

Ramtron International Corporation ? http://www.ramtron.com

1850 Ramtron Drive Colorado Springs ? MCU customer service: 1-800-943-4625, 1-514-871-2447, ext. 208
Colorado, USA, 80921 ? 1-800-545-FRAM, 1-719-481-7000

page 1of 76

VMX1C1016
Datasheet Rev 1.0

Versa Mix 8051 Mixed-Signal MCU

Overview

The VMX51C1016 is a fully integrated mixed-signal
microcontroller that provides a “one-chip” solution for
a broad range of control, data acquisition and
processing applications. The VXM1016 is based on a
powerful, single-cycle, RISC-based 8051 processor
with an enhanced MULT/ACCU unit that can be used
to perform complex mathematical operations. The
device includes 56KB of Flash memory and 1280
bytes of RAM.
On-chip analog peripherals such as: an A/D
converter, PWM outputs (that can be used as D/A
converters), a voltage reference and an analog switch
make the VMX51C1020 ideal for analog data
acquisition applications.
The inclusion of a full set of digital interfaces such as
an enhanced, fully configurable SPI, an I²C, UARTs
and a J1708/RS-485 compatible differential
transceiver, enables total system integration.
The VMX51C1016 operates on a 5 volt supply and is
available in a QFP-44 package.

Applications
o Automotive Applications
o Industrial Controls / Instrumentation
o Consumer Products
o Medical Devices

FIGURE 1: VMX51C1016 BLOCK DIAGRAM

Feature Set
o 8051 Compatible RISC Performance Processor

Enhanced Arithmetic Unit including Barrel Shifter
o 56KB of Flash Memory
o 1280 Bytes of RAM
o 24 General Purpose I/Os
o 2 UART Serial Ports
o 2 Baud Rate Generators for UARTs
o Diff. Transceiver connected to UART1
 J1708/RS-485 compatible)
o Enhanced SPI interface (Master/Slave)

o Fully configurable
o Control up to 4 Slave devices

o I²C interface
o 1 External Dedicated Interrupt Input
o Interrupt on Port 1.0-P1.3 Pin Change
o 3, 16-bit Timers/Counters
o 4 Compare Units and 2 Capture Inputs
o 4 Ch. PWM, 8-bit / 16-bit resolution
o 5 Ch. 12-bit A/D Converter

o Conversion rate configurable up to
10KHz

o Continuous/One-Shot Operation
o Single or 4-Channel Automatic

Sequential Conversions
o On-Chip Voltage Reference
o Digitally Controlled Switch
o Power Saving Features + Clock Control
o Watchdog Timer
o Operating Temperature range (0ºC to +70ºC)
o Available in QFP-44 package

FIGURE 2: VMX51C1016-QAC14, QFP-44 PACKAGE PINOUT

Table 1: Pinout description

8051
µPROCESSOR
SINGLE CYCLE

In -Circuit
Debugging

through UART 0

2 UARTs
Serial Ports

56KB
Program FLASH

(In -Circuit Programmable)

1280 Bytes RAM
(256 x8 & 1k X 8)

· 24 I/O s
· 1 In t. input
· Int. Port1

change
· 3 Timers ,
· 2 Baud Rate

Generators
· 2 CCU inputs

[M U L T / ACCU]
 Unit with
 BARREL
SHIFTER

SPI Interface

I²C Bus
Interface

Power On Reset
Circuit

+
WatchDog Timer

Clock Control Unit

J1708 /RS 485
Compatible
Transceiver

XTAL

4 PWM D /As4 PWM D /As4 PWM D /As4 PWM Outputs
8 / 16 bit Resolution

(Can be used as D /A s)

1 DIGITALLY
CONTROLLED

SWITCH

12-BIT A/D
CONVERTER

ADCITA connected to A /D Input
Multiplexer

A
/D

 in
pu

t M
u

x.

Band gap
Reference P G A

XTVREF Input

S
W

1A

S
W

1B

R
X

T
X

1D
+

R
X

TX
1D

-

P
0.2-TX

1

P
0.3-R

X
1

P
0.0-T2IN

P
0.1-T

2E
X

P
1.1-P

W
M

1

P
1.0-P

W
M

0

P
1.2-P

W
M

2

DGND

P1.3-PWM3

P2.1-CS2-

P2.0-CS3-

P2.3-CS0-

P2.2-CS1-

P2.5-SCK

P2.4-SS-

P2.7-SDI

P2.6-SDO

VDD

O
S

C
0

O
S

C
1

P
3.

1
R

X
0

P
3.

0
TX

0

P
3.

3-
C

C
U

0

P
3.

2-
T

0I
N

P
3.

5-
T

1I
N

P
3.

4-
C

C
U

1

P
3.

6-
S

D
A

V
P

P

P
3.

7
-

S
C

L

ADCI0

XTVREF

ADCI2

ADCI1

VDDA

ADCI3

RES-

ADCITA

AGND

PM

INT0 22
2333

34

11
12

1
44

VMX51C1016
QFP-44

VMX51C1016

www.ramtron.com

Table 1: Pinout description

PIN NAME FUNCTION

1 SW1A Digitally Controlled Switch 1A

2 SW1B Digitally Controlled Switch 1B

3 RXTX1D- RS-485 Compatible Differential
Transmitter/Receiver, Negative side

4 RX1TXD+ RS-485 Compatible Differential
Transmitter/Receiver, Positive side

5 P0.3-RX1 I/O - Asynchronous UART1 Receiver Input

6 P0.2-TX1 I/O - Asynchronous UART1 Transmitter Output

7 P0.1-
T2EX

I/O -Timer/Counter 2 Input

8 P0.0-T2IN I/O -Timer/Counter 2 Input

9 P1.0-
PWM0

I/O - Pulse Width Modulator output 0

10 P1.1-
PWM1

I/O - Pulse Width Modulator output 1

11 P1.2-
PWM2

I/O - Pulse Width Modulator output 2

12 P1.3-
PWM3

I/O - Pulse Width Modulator output 3

13 DGND Digital Ground

14 P2.0-CS3- I/O - SPI Chip Enable Output (Master Mode)

15 P2.1-CS2- I/O - SPI Chip Enable Output (Master Mode)

16 P2.2-CS1- I/O - SPI Chip Enable Output (Master Mode)

17 P2.3-CS0- I/O - SPI Chip Enable Output (Master Mode)

18 P2.4-SS- I/O - SPI Chip Enable Output (Slave Mode)

19 P2.5-SCK I/O - SPI Clock (Input in Slave Mode)

20 P2.6-SDO I/O - SPI Data Output Bus

21 P2.7-SDI I/O - SPI Data Input Bus

22 VDD Digital Supply

23 OSC1 Oscillator Crystal Output

24 OSC0 Oscillator Crystal input/External Clock Source
Input

25 P3.0-TX0 I/O - Asynchronous UART0 Transmitter Output

26 P3.1-RX0 I/O - Asynchronous UART0 Receiver Input

27 P3.2-T0IN I/O - Timer/Counter 0 Input

28 P3.3-
CCU0

I/O - Capture and Compare Unit 0 Input

29 P3.4-
CCU1

I/O - Capture and Compare Unit 1 Input

30 P3.5-T1IN I/O - Timer/Counter 1 Input

31 VPP Flash Programming Voltage Input

32 P3.6-SDA I/O - I2C / Prog. Interface Bi-Directional Data
Bus

33 P3.7-SCL I/O - I2C / Prog. Interface Clock

PIN NAME FUNCTION

34 INT0 External interrupt Input (Negative Level or Edge
Triggered)

35 PM Mode Control Input

36 RES- Hardware Reset Input (Active low)

37 ADCITA ADC input 5 and Analog Output

38 VDDA Analog Supply

39 ADCI3 Analog to Digital Converter ext. Input 3

40 ADCI2 Analog to Digital Converter ext. Input 2

41 ADCI1 Analog to Digital Converter ext. Input 1

42 ADCI0 Analog to Digital Converter ext. Input 0

43 XTVREF External Reference Voltage Input

44 AGND Analog Ground

FIGURE 3: VMX51C1016 PINOUT

S
W

1A

S
W

1B

R
X

T
X

1D
+

R
X

T
X

1D
-

P
0.2-T

X
1

P
0.3-R

X
1

P
0.0-T

2IN

P
0.1-T

2E
X

P
1.1-P

W
M

1

P
1.0-P

W
M

0

P
1.2-P

W
M

2

DGND

P1.3-PWM3

P2.1-CS2-

P2.0-CS3-

P2.3-CS0-

P2.2-CS1-

P2.5-SCK

P2.4-SS-

P2.7-SDI

P2.6-SDO

VDD

O
S

C
0

O
S

C
1

P
3.

1
R

X
0

P
3.

0
T

X
0

P
3.

3-
C

C
U

0

P
3.

2-
T

0I
N

P
3.

5-
T

1I
N

P
3.

4-
C

C
U

1

P
3.

6-
S

D
A

V
P

P

P
3.

