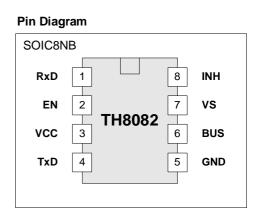


TH8082

Single LIN Bus Transceiver

Features and Benefits

- □ Single wire LIN transceiver
- □ Compatible to LIN Protocol Specification, Rev. 1.1
- □ Compatible to ISO9141 functions
- Control Output for voltage regulator
- Up to 20 kbps bus speed
- Low RFI due to slew rate control
- Fully integrated receiver filter
- Protection against load dump, jump start
- Bus terminals proof against short-circuits and transients in the automotive environment
- □ Very low (25 µA) typical power consumption in sleep mode
- Thermal overload and short circuit protection
- □ High impendance Bus pin in case of loss of ground and undervoltage condition
- \Box ± 4kV ESD protection on bus pin


Ordering Information

Part No.	Temperature Range	Package
TH8082 JDC	-40°C125°C	SOIC8, 150mil

General Description

The TH8082 is a physical layer device for a single wire data link capable of operating in applications where high data rate is not required and a lower data rate can achieve cost reductions in both the physical media components and in the microprocessor which use the network. The TH8082 is designed in accordance to the physical layer definition of the LIN Protocol Specification , Rev. 1.2 . The IC furthermore can be used in ISO9141 systems.

Because of the very low current consumption of the TH8082 in the recessive state it's particularly suitable for ECU applications with hard standby current requirements. An advanced sleep mode capability allows a shutdown of the whole application . The included wake-up function detects incoming dominant bus messages and enables the voltage regulator.

Functional Diagram

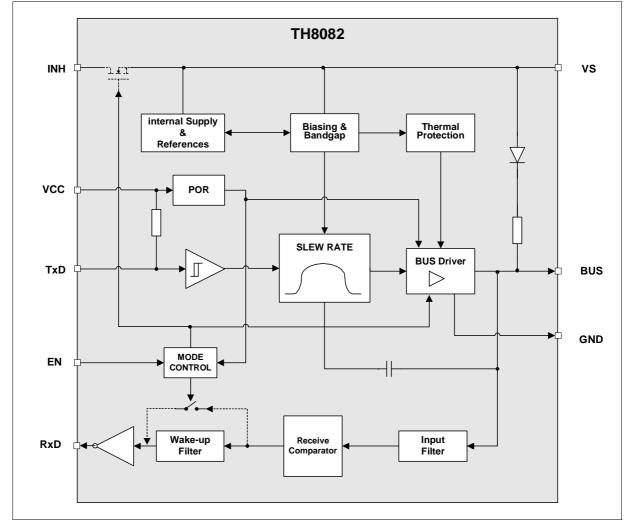


Figure 1 - Block Diagram

Functional Description

After *power on* the chip automatically enters the V_{BAT} stanby mode . In this intermediate mode the INH output will become HIGH (V_s) and therefore the voltage regulator will provide the V_{CC} - supply . The transceiver will remain the V_{BAT} -stanby mode until the controller sets it to *normal operation* (EN = High). Only in this mode bus communication is possible. The TH8082 switches itself in the V_{BAT} -stanby mode if V_{CC} is missing or below the threshold.

The *sleep mode* (EN = LOW) can only be reached from normal mode and permits a very low power consumtion because the transceiver and even the external voltage regulator get disabled. If the V_{CC} has been switched off a

wake-up request from the bus line will cause the TH8082 to enter the V_{BAT} -stanby mode (V_{CC} is present again) and sets the RxD output to low until the device enters the normal operation mode (active LOW interrupt at RxD). If the INH pin is not connected to the regulator or the inhibitable external regulator is not the one that provides the V_{CC} – supply, the normal mode is directly accessible by a logic high on the EN pin.

In order to prevent an unintended wake-up caused by disturbances of the automotiv environment incoming dominant signals from the bus have to exceed the wake-up delay time.

