Controller
Initialization

EB = FFh

Read CANBT1 Value
Read CANBT2 Value
Read CANBT3 Value

CANBTx = FFh
x=(1,3)

CAN Error

CAN Macro
Initialized

Yes

No

No

No

Yes

Yes

Configure the CAN
Controller

Autobaud OK

Set the CAN Controller in
Autobaud Mode

Yes

No
8 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
CAN Autobaud The following table shows the auto baud performance for a point-to-point connection in
X1 mode.

Note: ‘–’ indicates an impossible configuration.

CAN Autobaud Limitation The CAN Autobaud implemented in the bootloader is efficient only in point-to-point
connection.

Because in a point-to-point connection, the transmit CAN message is repeated until a
hardware acknowledge is done by the receiver.

The bootloader can acknowledge an incoming CAN frame only if a configuration is
found.

This functionality is not guaranteed on a network with several CAN nodes.

8 MHz
11.059
MHz 12 MHz 16 MHz 20 MHz

22.1184
MHz 24 MHz 25 MHz 32 MHz 40 MHz

20K

100K

125K – –

250K –

500K

1M – – –
9
4210D–CAN–05/06

Protocol

Generic CAN Frame
Description

• Identifier: Identifies the frame (or message). Only the standard mode (11-bit) is
used.

• Control: Contains the DLC information (number of data in Data field) 4-bit.

• Data: Data field consists of zero to eight bytes. The interpretation within the frame
depends on the Identifier field.

The CAN Protocol manages directly using hardware a checksum and an acknowledge.

Note: To describe the ISP CAN Protocol, we use Symbolic name for Identifier, but default val-
ues are given.

Command Description This protocol allows to:

• Initiate the communication

• Program the Flash or EEPROM Data

• Read the Flash or EEPROM Data

• Program Configuration Information

• Read Configuration and Manufacturer Information

• Erase the Flash

• Start the application

Overview of the protocol is detailed in Appendix-A.

Several CAN message identifiers are defined to manage this protocol.

It is possible to allocate a new value for CAN ISP identifiers by writing the byte CRIS
with the base value for the group of identifier.

The maximum value for CRIS is 7Fh and the default CRIS value is 00h.

Identifier Control Data

11-bit 1 byte 8 bytes max

Identifier Command Effect Value

ID_SELECT_NODE Open/Close a communication with a node [CRIS]0h

ID_PROG_START Start a Flash/EEPROM programming [CRIS]1h

ID_PROG_DATA Data for Flash/EEPROM programming [CRIS]2h

ID_DISPLAY_DATA Display data [CRIS]3h

ID_WRITE_COMMAND Write in XAF, or Hardware Byte [CRIS]4h

ID_READ_COMMAND Read from XAF or Hardware Byte and special data [CRIS]5h

ID_ERROR Error message from bootloader only [CRIS]6h
10 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Figure 5. Identifier Remapping

Communication Initialization The communication with a device (CAN node) must be opened prior to initiate any ISP
communication.

To open communication with the device, the Host sends a “connecting” CAN message
(ID_SELECT_NODE) with the node number (NNB) passed in parameter.

If the node number passed is equal to FFh then the CAN bootloader accepts the com-
munication (Figure 6).

Otherwise the node number passed in parameter must be equal to the local Node Num-
ber (Figure 7).

Figure 6. First Connection

Figure 7. On Network Connection

CAN Identifiers

000h

7FFh

ID_ERROR
ID_READ_COMMAND
ID_WRITE_COMMAND
ID_DISPLAY_DATA
ID_PROG_DATA
ID_PROG_START
ID_SELECT_NODE

CAN ISP Identifiers

Group of 7CAN Messages
Used for Managing CAN ISP

[CRIS]0h

Host

Interface Board between PC
and CAN Network

Node 1

NNB = FFh (Default Value)

Host

Interface Board Between PC
and CAN Network

Node 0

Node 3

Node 1

Node n

NNB = 00h

NNB = 01h

NNB = 03h NNB = n
11
4210D–CAN–05/06

Before opening a new communication with another device, the current device communi-
cation must be closed with its connecting CAN message (ID_SELECT_NODE).