7
-

S
C

L

ADCI0

XTVREF

ADCI2

ADCI1

VDDA

ADCI3

RES-

ADCITA

AGND

PM

INT0 22
2333

34

11
12

1

44

VMX51C1016

3132 30 29 28 27 26 25 24

32 4 5 6 7 8 9 10

35

36

37

38

39

40

41

42

43

21

20

19

18

17

16

15

14

13

VMX51C1016

www.ramtron.com page 3 of 76

VMX51C1016 Block Diagram

FIGURE 4: VMX51C1016 BLOCK DIAGRAM

8051
µ P R O C E S S O R
SINGLE CYCLE

In-Circuit
Debugging

through UART0

2 U A R T s
Serial Ports

56K B
Program FLASH

(In-Circuit Programmable)

1280 Bytes RAM
(256x8 & 1kX8)

· 24 I/O s
· 1 Int. input
· Int. Port1

change
· 3 Timers ,
· 2 Baud Rate

Generators
· 2 CCU inputs

[M U L T / A C C U]
 Unit with
 B A R R E L
SHIFTER

SPI Interface

I²C Bus
Interface

Power On Reset
Circuit

+
WatchDog Timer

Clock Control Unit

J1708/R S485
Compatible
Transceiver

XTAL

4 PWM D /As4 PWM D /As4 PWM D /As4 PWM Outputs
8 / 16 bit Resolution

(Can be used as D /As)

1 DIGITALLY
C O N T R O L L E D

SWITCH

12-BIT A /D
C O N V E R T E R

ADCITA connected to A /D Input
Mult iplexer

A
/D

 in
pu

t M
ux

.

Band gap
Reference PGA

XTVREF Input

VMX51C1016

www.ramtron.com page 4 of 76

Absolute Maximum Ratings

VDD to DGND –0.3V, +6V Digital Output Voltage to
DGND

–0.3V, VDD+0.3V

VDDA to DGND -0.3V, +6V VPP to DGND +13V
AGND to DGND –0.3V, +0.3V Power Dissipation
VDD to VDDA -0.3V, +0.3V § To +75°C 1000mW
ADCI (0-3) to AGND -0.3V, VDDA+0.3V § Derate above +75°C 10mW/°C
XTVREF to AGND -0.3V, VDDA+0.3V Operating Temperature

Range
0° to +70°C

Digital Input Voltage to
DGND

-0.3V, VDD+0.3V Storage Temperature Range –65°C to +150°C

RS485 pin Minimum and
Maximum Voltages

-2V, +7V Lead Temperature
(soldering, 10sec)

+300°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
These are stress ratings only. The functional operation of the device at these or any other conditions beyond
those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.

Electrical Characteristics
TABLE 2: ELECTRICAL CHARACTERISTICS

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
GENERAL CHARACTERISTICS (VDD = +5V, VDDA = +5V, TA = +25°C, 14.75MHz input clock, unless otherwise noted.)

VDD 4.75 5.0 5.5 V Power Supply Voltage
VDDA 4.5 5.0 5.5 V
IDD (14MHz) 5 45*
IDD (1MHz) 0.6 6*

mA
*Depends on clock
speed and peripheral
use and load

Power Supply Current

IDDA 0.1 5*
Flash Programming Voltage VPP 11 13 V
DIGITAL INPUTS
Minimum High-Level input VIH VDD = +5V 2.0 V
Maximum Low-Level input VIL VDD = +5V 0.8 V
Input Current IIN ±0.05 µA
Input Capacitance CIN 5 10 pF
DIGITAL OUTPUTS
Minimum High-Level
Output Voltage

VOH ISOURCE = 4mA 4.2 V

Maximum Low-Level
Output Voltage

VOL ISINK = 4mA 0.2 V

Output Capacitance COUT 10 15 pF
Tri-state Output Leakage
Current

IOZ 0.25 µA

VMX51C1016

www.ramtron.com page 5 of 76

ANALOG INPUTS
ADCI(0-3) Input Voltage Range VADCI 0 2.7 V
ADCI(0-3) Input Resistance RADCI 100 Mohms (design)
ADCI(0-3) Input Capacitance CADCI 7 pF
ADCI(0-3) Input Leakage
Current

IADCI TBD nA

Channel-to-Channel Crosstalk

-72
(12 bit)

dB (design)

INTERNAL REFERENCE
Bandgap Reference Voltage 1.18 1.23V 1.28 V
Bandgap Reference Tempco 100 ppm/°C
EXTERNAL REFERENCE
Input Impedance RXTVREF 150 kOhms
PGA
PGA Gain adjustment 2.11 2.29
ANALOG TO DIGITAL CONVERTER
External Reference, TA=25C, Fosc = 16MHz

ADC Resolution 12 Bits
Differential Non linearity DNL ±1.5 LSB
Integral Non linearity INL -1 +4 LSB
Full-Scale Error (Gain Error) All channels, ADCI(0-3) ±4 LSB
Offset Error All channels, ADCI(0-3) ±1 LSB
Channel-to-Channel Mismatch All channels, ADCI(0-3) ±1 LSB

 Single Channel 1 10k Sampling Rate
 4 Channels 1 2.5k

Hz

UART1 DIFFERENTIAL TRANSCEIVER COMPATIBLE TO J1708/ RS-485
Common mode Input Voltage VcI -2 +7 V
Input Impedance ZIN 1 MOhms
Output Drive Current 30 mA
Differential Input 100mV mV
DIGITAL SWITCH
Switch on Resistance 50 100 Ohms (+/-10%)
Input capacitance 4 pF
Voltage range on Pin 0 5 V
Allowable current (DC) 5 mA
BROWN OUT / RESET CIRCUIT
Brown-out circuit Threshold 3.7 4.0 V
RES- pin internal Pull-Up 20 KOhms

VMX51C1016

www.ramtron.com page 6 of 76

Detailed Description

The following sections describe the VMX51C1016
architecture and peripherals.

FIGURE 5: INTERFACE DIAGRAM FOR THE VERSA MIX

VDD

AGND

VDDA

DGND

ADCI0
ADCI1
ADCI2
ADCI3

ISRCIN
ISRCOUT

SDI

SDO
SCK
SS-

CS0-
CS1-
CS2-

RES-

INT0
INT1

VERSA
MIX

EXTERNAL A/D
INPUTS

CURRENT SOURCE

RESET

I/Os

EXTERNAL
INTERRUPTS

SPI
INTERFACE

+5V Digital

+5V Analog
T2IN

T2EX

T0IN
T1IN TIMERS

I/O

COMPARE AND
CAPTURE UNITS

INPUTS

OP-AMP

POTENTIOMETERS

PWM
OUTPUTS

PWM0
PWM1
PWM2
PWM3

POT1A
POT1B
POT2A

POT2B

OPIN+
OPIN-
OPOUT

CCU0
CCU1
CCU2

OSC0 OSC1

DIGITAL
SWITCH

SW1A
SW1B

UART 0

UART 1

DIFFERENTIAL
TRANSCEIVER

UART1 DIFF.
TRANSCEIVER
J1708/RS-485 /

RS422

I2C
INTERFACESDA

UART 0
INTERFACE

UART 1
INTERFACE

SCL

CS3-

FIGURE 6: MEMORY ORGANIZATION OF THE VERSA MIX

INTERNAL DATA
MEMORY SPACE

EXTERNAL DATA
MEMORY SPACE

INTERNAL PROGRAM
MEMORY SPACE

8051
COMPATIBLE

µ-PROCESSOR
(SingleCycle)

1KB
RAM

SFR SPACE -
PERIPHERALS

(DIRECT
ADDRESSING)

56KB
FLASH

MEMORY

128 Bytes
RAM

(INDIRECT
ADDRESSING

03FFh

0000h

0000h

DFFFh

128 Bytes
RAM

(DIRECT &
INDIRECT

ADDRESSING)

FFh

80h
7Fh

00h

FFh

80h

Memory Organization

Figure 6 shows the memory organization of the
VMX51C1016.

At power-up/reset, code is executed from the
56Kx8 Flash memory mapped into the processor’s
internal program space.

A 1KB block of RAM is also mapped into the
external data memory of the VMX51C1016. This
block can be used as a general-purpose scratch
pad or storage memory. A 256 byte block of RAM
is mapped to the internal data memory space. This
block of RAM is broken into two sub-blocks, with
the upper block accessible via indirect addressing
only and the lower block accessible via both direct
and indirect addressing.

The following figure describes the access to the
lower block of 128 bytes.

FIGURE 7: LOWER 128 BYTES BLOCK INTERNAL MEMORY MAP

LOWER 128 BYTES OF
INTERNAL DATA MEMORY

DIRECT
RAM

BIT-
ADDRESSABLE

REGISTERS

7Fh

30h
2Fh

20h
BANK 31Fh

18h
BANK 2

17h
10h

BANK 10Fh
08h

BANK 007h
00h00h

01h

10h

11h

REGISTER
BANK SELECT

The value of the
RS1, RS0 bits of
PSW SFR
Register (D0h)
defines the
selected R0 -R7
Register Bank

The SFR (special function register) space is also
mapped into the upper 128 bytes of internal data
memory space. This SFR space is only accessible
using direct-access. The SFR space provides the
interface to all the on-chip peripherals. This
interfacing is illustrated in Figure 8.

VMX51C1016

www.ramtron.com page 7 of 76

FIGURE 8: SFR ORGANIZATION

INTERNAL DATA
MEMORY SPACE

SFR SPACE -
PERIPHERALS

(DIRECT
ADDRESSING)

ADC
CONTROL

SPI BUS

DIFF
TRANSCEIVER

CLOCK
CONTROL

PERIPHERAL
INTERRUPTS

MAC

I/O CONTROL

I2C BUS

8051
PROCESSOR

PERIPHERALS

80H

FFH

Dual Data Pointers

The VMX51C1016 includes two data pointers.

The first data pointer (DPTR0) is mapped into SFR
locations 82h and 83h. The second data pointer
(DPTR1) is mapped into SFR locations 84h and
85h. The SEL bit in the data pointer select register,
DPS (SFR 86h), selects which data pointer is
active. When SEL = 0, instructions that use the
data pointer will use DPL0 and DPH0. When SEL
= 1, instructions that use the DPTR will use DPL1
and DPH1. SEL is located in bit 0 of the DPS (SFR
location 86h). The remaining bits of SFR location
86h are unused.

