

TSC

Absolute Maximum Rating

Terminal Voltage (with respect to Gnd)	V_{CC}	$-0.3 \sim+6.0$	V
RESET \& (RESET) push-pull	$\mathrm{V}_{\text {RESET }}$	$-0.3 \sim\left(\mathrm{~V}_{\mathrm{CC}}+0.3\right)$	V
Input Current, Vcc	I_{CC}	20	mA
Output Current, RESET, (RESET)	I_{O}	20	mA
Continuous Power Dissipation $\left(\mathrm{Ta}=+70^{\circ} \mathrm{C}\right)$ de-rate $4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$	P_{D}	320	mW
Operating Junction Temperature Range		T_{OP}	$-40 \sim+105$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left(260^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{\text {LEAD }}$	10	${ }^{\circ} \mathrm{C}$

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Conditions	Symbol	Min	Typ	Max	Unit
Input Supply Voltage	Ta $=0^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$	V_{cc}	1.0	--	5.5	V
Supply Current	$\mathrm{V}_{\mathrm{cc}} \leq 5.5 \mathrm{~V}$	I_{cc}	--	19	60	uA
	$\mathrm{V}_{\mathrm{cc}} \leq 3.6 \mathrm{~V}$		-	17	50	
Reset Threshold	TS809/910/809R/810RCXA	$\mathrm{V}_{\text {TH }}$	4.56	4.63	4.7	V
	TS809/910/809R/810RCXB		4.31	4.38	4.45	
	TS809/910/809R/810RCXC		3.94	4.00	4.06	
	TS809/910/809R/810RCXD		3.03	3.08	3.13	
	TS809/910/809R/810RCXE		2.89	2.93	2.97	
	TS809/910/809R/810RCXF		2.59	2.63	2.67	
Reset Threshold Temperature Coefficient		$\mathrm{V}_{\text {TH }}$	--	30	--	ppm/ ${ }^{\circ} \mathrm{C}$
Vcc Rising Time to Function	$\mathrm{Ta}=-20^{\circ} \mathrm{C} \sim+105^{\circ} \mathrm{C}$		25	--	--	US/V
V_{CC} to Reset Delay	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH }}$ to $\left(\mathrm{V}_{\text {TH }}-100 \mathrm{mV}\right)$	$\mathrm{T}_{\text {deLAY }}$		20	100	uS
Reset Active Timeout Period	$\mathrm{Ta}=0^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$		100	240	600	mS
RESET Output Voltage Low	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}(\mathrm{MII}),} \mathrm{I}_{\mathrm{IINK}}=1.2 \mathrm{~mA}, \\ & \mathrm{TS} 809 \text { \& } \mathrm{TS} 809 \mathrm{R} \end{aligned}$	$\mathrm{V}_{\text {OL }}$	--	--	0.3	V
	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH(MIN), }} \mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}$,		--	--	0.4	
	$\mathrm{V}_{\mathrm{CC}}>1.0 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=50 \mathrm{uA}$		--	--	0.3	
RESET Output Voltage High	$\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\mathrm{TH}(\mathrm{MAX})}, \mathrm{I}_{\text {SOURCE }}=500 \mathrm{uA},$ TS809 \& TS809R	V_{OH}	$0.8 \mathrm{~V}_{\mathrm{cc}}$	--	--	V
	$\mathrm{V}_{\mathrm{CC}}>\mathrm{V}_{\text {TH(MAX) }}, I_{\text {ISURCE }}=800 \mathrm{uA}$,		$\mathrm{V}_{\text {CC }-1.5}$	--	--	
RESET Output Voltage Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{TH}(\mathrm{MAX})} \mathrm{I}_{\mathrm{SINK}}=1.2 \mathrm{~mA},$ TS810 \& TS810R	$\mathrm{V}_{\text {OL }}$	--	--	0.3	V
	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\text {TH(MAX), }} \mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}$,		--	--	0.4	
RESET Output Voltage High	$\begin{aligned} & 1.8 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{TH}(\mathrm{MIN}),}, \\ & \mathrm{I}_{\text {SOURCE }}=150 \mathrm{uA}, \\ & \text { TS810 \& TS810R } \end{aligned}$	V_{OH}	$0.8 \mathrm{~V}_{\mathrm{cc}}$	--	--	V

Application Note

Function Description

A microprocessor's ($\mu \mathrm{P}$'s) reset input starts the $\mu \mathrm{P}$ In a know state. The TS809/810/809R/810R assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the Vcc supply voltage declines below a preset threshold, keeping it asserted for at least 140 ms after Vcc has risen above the reset threshold. The TS809/810/809R/810R have a push-pull output stage.

Applications Information

Negative-Going VCC transients in addition to issuing a reset to the $\mu \mathrm{P}$ during power-up, power-down, and brownout conditions, the TS809/810/809R/810R are relatively immune to short-duration negative-going Vcc transients (glitches).
The TS809/810/809R/810R do not generate a reset pulse. The graph was generated using a negative going pulse applied to Vcc , starting 0.5 V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative going Vcc transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, a Vcc transient that goes 100 mV below the reset threshold and lasts $20 \mu \mathrm{~S}$ or less will not cause a reset pulse. A $0.1 \mu \mathrm{~F}$ bypass capacitor mounted as close as possible to the Vcc pin provides additional transient immunity.

Applications Circuit

Ensuring a Valid Reset Output Down to Vcc=0

When Vcc falls below 1V, the TS809/810/809R/810R RESET output no longer sinks current - it becomes an open circuit. Therefore, high impedance CMOS logic input connected to RESET can drift to undetermined voltages.
This present no problem in most applications since most $\mu \mathrm{P}$ and other circuitry is inoperative with Vcc below 1V.However, in applications where RESET must be valid down to 0 V , adding a pull down resistor to RESET causes and stray leakage currents to flow to ground, holding RESET low (Figure 2.) R1's value is not critical; 100K is large enough not to load RESET and small enough to pull RESET to ground. For the TS809/810/809R/810R if RESET is required to remain valid for $\mathrm{Vcc}<1 \mathrm{~V}$.

Benefits of Highly Accurate Reset Threshold

Most $\mu \mathrm{P}$ supervisor ICs have reset threshold voltages between 5% and 10% below the value of nominal supply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the supply is 10% below nominal. When using ICs rated at only the nominal supply $\pm 5 \%$, this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset many or may not be asserted.

Timing Diagram

$\stackrel{7 S C}{46}$

Electrical Characteristics Curve

Figure 1. Iq v.s. Temperature

Figure 3. Immunity

Reset Comparator Overdrive (mV)

Figure 2. Threshold v.s. Temperature

TSC

Function Block

Marking Information

Part No.	Identification Code						
TS809CXA	EA	TS810CXA	E0	TS809RCXA	EG	TS810RCXA	E7
TS809CXB	EB	TS810CXB	E2	TS809RCXB	EH	TS810RCXB	E8
TS809CXC	EC	TS810CXC	E3	TS809RCXC	El	TS810RCXC	E9
TS809CXD	ED	TS810CXD	E4	TS809RCXD	EJ	TS810RCXD	EM
TS809CXE	EE	TS810CXE	E5	TS809RCXE	EK	TS810RCXE	EN
TS809CXF	EF	TS810CXF	E6	TS809RCXF	EL	TS810RCXF	EP

SOT-23 Mechanical Drawing