Request From Host

Note: num_node is the NNB (Node Number Byte) to which the Host wants to talk to.

Answers From Bootloader

Note: Data[0] contains the bootloader version.

If the communication is closed then all the others messages won’t be managed by
bootloader.

ID_SELECT_NODE Flow Description

Example

Identifier Length Data[0]

ID_SELECT_NODE 1 num_node

Identifier Length Data[0] Data[1] Comment

ID_SELECT_NODE 2 boot_version
00h Communication close

01h Communication open

Host Bootloader

ID_SELECT_NODE Message

Wait Select Node

Send Bootloader Version

Read Bootloader Version

Send Select Node Message

Time-out 10 ms

Wait Select Node

OR

COMMAND ABORTED

COMMAND FINISHED COMMAND FINISHED

with Node Number in Parameter

ID_SELECT_NODE Message

node select = FFh

node select =
local node number

state com = com open

State com = com open

State com = com closed

and State of Communication

HOST Id_select_node

BOOTLOADER Id_select_node

identifier length data

01 FF

02 01 01
12 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Programming the Flash or
EEPROM Data

The ID_PROG_START flow described below shows how to program data in the Flash
memory or in the EEPROM data memory. This operation can be executed only with a
device previously opened in communication.

1. The first step is to indicate which memory area (Flash or EEPROM data) is
selected and the range address to program.

2. The second step is to transmit the data.

The bootloader programs on a page of 128 bytes basis when it is possible.

The host must take care of the following:

• The data to program transmitted within a CAN frame are in the same page.

• To transmit 8 data bytes in CAN message when it is possible

3. To start the programming operation, the Host sends a “start programming” CAN
message (ID_PROG_START) with the area memory selected in data[0], the start
address and the end address passed in parameter.

Requests from Host

Notes: 1. Data[0] chooses the area to program:
- 00h: Flash
- 01h: EEPROM data

2. Address_start gives the start address of the programming command.
3. Address_end gives the last address of the programming command.

Answers from Bootloader The device has two possible answers:

• If the chip is protected from program access an “Error” CAN message is sent (see
Section “Error Message Description”, page 22).

• Otherwise an acknowledge is sent.

The second step of the programming operation is to send data to program.

Request from Host To send data to program, the Host sends a ‘programming data’ CAN message
(ID_PROG_DATA) with up to 8 data by message and must wait for the answer of the
device before sending the next data to program.

Identifier Length Data[0] Data[1] Data[2] Data[3] Data[4]

ID_PROG_START 5
00h

address_start address_end
01h

Identifier Length

ID_PROG_START 0

Identifier Length Data[0] ... Data[7]

ID_PROG_DATA up to 8 x ... x
13
4210D–CAN–05/06

Answers from Bootloader The device has two possible answers:

• If the device is ready to receive new data, it sends a “programming data” CAN
message (ID_PROG_DATA) with the result Command_new passed in parameter.

• If the device has finished the programming, it sends a “programming data” CAN
message (ID_PROG_DATA) with the result Command_ok passed in parameter.

ID_PROG_DATA Flow Description

Identifier Length Data[0] Description

ID_PROG_DATA 1

00h Command OK

01h Command fail

02h Command new data

Host Bootloader

ID_PROG_START Message

ID_ERROR Message

ID_PROG_DATA Message

ID_PROG_DATA Message

Column Latch Full

All bytes received

Wait Prog start

SSB = Level 0

Send COMMAND_OK

Wait Data prog

Wait Programming

All bytes received

Send ERROR

Send COMMAND_NEW_DATA

ID_PROG_DATA Message

Send prog_start message
with addresses

Wait ERROR

Send prog_data message
with 8 datas

Wait COMMAND_N

Wait COMMAND_OK

Wait Prog Start

OR

OR

COMMAND ABORTED

COMMAND FINISHED COMMAND FINISHED

Send ProgStart
ID_PROG_START Message
14 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Example

Reading the Flash or EEPROM
Data

The ID_DISPLAY_DATA flow described below allows the user to read data in the Flash
memory or in the EEPROM data memory. A blank check command on the Flash mem-
ory is possible with this flow.