All DPTR-related instructions use the currently
selected data pointer. In order to switch the active
pointer, toggle the SEL bit. The fastest way to do
this is to use the increment instruction (INC DPS).

The use of the two data pointers can significantly
increase the speed of moving large blocks of data
because only one instruction is needed to switch
from a source address and destination address.

The SFR locations and register representations
related to the dual data pointers are outlined as
follows:

TABLE 3: (DPH0) DATA POINTER HIGH 0 - SFR 83H

15 14 13 12 11 10 9 8
DPH0 [7:0]

TABLE 4: (DPL0) DATA POINTER LOW 0 - SFR 82H

7 6 5 4 3 2 1 0
DPL0 [7:0]

Bit Mnemonic Function
15-8 DPH0 Data Pointer 0 MSB
7-0 DPL0 Data Pointer LSB.

TABLE 5: (DPH1) DATA POINTER HIGH 1 - SFR 85H

15 14 13 12 11 10 9 8
DPH1 [7:0]

TABLE 6: (DPL1) DATA POINTER LOW 1 - SFR 84H

7 6 5 4 3 2 1 0
DPL1 [7:0]

Bit Mnemonic Function
15-8 DPH1 Data Pointer 1 MSB.
7-0 DPL1 Data Pointer 1 LSB.

TABLE 7: (DPS) DATA POINTER SELECT REGISTER - SFR 86H

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 SEL

Bit Mnemonic Function
7-1 0 Always zero
0 SEL 0 = DPTR0 is selected

1 = DPTR1 is selected
Used to toggle between both data
pointers

MPAGE Register

The MPAGE register controls the upper 8 bits of
the targeted address when the MOVX instruction is
used for external RAM data transfer. This allows
access to the entire external RAM content without
using the data pointer.

TABLE 8: (MPAGE) MEMORY PAGE - SFR CFH

7 6 5 4 3 2 1 0
MPAGE [7:0]

User Flags

The VMX51C1016 provides an SFR register that
allows the user to define software flags. Each bit of
this register is individually addressable. This
register may also be used as a general-purpose
storage location. Thus, the user flag feature allows
the VMX51C1016 to better adapt to each specific
application. This register is located at SFR address
F8h.
TABLE 9: (USERFLAGS) USER FLAG - SFR F8H

7 6 5 4 3 2 1 0
UF7 UF6 UF5 UF4 UF3 UF2 UF1 UF0

VMX51C1016

www.ramtron.com page 8 of 76

Instruction Set

All VMX51C1016 instructions are function and
binary code compatible with industry standard
8051s. However, the timing of instruction sets may
be different. The following two tables describe the
VMX51C1016 instruction set.

TABLE 10: LEGEND FOR INSTRUCTION SET TABLE

Symbol Function
A Accumulator
Rn Register R0-R7
Direct Internal register address
@Ri Internal register pointed to by R0 or R1 (except MOVX)
rel Two's complement offset byte
bit Direct bit address
#data 8-bit constant
#data 16 16-bit constant
addr 16 16-bit destination address
addr 11 11-bit destination address

TABLE 11: VERSA MIX INSTRUCTION SET

Mnemonic Description Size
(bytes)

Instr.
Cycles

Arithmetic instructions

ADD A, Rn Add register to A 1 1

ADD A, direct Add direct byte to A 2 2

ADD A, @Ri Add data memory to A 1 2

ADD A, #data Add immediate to A 2 2

ADDC A, Rn Add register to A with carry 1 1

ADDC A, direct Add direct byte to A with carry 2 2

ADDC A, @Ri Add data memory to A with carry 1 2

ADDC A, #data Add immediate to A with carry 2 2

SUBB A, Rn Subtract register from A with borrow 1 1

SUBB A, direct Subtract direct byte from A with borrow 2 2

SUBB A, @Ri Subtract data mem from A with borrow 1 2

SUBB A, #data Subtract immediate from A with borrow 2 2

INC A Increment A 1 1

INC Rn Increment register 1 2

INC direct Increment direct byte 2 3

INC @Ri Increment data memory 1 3

DEC A Decrement A 1 1

DEC Rn Decrement register 1 2

DEC direct Decrement direct byte 2 3

DEC @Ri Decrement data memory 1 3

INC DPTR Increment data pointer 1 1

MUL AB Multiply A by B 1 5

DIV AB Divide A by B 1 5

DA A Decimal adjust A 1 1

Logical Instructions

ANL A, Rn AND register to A 1 1

ANL A, direct AND direct byte to A 2 2

ANL A, @Ri AND data memory to A 1 2

ANL A, #data AND immediate to A 2 2

ANL direct, A AND A to direct byte 2 3

ANL direct, #data AND immediate data to direct byte 3 4

ORL A, Rn OR register to A 1 1

ORL A, direct OR direct byte to A 2 2

ORL A, @Ri OR data memory to A 1 2

ORL A, #data OR immediate to A 2 2

ORL direct, A OR A to direct byte 2 3

ORL direct, #data OR immediate data to direct byte 3 4

XRL A, Rn Exclusive-OR register to A 1 1

XRL A, direct Exclusive-OR direct byte to A 2 2

XRL A, @Ri Exclusive-OR data memory to A 1 2

XRL A, #data Exclusive-OR immediate to A 2 2

XRL direct, A Exclusive-OR A to direct byte 2 3

XRL direct, #data Exclusive-OR immediate to direct byte 3 4

CLR A Clear A 1 1

CPL A Compliment A 1 1

SWAP A Swap nibbles of A 1 1

RL A Rotate A left 1 1

RLC A Rotate A left through carry 1 1

RR A Rotate A right 1 1

RRC A Rotate A right through carry 1 1

Mnemonic Description Size
(bytes)

Instr.
Cycles

Data Transfer Instructions

MOV A, Rn Move register to A 1 1

MOV A, direct Move direct byte to A 2 2

MOV A, @Ri Move data memory to A 1 2

MOV A, #data Move immediate to A 2 2

MOV Rn, A Move A to register 1 2

MOV Rn, direct Move direct byte to register 2 4

MOV Rn, #data Move immediate to register 2 2

MOV direct, A Move A to direct byte 2 3

MOV direct, Rn Move register to direct byte 2 3

MOV direct, direct Move direct byte to direct byte 3 4

MOV direct, @Ri Move data memory to direct byte 2 4

MOV direct, #data Move immediate to direct byte 3 3

MOV @Ri, A Move A to data memory 1 3

MOV @Ri, direct Move direct byte to data memory 2 5

MOV @Ri, #data Move immediate to data memory 2 3

MOV DPTR, #data16 Move immediate 16 bit to data pointer 3 3

MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3

MOVC A, @A+PC Move code byte relative PC to A 1 3

MOVX A, @Ri Move external data (A8) to A 1 3-10

MOVX A, @DPTR Move external data (A16) to A 1 3-10

MOVX @Ri, A Move A to external data (A8) 1 4-11

MOVX @DPTR, A Move A to external data (A16) 1 4-11

PUSH direct Push direct byte onto stack 2 4

POP direct Pop direct byte from stack 2 3

XCH A, Rn Exchange A and register 1 2

XCH A, direct Exchange A and direct byte 2 3

XCH A, @Ri Exchange A and data memory 1 3

XCHD A, @Ri Exchange A and data memory nibble 1 3

Branching Instructions

ACALL addr 11 Absolute call to subroutine 2 6

LCALL addr 16 Long call to subroutine 3 6

RET Return from subroutine 1 4

RETI Return from interrupt 1 4

AJMP addr 11 Absolute jump unconditional 2 3

LJMP addr 16 Long jump unconditional 3 4

SJMP rel Short jump (relative address) 2 3

JC rel Jump on carry = 1 2 3

JNC rel Jump on carry = 0 2 3

JB bit, rel Jump on direct bit = 1 3 4

JNB bit, rel Jump on direct bit = 0 3 4

JBC bit, rel Jump on direct bit = 1 and clear 3 4

JMP @A+DPTR Jump indirect relative DPTR 1 2

JZ rel Jump on accumulator = 0 2 3

JNZ rel Jump when accumulator not equal to 0 2 3

CJNE A, direct, rel Compare A, direct JNE relative 3 4

CJNE A, #data, rel Compare A, immediate JNE relative 3 4

CJNE Rn, #data, rel Compare reg, immediate JNE relative 3 4

CJNE @Ri, #data, rel Compare ind, immediate JNE relative 3 4

DJNZ Rn, rel Decrement register, JNZ relative 2 3

DJNZ direct, rel Decrement direct byte, JNZ relative 3 4

Bit Operations

CLR C Clear carry flag 1 1

CLR bit Clear direct bit 2 3

SETB C Set carry flag 1 1

SETB bit Set direct bit 2 3

CPL C Complement carry Flag 1 1

CPL bit Complement direct bit 2 3

ANL C,bit Logical AND direct bit to carry flag 2 2

ANL C, /bit Logical AND between /bit and carry flag 2 2

ORL C,bit Logical OR bit to carry flag 2 2

ORL C, /bit Logical OR /bit to carry flag 2 2

MOC c,bit Copy direct bit location to carry flag 2 2

MOV bit,C Copy carry flag to direct bit location 2 3

Miscellaneous Instruction

NOP No operation 1 1

VMX51C1016

www.ramtron.com page 9 of 76

Special Function Registers

The special function registers (SFRs) control several features on the VMX51C1016. Many of the device’s
SFRs are identical to the standard 8051 SFRs. However, there are additional SFRs that control the
VMX51C1016’s specific peripheral features that are not available on the standard 8051.