EN	VCC	Comment	INH	RxD
0	0	$V_{\text{BAT}}\text{-}\text{standby}$, power on	Vs	0
0	1	$V_{\text{BAT}}\mbox{-standby}$, V_{CC} on , wake up condition after power on	Vs	Active LOW wake-up interrupt
1	1	Normal mode , V_{CC} on	Vs	1 = recessive bus 0 = dominant bus
1	0	$V_{\text{BAT}}\text{-}\text{standby}$, VCC missing (V_{CC} < V_{\text{CCUV}})	Vs	V _{cc}
0	0	Sleep mode, switch to V_{BAT} -standby in case of wake-up request	floating	Active LOW wake-up interrupt if V_{CC} is present
0	1	Sleep mode, regulator not disabled, switch to V_{BAT} -standby in case wake-up request, directly switch to normal mode with EN = 1	floating	Active LOW wake-up interrupt

Mode Control of TH8082

Application Circuit

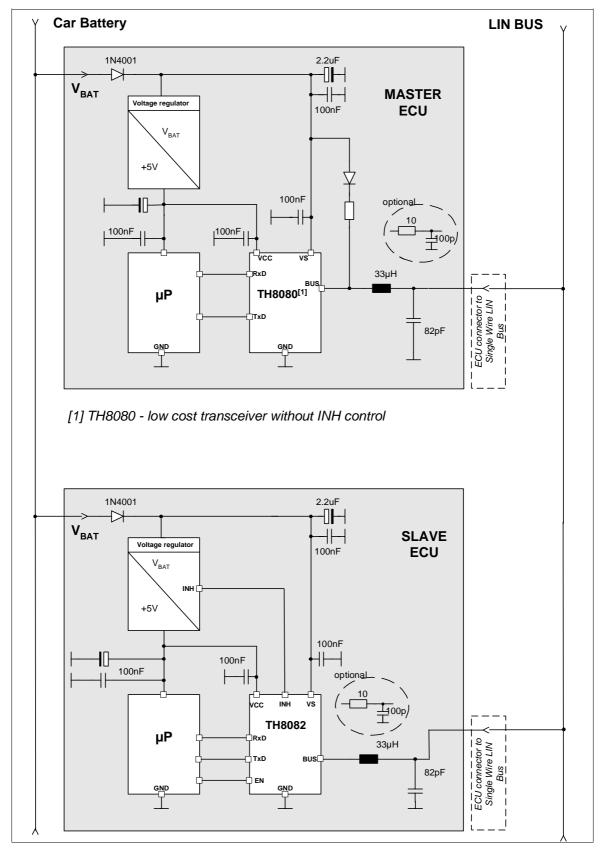


Figure 2 - Application Circuit

Electrical Specification

All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum ratings given in the table below are limiting values that do not lead to a permanent damage of the device but exceeding any of these limits may do so. Long term exposure to limiting values may affect the reliability of the device. Reliable operation of the TH8082 is only specified within the limits shown in "Operating conditions".

Operating Conditions

Parameter	Symbol	Min	Max	Unit
Battery voltage	Vs	6	18	V
Supply voltage	V _{cc}	4.5	5.5	V
Operating ambient temperature	T _A	-40	+125	°C
Junction temperature ^[1]	T _{Jc}		+150	°C

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Max.	Unit
Batterry Supply Voltage	Vs	t < 1 min	-0.3	+30	V
Supply Voltage	V _{cc}		-0.3	+7	V
Short-term supply voltage	$V_{\text{S.Id}}$	Load dump; t<500ms		+40	V
Transient supply voltage	V _{S.tr1}	ISO 7637/1 pulse 1 ^[1]	-150		V
Transient supply voltage	V _{S.tr2}	ISO 7637/1 pulses 2 ^[1]		+100	V
Transient supply voltage	V _{S.tr3}	ISO 7637/1 pulses 3A, 3B	-150	+150	V
BUS voltage	V _{BUS}	t < 500 ms, V _S = 20 V V _S = 20 V	-20 -40	+40	V
Transient bus voltage	V _{BUS.tr1}	ISO 7637/1 pulse 1 [2]	-150		V
Transient bus voltage	V _{BUS.tr2}	ISO 7637/1 pulses 2 ^[2]		+100	V
Transient bus voltage	V _{BUS.tr3}	ISO 7637/1 pulses 3A, 3B ^[2]	-150	+150	V
DC voltage on pins TxD, RxD	V _{DC}		-0.3	+7	V
ESD capability of pin BUS	ESD _{BUSHB}	Human body model, equivalent	-4	+4	kV
ESD capability of any other pins	ESD _{HB}	Human body model, equivalent	-2	+2	kV
Maximum latch – up free current at any Pin	I _{LATCH}		-500	+500	mA
Maximum power dissipation	P _{tot}	At T _{amb} = +125 °C		197	mW
Thermal impedance	Θ_{JA}	in free air		152	K/W
Storage temperature	T _{stg}		-55	+150	°C
Junction temperature	T _{vj}		-40	+150	°C