This operation can be executed only with a device previously opened in communication.

To start the reading operation, the Host sends a “Display Data” CAN message
(Id_display_data) with the area memory selected, the start address and the end address
passed in parameter.

The device splits into block of 8 bytes data to transfer to the Host if the number of data to
display is greater than 8 data bytes.

Requests from Host

Notes: 1. Data[0] selects the area to read and the operation
- 00h: Display Flash
- 01h: Blank Check on the Flash
- 02h: Display EEPROM data

2. The Address_start gives the start address to read.
3. The Address_end gives the last address to read.

Answers from Bootloader The device has two possible answers:

• If the chip is protected from read access an “Error” CAN message is sent (see
Section “Error Message Description”, page 22).

• Otherwise:
for a display command the device starts to send the data up to 8 by frame to the
host. For a blank check command, the device sends a result OK or the first address
not erased.

HOST Id_prog_start

BOOTLOADER
 Id_prog_data

Programming Data (write 55h from 0000h to 0008h in the flash)
identifier control

05 00

08 55

00

55

00

55

data

55 55 55 55

00

55HOST

 Id_prog_data 01 02

BOOTLOADER
 Id_prog_data 01 55HOST

 Id_prog_data 01 00

HOST Id_prog_start

Programming Data (write 55h from 0000h to 0008h in the flash)with SSB in write security

identifier control

04 00 00 00

data

08
BOOTLOADER Id_error 01 00

// command_new_data

// command_ok

// error_security

BOOTLOADER Id_prog_start 00
08

Identifier Length Data[0] Data[1] Data[2] Data[3] Data[4]

ID_DISPLAY_DATA 5

00h

address_start address_end01h

02h
15
4210D–CAN–05/06

Answer to a read command:

Answer to a blank check command:

Flow Description

Identifier Length Data[n]

ID_DISPLAY_DATA n x

Identifier Length Data[0] Data[1] Description

ID_DISPLAY_DATA
0 - - Blank Check OK

2 Address_start

Host Bootloader

ID_DISPLAY_DATA Message

ID_ERROR Message

ID_DISPLAY_DATA Message

Blank Command

Wait Display Data

SSB = Level 2

Send COMMAND_OK

Read Data

All Data Read

Send ERROR

Send Data Read

Send Display_data Message
with Addresses or Blank Check

Wait ERROR

Wait COMMAND_OK

Wait Data Display

OR

OR

COMMAND ABORTED

COMMAND FINISHED

nb Max by Frame

All Data Read

Verify Memory

Blank Check

COMMAND FINISHED

Send COMMAND_OK

ID_DISPLAY_DATA Message

ID_DISPLAY_DATA Message

Wait COMMAND_OK

COMMAND FINISHED

OR

All Data Read

COMMAND FINISHED
16 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
ID_DISPLAY_DATA Example

Programming Configuration
Information

The ID_WRITE_COMMAND flow described below allows the user to program Configu-
ration Information regarding the bootloader functionality.

This operation can be executed only with a device previously opened in communication.

The Configuration Information can be divided in two groups:

• Boot Process Configuration:

– BSB

– SBV

– Fuse bits (BLJB and X2 bits) (see Section “Mapping and Default Value of
Hardware Security Byte”, page 4)

• CAN Protocol Configuration:

– BTC_1, BTC_2, BTC_3

– SSB

– EB

– NNB

– CRIS

Note: The CAN protocol configuration bytes are taken into account only after the next reset.