TABLE 12: SPECIAL FUNCTION REGISTERS

SFR Register SFR
Adrs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Value

P0 80h - - - - - - - - 1111 1111b
SP 81h - - - - - - - - 0000 0111b
DPL0 82h - - - - - - - - 0000 0000b
DPH0 83h - - - - - - - - 0000 0000b
DPL1 84h - - - - - - - - 0000 0000b
DPH1 85h - - - - - - - - 0000 0000b
DPS 86h 0 0 0 0 0 0 0 SEL 0000 0000b
PCON 87h SMOD - - - GF1 GF0 STOP IDLE 0000 0000b
TCON* 88h TF1 TR1 TF0 TR0 - - IE0 IT0 0000 0000b
TMOD 89h - CT1 M11 M01 GATE0 CT0 M10 M00 0000 0000b
TL0 8Ah - - - - - - - - 0000 0000b
TL1 8Bh - - - - - - - - 0000 0000b
TH0 8Ch - - - - - - - - 0000 0000b
TH1 8Dh - - - - - - - - 0000 0000b
Reserved 8Eh
Reserved 8Fh
P1* 90h - - - - - - - - 1111 1111b
IRCON 91h T2EXIF T2IF ADCIF MACIF I2CIF SPIRXIF SPITXIF Reserved 0000 0000b
ANALOGPWREN 92h 0 0 0 0 TAEN ADCEN PGAEN BGAPEN 0000 0000b
DIGPWREN 93h T2CLKEN WDOGEN MACEN I2CEN SPIEN UART1DIFFEN UART1EN UART0EN 0000 0000b
CLKDIVCTRL 94h SOFTRST - - IRQNORMSPD MCKDIV_3 MCKDIV_2 MCKDIV_1 MCKDIV_0 0000 0000b
ADCCLKDIV 95h - - - - - - - - 0000 0000b
S0RELL 96h - - - - - - - - 11011001b
S0RELH 97h 0 0 0 0 0 0 - - 0000 0011b
S0CON* 98h S0M0 S0M1 MCPE0 R0EN T0B8 R0B8 T0I R0I 0000 0000b
S0BUF 99h - - - - - - - - 0000 0000b
IEN2 9Ah - - - - - - - S1IE 0000 0000b
P0PINCFG 9Bh - - - - P0.3/RX1INE P0.2/TX1OE P0.1/T2EXINE P0.0/T2INE 0000 0000b
P1PINCFG 9Ch - - - - PWM3EN PWM2EN PWM1EN PWM0EN
P2PINCFG 9Dh SDIEN SDOEN SCKEN SSEN CS0EN CS1EN CS2EN CS3EN 0000 0000b
P3PINCFG 9Eh MSCLEN MSDAEN T1INEN CCU1EN CCU0EN T0INEN RX0EN TX0EN 0000 0000b
PORTIRQEN 9Fh 0 0 0 0 P13IEN P12IEN P11IEN P10IEN 0000 0000b
P2* A0h - - - - - - - - 1111 1111b
PORTIRQSTAT A1h - - - - P13ISTAT P12ISTAT P11ISTAT P10ISTAT 0000 0000b
ADCCTRL A2h ADCIRQCLR XVREFCAP 1 ADCIRQ ADCIE ONECHAN CONT ONESHOT 0000 0000b
ADCCONVRLOW A3h - - - - - - - - 0000 0000b
ADCCONVRMED A4h - - - - - - - - 0000 0000b
ADCCONVRHIGH A5h - - - - - - - - 0000 0000b
ADCD0LO A6h - - - - - - - - 0000 0000b
ADCD0HI A7h ADCD0HI_3 ADCD0HI_2 ADCD0HI_1 ADCD0HI_0 0000 0000b
IEN0* A8h EA WDT T2IE S0IE T1IE 0 T0IE INT0IE 0000 0000b
ADCD1LO A9h - - - - - - - - 0000 0000b
ADCD1HI AAh ADCD1HI_3 ADCD1HI_2 ADCD1HI_1 ADCD1HI_0 0000 0000b
ADCD2LO ABh - - - - - - - - 0000 0000b
ADCD2HI ACh ADCD2HI_3 ADCD2HI_2 ADCD2HI_1 ADCD2HI_0 0000 0000b
ADCD3LO ADh - - - - - - - - 0000 0000b
ADCD3HI AEh ADCD3HI_3 ADCD3HI_2 ADCD3HI_1 ADCD3HI_0 0000 0000b
Reserved AFh
P3* B0h - - - - - - - - 1111 1111b
Reserved B1h
Reserved B2h
BGAPCAL B3h - - - - - - - - 0000 0000b
PGACAL B4h - - - - - - - - 0000 0000b
INMUXCTRL B5h - ADCINSEL_2 ADCINSEL_1 ADCINSEL_0 AINEN_3 AINEN_2 AINEN_1 AINEN_0 0000 0000b
OUTMUXCTRL B6h - - - - - TAOUTSEL_2 TAOUTSEL_1 TAOUTSEL_0 0000 0000b
SWITCHCTRL B7h - - - - SWITCH1_3 SWITCH1_2 SWITCH1_1 SWITCH1_0 0000 0000b
IP0* B8h UF8 WDTSTAT IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0 0000 0000b
IP1 B9h - - IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0 0000 0000b
Reserved BAh - - - - - - - - 0000 0000b
Reserved BBh - - - - - - - - 0000 0000b

VMX51C1016

www.ramtron.com page 10 of 76

SFR Register SFR
Adrs Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Value

PGACAL0 BCh PGACAL0 - - - - - - - 0000 0000b
Reserved BDh - - - - - - - - 0000 0000b
S1RELL BEh - - - - - - - - 0000 0000b
S1RELH BFh - - - - - - - - 0000 0000b
S1CON* C0h S1M reserved MCPE1 R1EN T1B8 R1B8 T1I R1I 0000 0000b
S1BUF C1h - - - - - - - - 0000 0000b
CCL1 C2h - - - - - - - - 0000 0000b
CCH1 C3h - - - - - - - - 0000 0000b
CCL2 C4h - - - - - - - - 0000 0000b
CCH2 C5h - - - - - - - - 0000 0000b
CCL3 C6h - - - - - - - - 0000 0000b
CCH3 C7h - - - - - - - - 0000 0000b
T2CON* C8h T2PS T2PSM T2SIZE T2RM1 T2RM0 T2CM T2IN1 T2IN0 0000 0000b
CCEN C9h COCAH3 COCAL3 COCAH2 COCAL2 COCAH1 COCAL1 COCAH0 COCAL0 0000 0000b
CRCL CAh - - - - - - - - 0000 0000b
CRCH CBh - - - - - - - - 0000 0000b
TL2 CCh - - - - - - - - 0000 0000b
TH2 CDh - - - - - - - - 0000 0000b
Reserved CEh
MPAGE CFh - - - - - - - - 0000 0000b
PSW* D0h CY AC F0 RS1 RS0 OV reserved P 0000 0000b
Reserved D1h
Reserved D2h
Reserved D3h
Reserved D4h
Reserved D5h
Reserved D6h
Reserved D7h
U0BAUD D8h BAUDSRC - - - - - - - 0000 0000b
WDTREL D9h PRES WDTREL_6 WDTREL_5 WDTREL_4 WDTREL_3 WDTREL_2 WDTREL_1 WDTREL_0 0000 0000b
I2CCONFIG DAh I2CMASKID I2CRXOVIE I2CRXDAVIE I2CTXEMPIE I2CMANACK I2CACKMODE I2CMSTOP I2CMASTER 0000 0010b
I2CCLKCTRL DBh - - - - - - - - 0000 0000b
I2CCHIPID DCh I2CID_6 I2CID_5 I2CID_4 I2CID_3 I2CID_2 I2CID_1 I2CID_0 I2CWID 0100 0010b
I2CIRQSTAT DDh I2CGOTSTOP I2CNOACK I2CSDAS I2CDATACK I2CIDLE I2CRXOV I2CRXAV I2CTXEMP 0010 1001b
I2CRXTX DEh - - - - - - - - 0000 0000b
Reserved DFh
ACC* E0h - - - - - - - - 0000 0000b
SPIRX3TX0 E1h - - - - - - - - 0000 0000b
SPIRX2TX1 E2h - - - - - - - - 0000 0000b
SPIRX1TX2 E3h - - - - - - - - 0000 0000b
SPIRX0TX3 E4h - - - - - - - - 0000 0000b
SPICTRL E5h SPICK_2 SPICK_1 SPICK_0 SPICS_1 SPICS_0 SPICKPH SPICKPOL SPIMA_SL 0000 0001b
SPICONFIG E6h SPICSLO - FSONCS3 SPI LOAD - SPIRXOVIE SPIRXAVIE SPITXEMPIE 0000 0000b
SPISIZE E7h - 0000 0111b
IEN1* E8h T2EXIE SWDT ADCPCIE MACOVIE I2CIE SPIRXOVIE SPITEIE reserved 0000 0000b
SPIIRQSTAT E9h - - SPITXEMPTO SPISLAVESEL SPISEL SPIOV SPIRXAV SPITXEMP 00011001b
Reserved EAh
MACCTRL1 EBh LOADPREV PREVMODE OVMODE OVRDVAL ADDSRC_1 ADDSRC_0 MULCMD_1 MULCMD_0 0000 0000b
MACC0 ECh - - - - - - - - 0000 0000b
MACC1 EDh - - - - - - - - 0000 0000b
MACC2 EEh - - - - - - - - 0000 0000b
MACC3 EFh - - - - - - - - 0000 0000b
B* F0h - - - - - - - - 0000 0000b
MACCTRL2 F1h MACCLR2_2 MACCLR2_1 MACCLR2_0 MACOV32IE - - MACOV16 MACOV32 0000 0000b
MACA0 F2h - - - - - - - - 0000 0000b
MACA1 F3h - - - - - - - - 0000 0000b
MACRES0 F4h - - - - - - - - 0000 0000b
MACRES1 F5h - - - - - - - - 0000 0000b
MACRES2 F6h - - - - - - - - 0000 0000b
MACRES3 F7h - - - - - - - - 0000 0000b
USERFLAGS* F8h UF7 UF6 UF5 UF4 UF3 UF2 UF1 UF0 0000 0000b
MACB0 F9h - - - - - - - - 0000 0000b
MACB1 FAh - - - - - - - - 0000 0000b
MACSHIFTCTRL FBh SHIFTMODE ALSHSTYLE SHIFTAMPL_5 SHIFTAMPL_4 SHIFTAMPL_3 SHIFTAMPL_2 SHIFTAMPL_1 SHIFTAMPL_0 0000 0000b
MACPREV0 FCh - - - - - - - - 0000 0000b
MACPREV1 FDh - - - - - - - - 0000 0000b
MACPREV2 FEh - - - - - - - - 0000 0000b
MACPREV3 FFh - - - - - - - - 0000 0000b
* Bit addressable