Static Characteristics

 $(V_S = 6 \text{ to } 18V, V_{CC} = 4.5 \text{ to } 5.5V, T_A = -40 \text{ to } +125^{\circ}C, \text{ unless otherwise specified})$ All voltages are referenced to ground (GND), positive currents are flow into the IC.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
PIN VS,VCC						
Supply current, dominant	I _{Sd}	V _S = 18V,V _{CC} = 5.5V, TxD=L			50	μA
Supply current, dominant	I _{CCd}	$V_{S} = 18V, V_{CC} = 5.5V, TxD=L$			1	mA
Supply current, recessive	I _{Sr}	$V_{S} = 18V, V_{CC} = 5.5V TxD = H$		8	20	μA
Supply current, recessive	I _{CCr}	$V_{S} = 18V, V_{CC} = 5.5V TxD = H$		20	30	μA
V _{CC} undervoltage lockout	V _{CC_UV}	EN = H, TxD = L	2.75		4.3	V
Supply current, sleep mode	I _{Ss1}	V_{S} = 18V, V_{CC} = 0V TxD open		25	50	μA
PIN BUS / TRANSMITTER						
Bus output voltage, dominant	V_{ol_BUS}	TxD=L , I_{BUS} = 40mA, V_S > 7.3V			1.2	V
Bus output voltage, recessive	V_{oh_BUS}	TxD=open	0.8* V _S + 0.7			V
Bus short circuit current	I _{BUS_SHORT}	TxD=L , $V_{BUS} > 1.2V$, $V_{S} > 7.3V$	40		200	mA
Bus input current, recessive	I _{BUS_leakp}	TxD open , $V_{BUS} = Vs$	-20		20	μA
Bus reverse polarity curr., rec.	I _{BUS_leakn}	Loss of GND , V_S =12V, V_{BUS} =0	-1		1	mA
Bus pull up resistor	R _{BUS_pu}	TxD open, V _{BUS} =0	20	30	47	kΩ
PIN BUS / RECEIVER						
Bus input threshold, recessive to dominant	$V_{\text{ihBUS}_{rd}}$	TxD open , -8V <v<sub>BUS < V_{ihBUS_rd}</v<sub>	0.4x V _S	0.45* V _S		V
Bus input threshold, dominant to recessive	$V_{\text{ihBUS}_{rd}}$	TxD open , V _{ihBUS_rd} <v<sub>BUS < 18V</v<sub>		0.55* V _S	0.6*V _s	V
Bus input hysteresis	V_{BUS_hys}		20			mV
PIN TXD, EN						
High level input voltage	V _{ih}	Rising edge			0.7* V _{CC}	V
Low level input voltage	V _{il}	Falling edge	0.3* V _{CC}			V
TxD pull up current, high level	I _{IH_TXD}	$V_{TxD} = 4V$	-125	-50	-25	μA
TxD pull up current, low level	I _{IL_TXD}	V _{TxD} = 1V	-500	-250	-100	μA
EN pull down current, high level	I _{IH_EN}	$V_{EN} = 4V, V_{CC} = 0V$	50	125	250	μA
EN pull down current, low level	I _{IL_EN}	$V_{EN} = 1V, V_{CC} = 0V$	12	25	50	μA

Static Characteristics (continued)

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
PIN RXD						
Low level output voltage	V _{ol_rxd}	I _{RxD} = 1.25mA			0.9	V
High level output voltage	V _{oh_rxd}	I _{RxD} = -250μA	V _{cc} -0.9			V
PIN INH						
High level output voltage	V_{oh_INH}	I _{RxD} = -180μA	V _S -0.8V	V _S -0.5V		V
Leakage current	V _{INH_Ik}	$EN = L, V_{INH} = 0V$	-5		5	μA
Thermal protection						
Thermal shutdown	T_{sd}		150		180	°C
Hysteresis	T _{hys}		5		25	°C

Dynamic Characteristics

All dynamic values of the table below refer to the test-schematic schown in Figure - Timing Diagram $6V \le V_S \le 18V$, $-40^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise specified