To start the programming operation, the Host sends a “write” CAN message
(ID_WRITE_COMMAND) with the area selected, the value passed in parameter.

Take care that the Program Fuse bit command programs the 4 Fuse bits at the same
time.

HOST Id_display_data
BOOTLOADER Id_display_data

Display Data (from 0000h to 0008h)
identifier control

05 00
08 55

00
55

00
55

data

55 55 55 55
00
55

HOST Id_display_data
BOOTLOADER Id_display_data

Blank Check

identifier control

05 01
00

00 00

data

00

08

08

// Command ok

BOOTLOADER Id_display_data 01 55
17
4210D–CAN–05/06

Requests from Host

Answers from Bootloader The device has two possible answers:

• If the chip is protected from program access an “Error” CAN message is sent (see
Section “Error Message Description”, page 22).

• Otherwise an acknowledge “Command OK“ is sent.

ID_WRITE_COMMAND Flow Description

Identifier Length Data[0] Data[1] Data[2] Description

ID_WRITE_COMMAND
3 01h

00h

value

write value in BSB

01h write value in SBV

05h write value in SSB

06h write value in EB

1Ch write value in BTC_1

1Dh write value in BTC_2

1Eh write value in BTC_3

1Fh write value in NNB

20h write value in CRIS

3 02h 00h value write value in Fuse bits

Identifier Length Data[0] Description

ID_WRITE_COMMAND 1 00h Command OK

Host Bootloader

ID_WRITE_COMMAND Message

ID_ERROR Message

Wait Write_Command

NO_SECURITY

Send COMMAND_OK

Write Data

Send ERROR_SECURITY

Send Write_Command

Wait ERROR_SECURITY

Wait COMMAND_OK

OR

COMMAND ABORTED

COMMAND FINISHED

ID_WRITE_COMMAND Message

COMMAND FINISHED
18 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Example

Reading Configuration
Information or Manufacturer
Information

The ID_READ_COMMAND flow described below allows the user to read the configura-
tion or manufacturer information. This operation can be executed only with a device
previously opened in communication.

To start the reading operation, the Host sends a “Read Command” CAN message
(ID_READ_COMMAND) with the information selected passed in data field.

Requests from Host

00

HOST Id_write_command

BOOTLOADER Id_write_command

Write BSB at 88h

identifier control

03 01

01

00 88

data

// command_ok

00

HOST Id_write_command

BOOTLOADER Id_write_command

Write Fuse bit at Fxh

identifier control

02 02

01

F0

data

// command_ok

Identifier Length Data[0] Data[1] Description

ID_READ_COMMAND

2 00h

00h Read Bootloader version

01h Read Device ID1

02h Read Device ID2

2 01h

00h Read BSB

01h Read SBV

05h Read SSB

06h Read EB

1Ch Read BTC_1

1Dh Read BTC_2

1Eh Read BTC_3

1Fh Read NNB

20h Read CRIS

30h Read Manufacturer Code

31h Read Family Code

60h Read Product Name

61h Read Product Revision

2 02h 00h Read HSB (Fuse bits)
19
4210D–CAN–05/06

Answers from Bootloader The device has two possible answers:

• If the chip is protected from read access an “Error” CAN message is sent (see
Section “Error Message Description”).

• Otherwise:
the device answers with a Read Answer CAN message (ID_READ_COMMAND).

Flow Description

Example

Identifier Length Data[n]

ID_READ_COMMAND 1 value

Host Bootloader

ID_READ_COMMAND Message

ID_ERROR Message

Wait Read_Com

Send Data Read

Read Data

Send ERROR_SECURITY

Send READ_COM Message

Wait ERROR_SECURITY

Wait Value of Data

OR

COMMAND ABORTED

COMMAND FINISHED

ID_READ_COMMAND Message

COMMAND FINISHED

RD_WR_SECURITY

HOST Id_read_command

BOOTLOADER Id_read_command

Read Bootloader Version

identifier control

02 00

01

F5

00

data

HOST Id_read_command

BOOTLOADER Id_read_command

Read SBV

identifier control

02 01

01

01

data

// SBV = F5h

55 // Bootloader version 55h

F0

HOST Id_read_command

BOOTLOADER Id_read_command

Read Fuse bit

identifier control

01 02

01

data

// Fuse bit = F0h
20 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Erasing the Flash The ID_WRITE_COMMAND flow described below allows the user to erase the Flash
memory.