VMX51C1016

www.ramtron.com page 11 of 76

Peripheral Activation Control

Digital Peripherals Power Enable

To save power upon reset, many of the digital
peripherals of the VMX51C1016 are not
activated. The peripherals affected by this are:

o Timer 2 / Port1
o Watchdog timer
o MULT/ACCU unit
o I²C interface
o SPI interface
o UART0
o UART1
o Differential transceiver

Before using any of the above-listed peripherals,
they must first be enabled by setting the
corresponding bit of the DIGPWREN SFR
register to 1.

The same rule applies when accessing a given
peripheral’s SFR register(s). The targeted
peripheral must have been powered on
(enabled) first, otherwise the SFR register
content will be ignored

The following table demonstrates the structure
of the DIGPWREN register.

TABLE 13: (DIGPWREN) DIGITAL PERIPHERALS POWER ENABLE REGISTER - SFR
93H

7 6 5 4
T2CLKEN WDOGEN MACEN I2CEN

3 2 1 0

SPIEN UART1DIFFEN UART1EN UART0EN

Bit Mnemonic Function

7 T2CLKEN
Timer 2 / PWM Enable
0 = Timer 2 CLK stopped
1 = Timer 2 CLK Running

6 WDOGEN
Watch Dog Enable
0 = Watch Dog Disable
1 = Watch Dog Enable

5 MACEN 1 = MULT/ACCU Unit Enable
0 = MULT/ACCU Unit Disable

4 I2CEN
1= I2C Interface Enable
0 = I2C Interface Disable
This bit is merged with CLK STOP bit

3 SPIEN 1 = SPI interface is Enable
0 = SPI interface is Disable

2 UART1DIFFEN
UART1 Differential mode
0 = Disable
1 = Enable

1 UART1EN 0 = UART1 Disable
1 = UART1 Enable

0 UART0EN 0 = UART0 Disable
1 = UART0 Enable

Analog Peripherals Power Enable

The analog peripherals, such as the A/D,
bandgap and PGA analog-to-digital converter,
have a shared dedicated register used for
enabling and disabling these peripherals. By
default, these peripherals are powered down
when the device is reset.

TABLE 14: (ANALOGPWREN) ANALOG PERIPHERALS POWER ENABLE REGISTER -
SFR 92H

7 6 5 4
0 0 0 0

3 2 1 0
0 ADCEN PGAEN BGAPEN

Bit Mnemonic Function

7 0 Reserved, Keep at 0
6 0 Reserved, Keep at 0
5 0 Reserved, Keep at 0
4 0 Reserved, Keep at 0

3 TAEN 1 = TA Output Enable
0 = TA Output Disable

2 ADCEN 1 = ADC Enable
0 = ADC Disable

1 PGAEN 1 = PGA Enable
0 = PGA Disable

0 BGAPEN 1 = Bandgap Enable
0 = Bandgap Disable

Note: The SFR registers associated with all

analog peripherals are activated when
one or more analog peripherals are
enabled.

VMX51C1016

www.ramtron.com page 12 of 76

General Purpose I/O

The VMX51C1016 provides 24 general-purpose
I/O pins. The I/Os are shared with digital
peripherals and can be configured individually.

At reset, all the VMX51C1016 I/O ports are
configured as inputs. The I/O ports are bi-
directional and the CPU can write or read data
through any of these ports.

I/O Port Structure
The VMX51C1016 I/O port structure is shown in
the following figure.

FIGURE 9 – I/O PORT STRUCTURE

I/O

TTL

Driver

OE VCC VCC

I/O
Control

logic

Each I/O pin includes pull-up circuitry
(represented by the internal pull-up resistor) and
a pair of internal protection diodes internally
connected to VCC and ground, providing ESD
protection.

The I/O operational configuration is defined in
the I/O control logic block.

I/O Port Drive Capability

Each I/O port pin, when configured as an output,
can source or sink up to 4mA. The following
graphs show typical I/O output voltage versus
source and I/O output voltage versus sink
current.

FIGURE 10: TYPICAL I/O VOUT VS. SOURCE CURRENT

I/
O

 o
ut

pu
t v

ol
ta

ge
 (

V
ol

ts
)

I/O current source (mA)

4.50

4.60

4.70

4.80

4.90

5.00

0.0 2.0 4.0 6.0 8.0 10.0

FIGURE 11: TYPICAL I/O VOUT VS. SINK CURRENT

I/
O

 o
ut

pu
t v

ol
ta

ge
 (

V
ol

ts
)

I/O current sink (mA)

0.00

0.10

0.20

0.30

0.40

0.50

0.0 2.0 4.0 6.0 8.0 10.0

The maximum recommended driving current of a
single I/O on a given port is 10mA. The
recommended limit when more than one I/O on
a given port is driving current is 5mA on each
I/O. The total current drive of all I/O ports should
be limited to 40mA

The following figure shows a typical I/O rise time
when driving a 20pF capacitive load. In this
case, rise time is about 14ns.

FIGURE 12: I/O RISE TIME WITH A 20PF LOAD

VMX51C1016

www.ramtron.com page 13 of 76

Input Voltage vs. Ext. Device Sink
The I/Os of the VMX51C1016, when configured
as inputs, include an internal pull-up resistor
made up of a transistor, which ensures that the
level present at input is stable when the I/O pins
are disconnected.

Due to the presence of the pull-up resistor on
the digital inputs, the external device driving the
I/O must be able to sink enough current to bring
the I/O pin low.

The following figure shows the VMX51C1016
input port voltage versus the external device
sink current.

FIGURE 13: INPUT PORT VOLTAGE VS. EXT DEVICE SINK CURRENT

I/O
 I

np
ut

 V
ol

ta
ge

 (
V

ol
ts

)

Ext. device sink current (uA)

0.0

1.0

2.0

3.0

4.0

5.0

0 20 40 60 80 100 120 140 160 180

I/O Port Configuration Registers

The VMX51C1016’s I/O port operation is
controlled by two sets of four registers:

o Port pin configuration registers
o Port access registers

The port pin configuration registers combined
with specific peripheral configuration will define
whether a given pin acts as a general purpose
I/O or provides the alternate peripheral
functionality.

Before using a peripheral that is shared with
I/Os, the pin corresponding to the peripheral
output must be configured as an output and the
pins that are shared with the peripheral inputs
must be configured as inputs.

The following registers are used to configure
each of the ports as either general-purpose
inputs, outputs or alternate peripheral functions.
For example, when bit 5 of Port 2 is configured
as an output, it will output the SCK signal if the
SPI interface is enabled and working.

The only exception to this rule is the I2C clock
and data bus signals. In these two cases, the
VMX51C1016 configures the pins automatically
as inputs or outputs.

The P0PINCFG register controls the I/O access
to UART1 and Timer 2’s input and output, and
defines the direction of P0 when used as a
general purpose I/O.

TABLE 15: (P0PINCFG) PORT 0 PORT CONFIGURATION REGISTER - SFR 9BH

7 6 5 4
P07IO P06IO P05IO P04IO

3 2 1 0

P0.3/RX1INE P0.2/TX1OE P0.1/T2EXINE P0.0/T2INE

Bit Mnemonic Function
7:4 P0xIO Not connected on VMX51C1016
3 P0.3/RX1INE 0: General purpose input or

 UART1 RX
1: General purpose output
When using UART1 you must
set this bit to 0.

2 P0.2/TX1OE 0: General purpose input
1: General purpose output or
 UART1 TX
When using UART1 you must
set this bit to 1.

1 P0.1/T2EXINE 0: General purpose input or
Timer 2 EX
1: General purpose output
When using Timer 2EX input
you must set this bit to 0.

0 P0.0/T2INE 0: General purpose input or
Timer 2 IN
1: General purpose output
When using Timer 2 input you
must set this bit to 0.

VMX51C1016

www.ramtron.com page 14 of 76

The P1PINCFG register controls access from
the PWM to the I/O pins and defines the
direction of P1 when the PWM’s are not used.