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Slew rate falling edge	t _{SRF}	80% < VBUS < 20% , minimum & maximum bus load	-3	-2	-1	V/µs
Slew rate rising edge	t _{SRR}	20% < VBUS < 80% , minimum bus load ^[1]	1	2	3	V/µs
Propagation delay transmitter (TxD->BUS)	t _{trans_pdf}	TxD high to low transition ^[2]			4	μs
Propagation delay transmitter (TxD->BUS)	t _{trans_pdr}	TxD low to high transition ^[2]			4	μs
Propagation delay transmitter symmetry	t _{trans_sym}	Calculate t _{trans_pdf} - t _{trans_pdr}	-2		2	μs
Propagation delay receiver (BUS->RxD)	t _{rec_pdf}	BUS recessive to dominant [2]			6	μs
Propagation delay receiver (BUS->RxD)	t _{rec_pdr}	BUS dominant to recessive ^[2]			6	μs
Propagation delay receiver symmetry	t _{rec_sym}	Calculate t _{trans_pdf} - t _{trans_pdr}	-2		2	μs
Receiver debounce time	t _{rec_deb}	BUS rising & falling edge ^[3]	1.2		3.1	μs
Wake-up filter time	t _{wu}	BUS rising & falling edge ^[4]	25		90	μs
EN debauncing time	t _{en_deb}	Normal to sleep mode []]	10	20	40	μs

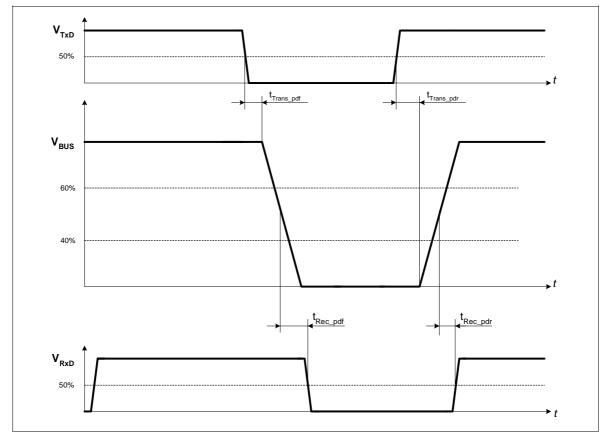
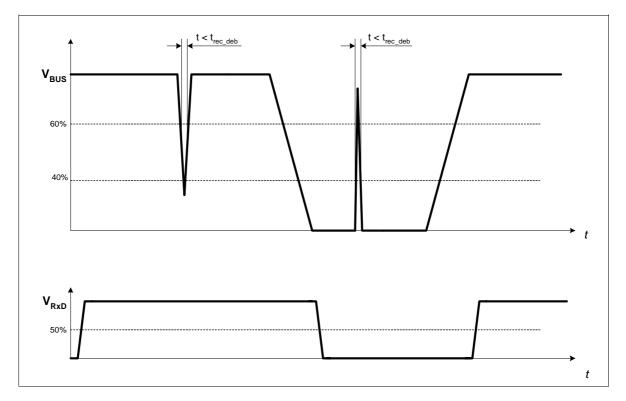
^[1] Minimum slew rate of the rising edge is determined by the network time constant