This operation can be executed only with a device previously opened in communication.

Two modes of Flash erasing are possible:

• Full Chip erase

• Block erase

The Full Chip erase command erases the whole Flash (32 Kbytes) and sets some Con-
figuration Bytes to their default values:

• BSB = FFh

• SBV = FFh

• SSB = FFh (NO_SECURITY)

The Block erase command erases only a part of the Flash.

Three Blocks are defined in the T89C51CC01:

• block0 (from 0000h to 1FFFh)

• block1 (from 2000h to 3FFFh)

• block2 (from 4000h to 7FFFh)

To sta r t t he e ras ing opera t ion , the Host sends a “w r i te ” CAN message
(ID_WRITE_COMMAND).

Requests from Host

Answers from Bootloader As the Program Configuration Information flows, the erase block command has two pos-
sible answers:

• If the chip is protected from program access an “Error” CAN message is sent (see
Section “Error Message Description”, page 22).

• Otherwise an acknowledge is sent.

The full chip erase is always executed whatever the Software Security Byte value is.

On a full chip erase command an acknowledge “Command OK” is sent.

Identifier Length Data[0] Data[1] Description

ID_WRITE_COMMAND 2 00h

00h Erase block0 (0K to 8K)

20h Erase block1 (8K to 16K)

40h Erase block2 (16K to 32K)

FFh Full chip erase

Identifier Length Data[0] Description

ID_WRITE_COMMAND 1 00h Command OK
21
4210D–CAN–05/06

Example

Starting the Application The ID_WRITE_COMMAND flow described below allows to start the application directly
from the bootloader upon a specific command reception.

This operation can be executed only with a device previously opened in communication.

Two options are possible:

• Start the application with a reset pulse generation (using watchdog).
When the device receives this command, the watchdog is enabled and the
bootloader enters a waiting loop until the watchdog resets the device.
Take care that if an external reset chip is used, the reset pulse in output may be
wrong and in this case the reset sequence is not correctly executed.

• Start the application without reset
A jump at the address 0000h is used to start the application without reset.

To start the application, the Host sends a “Start Application” CAN message
(ID_WRITE_COMMAND) with the corresponding option passed in parameter.

Requests from Host

Answer from Bootloader No answer is returned by the device.

Example

Error Message Description The error message is implemented to report when an action required is not possible.

• At the moment only the security error is implemented and only the device can
answer this kind of CAN message (ID_ERROR).

HOST Id_write_command

BOOTLOADER Id_write_command

Full Chip Erase

identifier control

02 00

01

FF

data

00 // command_ok

Identifier Length Data[0] Data[1] Data[2] Data[3] Description

ID_WRITE_COMMAND

2

03h

00h - -
Start Application with a reset pulse
generation

4 01h address
Start Application with a jump at
“address”

HOST Id_write_command

BOOTLOADER

Start application

identifier control

04 03 01 00 00

data

No answer

Identifier Length Data[0] Description

ID_ERROR 1 00h Software Security Error
22 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
In-Application
Programming/Self-
programming

The IAP allows to reprogram a microcontroller on-chip Flash memory without removing
it from the system and while the embedded application is running.

The user application can call Application Programming Interface (API) routines allowing
IAP. These API are executed by the bootloader.

To call the corresponding API, the user must use a set of Flash_api routines which can
be linked with the application.

Example of Flash_api routines are available on the Atmel web site on the software appli-
cation note:

C Flash Drivers for the T89C51CC01CA for Keil Compilers

The Flash_api routines on the package work only with the CAN bootloader.