TABLE 16: (P1PINCFG) PORT 1 PORT CONFIGURATION REGISTER - SFR 9CH

7 6 5 4
P1[7:4]

3 2 1 0

P1.3/PWM3EN P1.2/PWM2EN P1.1/PWM1EN P1.0/PWM0EN

Bit Mnemonic Function
7:4 P1[7:4] Not connected on

VMX51C1016
3 P1.3/PWM3OE 0: General purpose input

1: General purpose output
or PWM bit 3 output

When using PWM you
must set this bit to 1.

2 P1.2/PWM2OE 0: General purpose input
1: General purpose output
or PWM bit 2 output

When using PWM you
must set this bit to 1

1 P1.1/PWM1OE 0: General purpose input
1: General purpose output
or PWM bit 1 output

When using PWM you
must set this bit to 1

0 P1.0/PWM0OE 0: General purpose input
1: General purpose output
or PWM bit 0 output

When using PWM you
must set this bit to 1

The P2PINCFG register controls I/O access to
the SPI interface and defines the direction of P2
when used as a general purpose I/O.

TABLE 17: (P2PINCFG) PORT 2 PORT CONFIGURATION REGISTER - SFR 9DH

7 6 5 4
P2.7/SDIEN P2.6/SDOEN P2.5/SCKEN P2.4/SSEN

3 2 1 0

CS0EN CS1EN CS2EN CS3EN

Bit Mnemonic Function
7 P2.7/SDIEN 0: General purpose input or SDI

1: General purpose output

When using SPI you must set
this bit to 0.

6 P2.6/SDOEN 0: General purpose input
1: General purpose output or
 SDO

When using SPI you must set
this bit to 1.

5 P2.5/SCKEN 0: General purpose input or
 SCK
1: General purpose output

When using SPI you must set
this bit to 0.

4 P2.4/SSEN 0: General purpose input or
 Slave Select
1: General purpose output

When using SPI SS you must
set this bit to 0.

3 P2.3/CS0EN 0: General purpose input
1: General purpose output or
 Chip Select bit 0 output

When using SPI CS0 you
must set this bit to 1.

2 P2.2/CS1EN 0: General purpose input
1: General purpose output or
 Chip Select bit 1 output

When using SPI CS1 you
must set this bit to 1.

1 P2.1/CS2EN 0: General purpose input
1: General purpose output or
 Chip Select bit 2 output

When using SPI CS2 you
must set this bit to 1.

0 P2.0/CS3EN 0: General purpose input
1: General purpose output or
 Chip Select bit 3 output

When using SPI CS3 you
must set this bit to 1.

VMX51C1016

www.ramtron.com page 15 of 76

The P3PINCFG register controls I/O access to
UART0, the I²C interface, capture and compare
inputs 0 and 1 and timer 0/1’s inputs, and
defines the direction of P3 when used as a
general purpose I/O.

TABLE 18: (P3PINCFG) PORT 3 PORT CONFIGURATION REGISTER - SFR 9EH

7 6 5 4

P3.7/MSCLEN P3.6/MSDAEN P3.5/T1INE
N

P3.4/CCU1E
N

3 2 1 0

P3.3/CCU0EN P3.2/T0INEN P3.1/RX0EN P3.0/TX0EN

Bit Mnemonic Function
7

P3.7/MSCLEN

0: General purpose input
1: General purpose output or
 Master I2C SCL output

When using the I2C you must
set this bit to 1.

6

P3.6/MSDAEN

0: General purpose input
1: General purpose output or
 Master I2C SDA

When using the I2C you must
set this bit to 1.

5

P3.5/T1INEN

0: General purpose input or
 Timer1 Input
1: General purpose output

When using Timer 1 you must
set this bit to 0.

4

P3.4/CCU1EN

0: General purpose input or
 CCU1 Input
1: General purpose output

When using the Compare and
Capture unit you must set this
bit to 0.

3

P3.3/CCU0EN

0: General purpose input or
 CCU0 Input
1: General purpose output

When using the Compare and
Capture unit you must set this
bit to 0.

2

P3.2/T0INEN

0: General purpose input or
 Timer 0 Input
1: General purpose output

When using Timer 0 you must
set this bit to 0.

1

P3.1/RX0EN

0: General purpose input or
 UART0 Rx
1: General purpose output

When using UART0 you must
set this bit to 0.

0

P3.0/TX0EN

0: General purpose input
1: General purpose output or
 UART0 Tx

When using UART0 you must
set this bit to 1.

Using General Purpose I/O Ports

The VMX51C1016’s 24 I/Os are grouped into
four ports. For each port an SFR register

location is defined. These registers are bit
addressable, providing the ability to control the
I/O lines individually. The upper 4 bits of Port 0
and Port 1 are not pinned out.

When the port pin configuration register value
defines the pin as an output, the value written
into the port register will be reflected at the pin
level.

Reading the I/O pin configured as input is done
by reading the contents of its associated port
register.

TABLE 19:
PORT 0 - SFR 80H

7 6 5 4 3 2 1 0
P0 [7:0]

PORT 1 - SFR 90H

7 6 5 4 3 2 1 0
P1 [7:0]

PORT 2 - SFR A0H

7 6 5 4 3 2 1 0
P2 [7:0]

PORT 3 - SFR B0H

7 6 5 4 3 2 1 0
P3 [7:0]

Bit Mnemonic Function
7-0 P0, 1, 2, 3 When the Port is configured as an

output, setting a port pin to 1 will
make the corresponding pin to
output logic high.
When set to 0, the corresponding
pin will set a logic low.

I/O usage example

The following example demonstrates the configuration of the VMX51C1016 I/Os.

//---
//This example continuously reads the P0 and writes its contents into //P1 and it
toggle P2 and P3.
//---
#pragma TINY
#pragma UNSIGNEDCHAR

#include <VMIXReg.h>

at 0x0000 void main (void)
{
 DIGPWREN = 0x80; // Enable Timer 2 to activate P1

//Output
 P0PINCFG = 0x00; // Configure all P0 as Input
 P1PINCFG = 0x0F; //Configure P1 as Output
 P2PINCFG = 0xFF; //Configure P2 as Output
 P3PINCFG = 0xFF; //Configure P3 as Output

 while(1)
 {
 P1 = P0; //Write P0 into P1
 P2 = ~P2; //Toggle P2 & P3
 P3 = ~P3;
 }
}//end of main() function

VMX51C1016

www.ramtron.com page 16 of 76

Using Port 1.0-3 as General Purpose
Output

Port 1.0-P1.3 can be used as standard digital
output. In order to do this, the Timer 2 clock
must be enabled by setting the T2CLKEN bit of
the DIGPWREN register. In addition, the Timer 2
CCEN register must also have the reset value.

Interrupt on Port 1 Change Feature

The VMX51C1016 includes ann interrupt on Port
1 change feature. This can be used to monitor
the activity on each I/O Port 1 pin (individually),
and trigger an interrupt when the state of the pin
on which this feature has been activated
changes. This is equivalent to having eight
individual external interrupt inputs. The interrupt
on Port 1 change shares the interrupt vector of
the ADC peripheral at address 006Bh.

See the interrupt section for more details on how
to use this feature.

VMX51C1016

www.ramtron.com page 17 of 76

MULT/ACCU - Multiply
Accumulator Unit

MULT/ACCU Features
The VMX51C1016 includes a hardware based
multiply-accumulator unit, which allows the user
to perform fast and complex arithmetic
operations.

MULT/ACCU unit features:

o Hardware calculation engine
o Calculation result is ready as soon as

the input registers are loaded
o Signed mathematical calculations
o Unsigned MATH operations are possible

if the MUL engine operands are limited
to 15 bits in size

o Auto/Manual reload of MAC_RES
o Enhanced VMX51C1016 MULT/ACCU

unit
o Easy implementation of complex MATH

operations
o 16-bit and 32-bit overflow flag
o 32-bit overflow can trigger an interrupt
o MULT/ACCU operand registers can be

cleared individually or all together
o Overflow flags can be configured to stay

active until manually cleared
o Can store and use results from previous

operations
o MULT/ACCU can be configured to

perform the following operations:

FIGURE 13: VMX51C1016 MULT/ACCU OPERATION

(MACA x MACB) + MACC = MAC_RESULT
(MACA x MACB) + 0 = MAC_RESULT
(MACA x MACB) + MAC_PREV = MAC_RESULT

(MACA x MACA) + MACC = MAC_RESULT
(MACA x MACA) + 0 = MAC_RESULT
(MACA x MACA) + MAC_PREV = MAC_RESULT

(MACA x MAC_PREV(16lsb) + MACC = MAC_RESULT
(MACA x MAC_PREV(16lsb) + 0 = MAC_RESULT
(MACA x MAC_PREV(16lsb) + MAC_PREV = MAC_RESULT

ADD32 + ADD32

MULT16 + ADD32

(MACA, MACB) + MACC = MAC_RESULT

Where MACA (multiplier), MACB (multiplicand),
MACACC (accumulator) and MACRESULT
(result) are 16, 16, 32 and 32 bits, respectively.

MULT/ACCU Control Registers
With the exception of the barrel shifter, the
MULT/ACCU unit operation is controlled by two
SFR registers:

o MACCTRL1
o MACTRLC2

The following two tables describe these control
registers:

TABLE 20: (MACCTRL1) MULT/ACCU UNIT CONTROL REGISTER - SFR EBH

7 6 5 4
LOADPREV PREVMODE OVMODE OVRDVAL

3 2 1 0
ADDSRC [1:0] MULCMD [1:0]

Bit Mnemonic Function
7 LOADPREV MACPREV manual Load control

1 = Manual load of the
MACPREV register content if
PREVMODE = 1

6 PREVMODE Loading method of MACPREV
register

0 = Automatic load when
MACA0 is written.
1 = Manual Load when 1 is
written into LOADPREV

5 OVMODE 0 = Once set by math operation,
the OV16 and OV32 flag will
remain set until the overflow
condition is removed.
1= Once set by math operation,
the OV16 and OV32 flag will
stay set until it is cleared
manually.