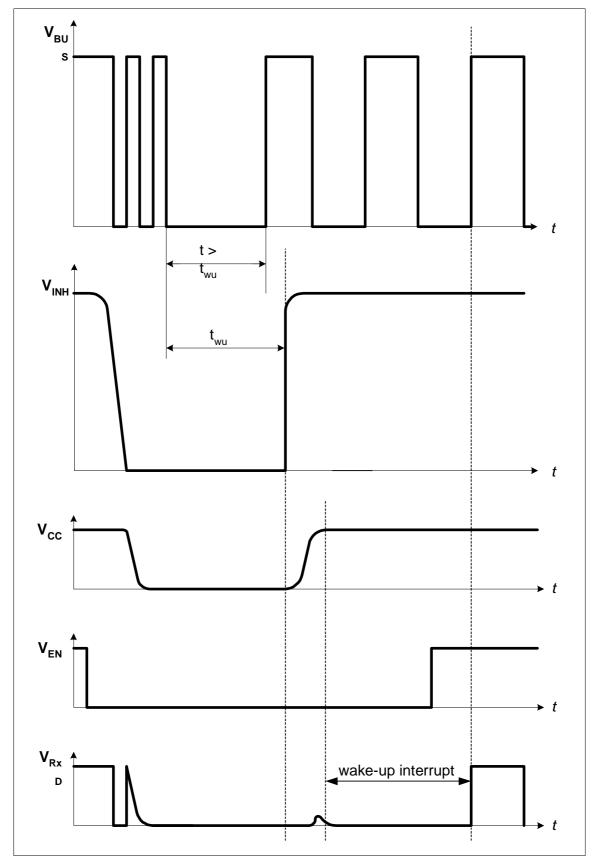
^[2] See timing diagram figure 3

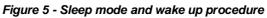
^[3] See timing diagram figure 4

^[4] See timing diagram figure 5

Timing Diagrams

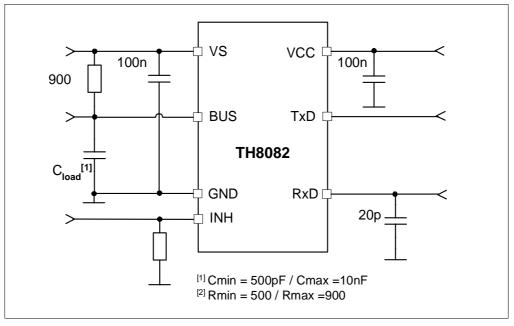
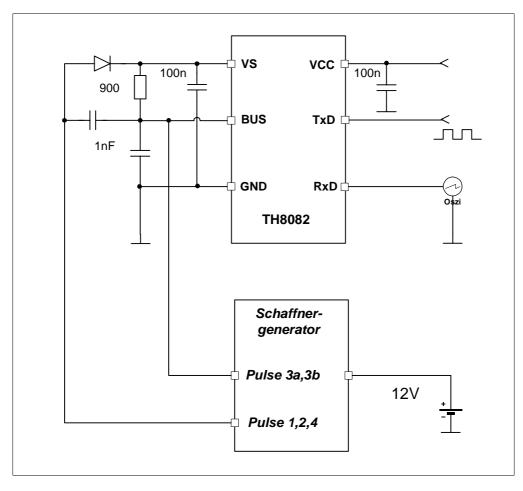



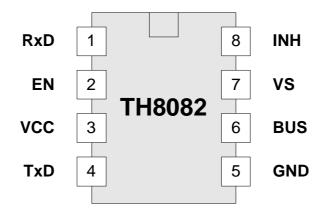

Figure 3 - Input/Output Timing



Timing Diagrams (continued)

Test Circuit for Dynamic Characteristics


Figure 5 - Test Circuit for Dynamic Characteristics

Pin Description

Pin	Name	I/O	Function
1	RXD	0	Receive data from BUS to core, LOW in dominant state
2	EN	I	Enables the normal operation mode when HIGH
3	VCC		5V supply input
4	TXD	I	Transmit data from core to BUS, LOW in dominant state
5	GND		Ground
6	BUS	I/O	Single wire bus pin, LOW in dominant state
7	VS		Battery input voltage
8	INH	0	Control output for voltage regulator

Mechanical Specifications

8 Η Ε Н Н Н -H 1 2 3 D 1**A1** Π Π Π α L b e

SOIC8 Package Dimensions

Small Outline Integrated Circiut (SOIC), SOIC 8, 150 mil

All Dimension in mm, coplanarity < 0.1 mm									
	D	Е	н	Α	A1	е	b	L	α
min	4.8	3.80	10.00	5.80	0.10	4.07	0.33	0.40	0°
max	5.0	4.00	10.65	6.20	0.25	1.27	0.51	1.27	8°
All Dimension in inc	All Dimension in inch, coplanarity < 0.004"								
min	0.189	0.150	0.228	0.053	0.004	0.050	0.013	0.016	0°
max	0.197	0.157	0.244	0.069	0.010	0.050	0.020	0.050	8°

Notes

For the latest version of this document, go to our website at:

www.melexis.com

Or for additional information contact Melexis direct:

0e
+32 13 67 04 95
sales_europe@melexis.com

 All other locations +1 603 223 2362 Phone:

E-mail:	sales_usa@melexis.com

Important Notice

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or

consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2000 Melexis GmbH. All rights reserved.