The Flash_api routines are listed in Appendix-B.

API Call

Process The application selects an API by setting the 4 variables available when the Flash_api
library is linked to the application.

These four variables are located in RAM at fixed address:

• api_command: 1Ch

• api_value: 1Dh

• api_dph: 1Eh

• api_dpl: 1Fh

All calls are made through a common interface “USER_CALL” at the address FFC0h.

The jump at the USER_CALL must be done by LCALL instruction to be able to come-
back in the application.

Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.

Constraints The interrupts are not disabled by the bootloader.

Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled
when returning.

Interrupts must also be disabled before accessing EEPROM data then re-enabled after.

The user must take care of hardware watchdog before launching a Flash operation.

For more information regarding the Flash writing time see the T89C51CC01 datasheet.
23
4210D–CAN–05/06

API Commands Several types of APIs are available:

• Read/Program Flash and EEPROM data Memory

• Read Configuration and Manufacturer Information

• Program Configuration Information

• Erase Flash

• Start bootloader

Read/Program Flash and
EEPROM Data Memory

All routines to access EEPROM data are managed directly from the application without
using bootloader resources.

The bootloader is not used to read the Flash memory.

For more details on these routines see the T89C51CC01 datasheet sections “Pro-
gram/Code Memory” and “EEPROM Data Memory”

Two routines are available to program the Flash:

– __api_wr_code_byte

– __api_wr_code_page

• The application program loads the column latches of the Flash then calls the
__api_wr_code_byte or __api_wr_code_page see datasheet in section
“Program/Code Memory”.

• Parameter Settings

• Instruction: LCALL FFC0h.

Note: No special resources are used by the bootloader during this operation.

Read Configuration and
Manufacturer Information

• Parameter Settings

API Name api_command api_dph api_dpl api_value

__api_wr_code_byte

__api_wr_code_page
0Dh - - -

API Name api_command api_dph api_dpl api_value

__api_rd_HSB 08h - 00h return HSB

__api_rd_BSB 05h - 00h return BSB

__api_rd_SBV 05h - 01h return SBV

__api_rd_SSB 05h - 05h return SSB

__api_rd_EB 05h - 06h return EB

__api_rd_CANBTC1 05h - 1Ch return CANBTC1

__api_rd_CANBTC2 05h - 1Dh return CANBTC2

__api_rd_CANBTC3 05h - 1Eh return CANBTC3

__api_rd_NNB 05h - 1Fh return NNB

__api_rd_CRIS 05h - 20h return CRIS

__api_rd_manufacturer 05h - 30h
return

manufacturer id

__api_rd_device_id1 05h - 31h return id1
24 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
• Instruction: LCALL FFC0h.

• At the complete API execution by the bootloader, the value to read is in the
api_value variable.

Note: No special resources are used by the bootloader during this operation.

Program Configuration
Information

• Parameter Settings

• Instruction: LCALL FFC0h.

Note: 1. See in the T89C51CC01 datasheet the time required for a write operation.

2. No special resources are used by the bootloader during these operations.

Erasing the Flash The T89C51CC01 Flash memory is divided in three blocks of 8K Bytes:

Block 0: from address 0000h to 1FFFh

Block 1: from address 2000h to 3FFFh

Block 2: from address 4000h to 7FFFh

These three blocks contain 128 pages.