4 OVRDVAL 0 = The value on MACRES is
the calculation result.
1 = the value on MACRES is the
32LSB of the MACRES when
the OV32 overflow occurred

3:2 ADDSRC[1:0] 32-bit Addition source
B Input
00 = 0 (No Add)
01 = C (std 32-bit reg)
10 = RES –1
11 = C (std 32-bit reg)
A Input
00=Multiplication
01=Multiplication
10=Multiplication
11= Concatenation of {A, B} for
32-bit addition

1:0 MULCMD[1:0] Multiplication Command
00 = MACA x MACB
01 = MACA x MACA
10 = MACA x MACPREV (16 LSB)
11 = MACA x MACB

VMX51C1016

www.ramtron.com page 18 of 76

TABLE 21: (MACCTRL2) MULT/ACCU UNIT CONTROL REGISTER 2 -SFR F1H

7 6 5 4
MACCLR2 [2:0] MACOV32IE

3 2 1 0
- - MACOV16 MACOV32

Bit Mnemonic Function
7:5 MACCLR[2:0] MULT/ACCU Register Clear

000 = No Clear
001 = Clear MACA
010 = Clear MACB
011 = Clear MACC
100 = Clear MACPREV
101 = Clear All MAC regs +
Overflow Flags
110 = Clear Overflow Flags only

4 MACOV32IE MULT/ACCU 32-bit Overflow
IRQ Enable

3 - -
2 - -
1 MACOV16 16-bit Overflow Flag

0 = No 16 overflow
1 = 16-bit MULT/ACCU
Overflow occurred

0 MACOV32 32-bit Overflow Flag
1 = 32-bit MULT/ACCU
Overflow
This automatically loads the
MAC32OV register.
The MACOV32 can generate a
MULT/ACCU interrupt when
enabled.

MULT/ACCU Unit Data Registers

The MULT/ACCU data registers include operand
and result registers that serve to store the
numbers being manipulated in mathematical
operations. Some of these registers are uniquely
for addition (such as MACC), while others can
be used for all operations. The MULT/ACCU
operation registers are represented below.

MACA and MACB Multiplication
(Addition) Input Registers

The MACA and MACB register serves as 16-bit
input operands when performing multiplication.
When the MULT/ACCU is configured to perform
32-bit addition, the MACA and the MACB
registers are concatenated to represent a 32-bit
word. In such cases, the MACA register contains
the upper 16-bit of the 32-bit operand and the
MACB contains the lower 16 bits.

TABLE 22: (MACA0) MULT/ACCU UNIT A OPERAND, LOW BYTE - SFR F2H

7 6 5 4 3 2 1 0
MACA0 [7:0]

Bit Mnemonic Function
7:0 MACA0 Lower segment of the MACA

operand

TABLE 23: (MACA1) MULT/ACCU UNIT A OPERAND, HIGH BYTE - SFR F3H

7 6 5 4 3 2 1 0
MACA1 [15:8]

Bit Mnemonic Function
15:8 MACA1 Upper segment of the MACA

operand

TABLE 24: (MACB0) MULT/ACCU UNIT B OPERAND, LOW BYTE - SFR F9H

7 6 5 4 3 2 1 0
MACB0 [7:0]

Bit Mnemonic Function
7:0 MACB0 Lower segment of the MACB

operand

TABLE 25: (MACB1) MULT/ACCU UNIT B OPERAND, HIGH BYTE - SFR FAH

7 6 5 4 3 2 1 0
MACB1 [7:0]

Bit Mnemonic Function

7:0 MACB1 Upper segment of the MACB
operand

MACC Input Register
The MACC register is a 32-bit register used to
perform 32-bit addition.

It is possible to substitute the MACPREV
register for the MACC register or 0 in the 32-bit
addition.

TABLE 26: (MACC0) MULT/ACCU UNIT C OPERAND, LOW BYTE - SFR ECH

7 6 5 4 3 2 1 0
MACC0 [7:0]

Bit Mnemonic Function

7:0 MACC0 Lower segment of the 32-bit addition
register

TABLE 27: (MACC1) MULT/ACCU UNIT C OPERAND, BYTE 1 - SFR EDH

7 6 5 4 3 2 1 0
MACC1 [15:8]

Bit Mnemonic Function

15:8 MACC1 Lower middle segment of the 32-bit
addition register

TABLE 28: (MACC2) MULT/ACCU UNIT C OPERAND, BYTE 2 - SFR EEH
7 6 5 4 3 2 1 0

MACC2 [23:16]

Bit Mnemonic Function

23:16 MACC2 Upper middle segment of the 32-bit
addition register

VMX51C1016

www.ramtron.com page 19 of 76

TABLE 29: (MACC3) MULT/ACCU UNIT C OPERAND, HIGH BYTE - SFR EFH

7 6 5 4 3 2 1 0
MACC3 [31:24]

Bit Mnemonic Function

31:24 MACC3 Upper segment of the 32-bit addition
register

MACRES Result Register
The MACRES register, which is 32 bits wide,
contains the result of the MULT/ACCU
operation. In fact, the MACRES register is the
output of the barrel shifter.

TABLE 30: (MACRES0) MULT/ACCU UNIT RESULT, LOW BYTE - SFR F4H

7 6 5 4 3 2 1 0
MACRES0 [7:0]

Bit Mnemonic Function
7:0 MACRES0 Lower segment of the 32-bit

MULT/ACCU result register

TABLE 31: (MACRES1) MULT/ACCU UNIT RESULT, BYTE 1 - SFR F5H

7 6 5 4 3 2 1 0
MACRES1 [15:8]

Bit Mnemonic Function
15:8 MACRES1 Lower middle segment of the 32-bit

MULT/ACCU result register

TABLE 32: (MACRES2) MULT/ACCU UNIT RESULT, BYTE 2 - SFR F6H

7 6 5 4 3 2 1 0
MACRES2 [23:16]

Bit Mnemonic Function
23:16 MACRES2 Upper middle segment of the 32-bit

MULT/ACCU result register

TABLE 33: (MACRES3) MULT/ACCU UNIT RESULT, HIGH BYTE - SFR F7H

7 6 5 4 3 2 1 0
MACRES3 [31:24]

Bit Mnemonic Function
31:24 MACRES3 Upper segment of the 32-bit

MULT/ACCU result register

MACPREV Register

The MACPREV register provides the ability to
automatically or manually save the contents of
the MACRES register and re-inject it into the
calculation. This feature is especially useful in
applications where the result of a given
operation serves as one of the operands of the
next one.

As previously mentioned, there are two ways to
load the MACPREV register controlled by the
PREVMODE bit value:

PREVMODE = 0:
Auto MACPREV load, by writing into the MACA0
register. Selected when PREVMODE = 0.

PREVMODE = 1:
Manual load of MACPREV when the
LOADPREV bit is set to 1.

A good example demonstrating the auto loading
of the MACPREV feature is the implementation
of a FIR filter. In that specific case, it is possible
to save a total of 8 MOV operations per tap
calculation.

TABLE 34: (MACPREV0) MULT/ACCU UNIT PREVIOUS OPERATION RESULT, LOW
BYTE - SFR FCH

7 6 5 4 3 2 1 0
MACPREV0 [7:0]

Bit Mnemonic Function
7:0 MACPREV0 Lower segment of 32-bit

MULT/ACCU previous result register

TABLE 35: (MACPREV1) MULT/ACCU UNIT PREVIOUS OPERATION RESULT, BYTE
1 - SFR FDH

7 6 5 4 3 2 1 0
MACPREV1 [7:0]

Bit Mnemonic Function
15:8 MACPREV1 Lower middle segment of 32-bit

MULT/ACCU previous result register

TABLE 36: (MACPREV2) MULT/ACCU UNIT PREVIOUS OPERATION RESULT, BYTE
2 - SFR FEH

7 6 5 4 3 2 1 0
MACPREV2 [15:8]

Bit Mnemonic Function
23:16 MACPREV2 Upper middle segment of 32-bit

MULT/ACCU previous result register

TABLE 37: (MACPREV3) MULT/ACCU UNIT PREVIOUS OPERATION RESULT, HIGH
BYTE - SFR FFH

7 6 5 4 3 2 1 0
MACPREV3 [7:0]

Bit Mnemonic Function
31:24 MACPREV3 Upper segment of 32-bit

MULT/ACCU previous result register

VMX51C1016

www.ramtron.com page 20 of 76

FIGURE 14: VMX51C1016 MULT/ACCU FUNCTIONAL DIAGRAM

MACA1 (MSB)

MACA0 (LSB)

MACB1 (MSB)

MACB0 (LSB)

SFR registers

MACC3 (MSB)

MACC2

MACC1

MACC0 (LSB)

MACA

MACB
MUL

(Signed)

mulcmd

ADD
MSB

ADD
LSB

addsrc

MACC

ov32

ov16b SHIFT

ovrdval

MACRES

MACPREV

Maca0 load

loadprev

prevmode

MAC32OV
(stored)

MACRES
(SFR regs)

ov32F
rst

1

load

OVCLR

shiftmode

ov32
ov32F / IRQ

rst
1

ovmode

ov32

Ov16a+b
ov16F

rst
1

ovmode

Ov16a+b

ov16a

0

(16 LSB)

MACRES2

MACRES3 (MSB)

MACRES1

MACRES0 (LSB)

SFR registers

MACRES2

MACRES3 (MSB)

MACRES1

MACRES0 (LSB)

SFR registers

MACSHIFTCTRL

MAC32OV3 (MSB)

MAC32OV2

MAC32OV1

MAC32OV0 (LSB)

MACCTRL

MACCTRL2

MAC Control SFR

MACSHIFTCTRL

MAC32OV3 (MSB)

MAC32OV2

MAC32OV1

MAC32OV0 (LSB)

MACCTRL

MACCTRL2

MAC Control SFR

MACSHIFTCTRL

MAC32OV3 (MSB)

MAC32OV2

MAC32OV1

MAC32OV0 (LSB)

MACCTRL

MACCTRL2

MAC Control SFR

MAC32OV3 (MSB)

MAC32OV2

MAC32OV1

MAC32OV0 (LSB)

MACCTRL

MACCTRL2

addsrc

B

B

A

A

Concatenation (A,B)

The block diagram above shows the interaction
between the registers and the other components
that comprise the MULT/ACCU unit on the
VMX51C1016.