• Parameter Settings

__api_rd_device_id2 05h - 60h return id2

__api_rd_device_id3 05h - 61h return id3

__api_rd_bootloader_version 0Eh - 00h return value

API Name api_command api_dph api_dpl api_value

API Name api_command api_dph api_dpl api_value

__api_clr_BLJB 07h - -
(HSB & BFh) |

40h

__api_set_BLJB 07h - - HSB & BFh

__api_clr_X2 07h - -
(HSB & 7Fh) |

80h

__api_set_X2 07h - - HSB & 7Fh

__api_wr_BSB 04h - 00h value to write

__api_wr_SBV 04h - 01h value to write

__api_wr_SSB 04h - 05h value to write

__api_wr_EB 04h - 06h value to write

__api_wr_CANBTC1 04h - 1Ch value to write

__api_wr_CANBTC2 04h - 1Dh value to write

__api_wr_CANBTC3 04h - 1Eh value to write

__api_wr_NNB 04h - 1Fh value to write

__api_wr_CRIS 04h - 20h value to write

API Name api_command api_dph api_dpl api_value

__api_erase_block0 00h 00h - -
25
4210D–CAN–05/06

• Instruction: LCALL FFC0h.

Note: 1. See the T89C51CC01 datasheet for the time required for a write operation and this
time must be multiplied by the number of pages.

2. No special resources are used by the bootloader during these operations.

Starting the Bootloader There are two start bootloader routines possible:

1. This routine allows to start at the beginning of the bootloader or after a reset.
After calling this routine the regular boot process is performed and the communi-
cation must be opened before any action.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• Instruction: LJUMP or LCALL at address F800h

2. This routine allows to start the bootloader with the CAN bit configuration of the
application and start with the state "communication open". That means the boot-
loader will return the message “ID_SELECT_NODE” with the field com port
open.

• No special parameter setting

• Set bit ENBOOT in AUXR1 register

• Instruction: LJUMP or LCALL at address FF00h

__api_erase_block1 00h 20h -

__api_erase_block2 00h 40h -

API Name api_command api_dph api_dpl api_value
26 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Appendix-A
Table 1. Summary of Frames from Host

Identifier Length Data[0] Data[1] Data[2] Data[3] Data[4] Description

Id_select_node

(CRIS:0h)
1 num node - - - - Open/Close communication

Id_prog_start

(CRIS:1h)
5

00h
start_address end_address

Init Flash programming

01h Init EEPROM programming

Id_prog_data

(CRIS:2h)
n data[0:8] Data to program

Id_display_data

(CRIS:3h)
5

00h

start_address end_address

Display Flash Data

01h Blank Check in Flash

02h Display EEPROM Data

Id_write_command

(CRIS:4h)

2 00h

00h - - - Erase block0 (0K to 8K)

20h - - - Erase block1 (8K to 16K)

40h - - - Erase block2 (16K to 32K)

FFh - - - Full-chip Erase

3 01h

00h

value

- - Write value in BSB

01h - - Write value in SBV

05h - - Write value in SSB

06h - - Write value in EB

1Ch - - Write BTC_1

1Dh - - Write BTC_2

1Eh - - Write BTC_3

1Fh - - Write NNB

20h - - Write CRIS

3 02h 00h value - - Write value in Fuse (HSB)

2
03h

00h - - -
Start Application with Hardware
Reset

4 01h address - Start Application by LJMP address
27
4210D–CAN–05/06

Id_read_command

(CRIS:5h)

2 00h

00h - - - Read Bootloader Version

01h - - - Read Device ID1

02h - - - Read Device ID2

2 01h

00h - - - Read BSB

01h - - - Read SBV

05h - - - Read SSB

06h - - - Read EB

30h - - - Read Manufacturer Code

31h - - - Read Family Code

60h - - - Read Product Name

61h - - - Read Product Revision

1Ch - - - Read BTC_1

1Dh - - - Read BTC_2

1Eh - - - Read BTC_3

1Fh - - - Read NNB

20h - - - Read CRIS

2 02h 00h - - - Read HSB

Table 1. Summary of Frames from Host (Continued)

Identifier Length Data[0] Data[1] Data[2] Data[3] Data[4] Description

Table 2. Summary of Frames from Target (Bootloader)

Identifier Length Data[0] Data[1] Data[2] Data[3] Data[4] Description

Id_select_node

(CRIS:0h)
2

Boot
version

00h - - - communication close

01h - - - communication open

Id_prog_start

(CIRS:1h)
0 - - - - - Command OK

Id_prog_data

(CRIS:2h)
1

00h - - - - Command OK

01h - - - - Command fail

02h - - - - Command New Data

Id_display_data

(CRIS:3h)

n n data (n = 0 to 8) Data read

0 - - - - - Blank Check OK

2 first address not blank - - - Blank Check fail

Id_write_command

(CIRS:4h)
1 00h - - - - Command OK

Id_read_command

(CRIS:5h)
1 Value - - - Read Value
28 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Id_error

(CRIS:6h)
1 00h - - - - Software Security Error

Table 2. Summary of Frames from Target (Bootloader) (Continued)

Identifier Length Data[0] Data[1] Data[2] Data[3] Data[4] Description
29
4210D–CAN–05/06

Appendix-B
Table 3. API Summary

Function Name
Bootloader
Execution api_command api_dph api_dpl api_value

__api_rd_code_byte no

__api_wr_code_byte yes 0Dh - - -

__api_wr_code_page yes 0Dh - - -

__api_erase block0 yes 00h 00h - -

__api_erase block1 yes 00h 20h - -

__api_erase block2 yes 00h 40h - -

__api_rd_HSB yes 08h - 00h return value

__api_clr_BLJB yes 07h - - (HSB & BFh) | 40h

__api_set_BLJB yes 07h - - HSB & BFh

__api_clr_X2 yes 07h - - (HSB & 7Fh) | 80h

__api_set_X2 yes 07h - - HSB & 7Fh

__api_rd_BSB yes 05h - 00h return value

__api_wr_BSB yes 04h - 00h value

__api_rd_SBV yes 05h - 01h return value

__api_wr_SBV yes 04h - 01h value

__api_erase_SBV yes 04h - 01h FFh

__api_rd_SSB yes 05h - 05h return value

__api_wr_SSB yes 04h - 05h value

__api_rd_EB yes 05h - 06h return value

__api_wr_EB yes 04h - 06h value

__api_rd_CANBTC1 yes 05h - 1Ch return value

__api_wr_CANBTC1 yes 04h - 1Ch value

__api_rd_CANBTC2 yes 05h - 1Dh return value

__api_wr_CANBTC2 yes 04h - 1Dh value

__api_rd_CANBTC3 yes 05h - 1Eh return value

__api_wr_CANBTC3 yes 04h - 1Eh value

__api_rd_NNB yes 05h - 1Fh return value

__api_wr_NNB yes 04h - 1Fh value

__api_rd_CRIS yes 05h - 20h return value

__api_wr_CRIS yes 04h - 20h value

__api_rd_manufacturer yes 05h - 30h return value

__api_rd_device_id1 yes 05h - 31h return value
30 T89C51CC01 CAN Bootloader
4210D–CAN–05/06

T89C51CC01 CAN Bootloader
Document Revision
History

Changes from 4210C -
12/03 to 4210D - 05/06

1. Changes to full chip erase command.

__api_rd_device_id2 yes 05h - 60h return value

__api_rd_device_id3 yes 05h - 61h return value

__api_rd_bootloader_version yes 0Eh - 00h return value

__api_eeprom_busy no - - - -

__api_rd_eeprom_byte no - - - -

__api_wr_eeprom_byte no - - - -

__api_start_bootloader no - - - -

__api_start_isp no - - - -

Table 3. API Summary (Continued)

Function Name
Bootloader
Execution api_command api_dph api_dpl api_value
31
4210D–CAN–05/06

Atmel Corporation 2003. All rights reserved. Atmel, the Atmel logo, and combinations thereof are registered
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names in this document may be
the trademarks of others. Windows® is a registered trademark of Microsoft Corporation. Linux® is a registered
trademark of Linus Torvalds.

© Atmel Corporation 2003.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Data-
com

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com
 Printed on recycled paper.

4210D–CAN–05/06 /xM