VMX51C1016

www.ramtron.com page 21 of 76

MULT/ACCU Barrel Shifter
The MULT/ACCU includes a 32-bit barrel shifter
at the output of the 32-bit addition unit. The
barrel shifter can perform right/left shift
operations in one cycle, which is useful for
scaling the output result of the MULT/ACCU.

The shifting range is adjustable from 0 to 16 in
both directions. The “shifted” addition unit output
can be routed to:

o MACRES
o MACPREV
o MACOV32

The barrel shifter can perform both arithmetic
and logical shifts: The shift left operation can be
configured as an arithmetic or logical shift. In the
latter, the sign bit is discarded.

TABLE 38: (MACSHIFTCTRL) MULT/ACCU UNIT BARREL SHIFTER CONTROL
REGISTER - SFR FBH

7 6 5 4 3 2 1 0
SHIFTMODE ALSHSTYLE SHIFTAMPL [5:0]

Bit Mnemonic Function
7 SHIFTMODE 0 = Logical SHIFT

1 = Arithmetic SHIFT
6 ALSHSTYLE Arithmetic Shift Left Style

0= Arithmetic Left Shift: Logical Left
1= Arithmetic Left Shift: Keep sign bit

5:0 SHIFTAMPL[5:0] Shift Amplitude 0 to 16 (5 bits to
provide 16 bits shift range)
Neg. Number = Shift Right
 (2 complements)
Pos. Number = Shift Left

MULT/ACCU Unit Setup and OV32
Interrupt Example

In order to use the MULT/ACCU unit, the user
must first set up and configure the module. The
following provides setup code examples. The
first part of the code is the interrupt setup and
module configuration, while the second part is
the interrupt function itself.

Sample C code for MULT/ACCU unit interrupt
setup and module configuration:
//---
// Sample C code to setup the MULT/ACCU unit
//---

//--- Program initialisation omitted…

(…)
void main(void){
// MULT/ACCU setup
IEN0 |= 0x80; // Enable all interrupts
IEN1 |= 0x10; // Enable MULT/ACCU interrupt
DIGPWREN |= 0x20; // Enable MULT/ACCU unit
MACCTRL1 = 0x0C; // {A,B}+C
MACCTRL2 = 0x10; // Enable INT overflow_32

// MULT/ACCU example use

MACA0 = 0xFF;
MACA1 = 0x7F;
MACB0 = 0xFF;
MACB1 = 0xFF;
MACC0 = 0xFF;
MACC1 = 0xFF;
MACC2 = 0xFF;
MACC3 = 0x7F;

//--- as soon as the MAC input registers are loaded the result is available in the
MACRESx registers.
}//end of main

//---
// MAC 32 bit overflow Interrupt Function

void int_5_mac (void) interrupt 12
{
IEN0 &= 0x7F; // Disable all interrupts

//Put MAC 32 bit Overflow Interrupt code here.*/
//Note that when a 32bit overflow occurs, the 32 least significant bit of the current
//result are stored into the MAC32OVx registers and can be read at the location
of MACRESx by setting to 1 the OVRDVAL bit of the MACCTRL register

IRCON &= 0xEF; // Clear flag (IEX5)
IEN0 |= 0x80; // Enable all interrupts
}
//--

MULT/ACCU Application Example:
FIR Filter Function

The following ASM code shows the
implementation of an FIR filter computation
function for one iteration, followed by the data
shifting operation and the definition of the FIR
filter coefficient table. The FIR computation is
simple to implement, however, it is quite
demanding in terms of processing power. For
each new data point, the multiplication with
associated coefficients plus addition operation
must be performed N times (N=number of filter
tapps).

Since it is hardware based and provides an
automatic reload of the result of the previous
operation feature, the VMX51C1016
MULT/ACCU unit is very efficient in performing
operations such as FIR filter computation.

In the code example below, the COMPUTEFIR
loop forms the “heart” of the FIR computation. It
is clear that use of the MULT/ACCU unit implies
very few instructions to perform mathematical
operations. The net result is a dramatic
performance improvement when compared with
manual calculations done solely via the standard
8051 instruction set.

VMX51C1016

www.ramtron.com page 22 of 76

VMX51C1016 FIR Filter Example

The example below shows how to use the
VMX51C1016’s MULT/ACCU unit to perform
FIR filter computing. To minimize the example
size, only the FIR computing function and the
coefficient table are presented.

;--//
;** FIR Filter Computing Function //
;---//
FIRCOMPUTE: MOV R0,#NPOINTSBASEADRS

;INPUT ADC RAW DATA
;AT Xn LOCATIONS...

;Saving acquired data from calling function into RAM for computation

MOV VARH,DATAH
MOV VARL,DATAL
MOV @R0,VARH ;(MSB)
INC R0
MOV @R0,VARFL ;(LSB)

;** Prepare to compute Yn...
;***Define Base ADRS of input values

MOV R0,#NPOINTSBASEADRS

;***Define Base Address of coefficients
MOV R1,#COEFBASEADRS
MOV R7,#NPOINTS ;DEFINE COUNTER

;***Configure the MULT/ACCU unit as Follow:

MOV MACCTRL,#00001000B

 ;BIT7 LOADPREV = 0 No manual Previous result

;BIT6 PREVMODE = 0 Automatic Previous result save when
; MULT/ACCUA0 is loaded
;BIT5 OVMODE = 0 Overflow flag remains ON until overflow
; condition exist

 ;BIT4 OVRDVAL = 0 The value of MACRES is the calculation
; result

 ;BIT3:2 ADDSRC = 10 MACPREV is the Addition Source
 ;BIT1:0 MULCMD = 00 Mul Operation = MACAxMACB

;**Clear the MULT/ACCU registers content

MOV MACCTRL2,#0A0H
;** COMPUTE Yn...

COMPUTEFIR: MOVMACB1,@R1 ;Put a given Coefficient into
 ;MULT/ACCUB

INC R1
MOV MACB0,@R1
INC R1

MOV MACA1,@R0 ; Put a given Xn Input into
INC R0
MOV MACA0,@R0
;This last instruction load the MACPREV register for next Operation
INC R0
DJNZ R7,COMPUTEFIR ;Do the Computation for N taps

;*** Second part
;---//
;** SHIFT PREVIOUS INPUT VALUES TO LET PLACE FOR NEXT ONE...
;---//
SHIFTPAST:

MOV R7,#(NPOINTS-1)*2 ;Define # of datashift
 ;To perform (N-1)*2
;***COMPUTE FIRST FETCH ADDRESS

MOV R0,#(NPOINTSBASEADRS - 1 + 2*(NPOINTS-1))

;***COMPUTE FIRST DESTINATION ADDRESS

MOV R1,#(NPOINTSBASEADRS + 1 + 2*(NPOINTS-1))
SHIFTLOOP: MOV A,@R0 ;Shift Given LSB input...

MOV @R1,A ;To next location
DEC R0 ;Prepare pointer for moving LSB
DEC R1
DJNZ R7,SHIFTLOOP

;** PERFORM TRANSFORMATION OF Yn HERE AND PUT INTO BINH, BINL
;** IN THIS CASE THE COEFFICIENTS HAVE BEEN MULTIPLIED BY 65536
;** SO THE RESULT IS ON 32-BITS
;** DIVISING YN BY 65536 MEAN ONLY TAKING THE UPPER 16-BITS

MOV DATAH,MACRES3
MOV DATAL,MACRES2

LCALL SENDLTC1452
MOV P3,#00
RET

;--
;* FIR Filter Coefficients Table *
;--
;FSAMPLE 480HZ, N=16, LOW PASS 0.1HZ -78DB @ 60HZ

COEFTABLE: DW 023DH
 DW 049DH
 DW 086AH
 DW 0D2DH
 DW 1263H
 DW 1752H
 DW 1B30H
 DW 1D51H
 DW 1D51H
 DW 1B30H
 DW 1752H
 DW 1263H
 DW 0D2DH
 DW 086AH
 DW 049DH
 DW 023DH

 DW 0FFFFH ;END OF TABLE

VMX51C1016

www.ramtron.com page 23 of 76

VMX51C1016 Timers

The VMX51C1016 includes three general-
purpose timer/counters

o Timer 0
o Timer 1
o Timer 2

Timer 0 and Timer 1 are general purpose timers
that can operate as either a timer with a clock
rate based on the system clock, or an event
counter that monitors events occurring on an
external timer input pin (T0IN for Timer 0 and
T1IN for Timer 1).

Timers 0 and 1 are similar to standard 8051
timers. In addition to operating as a timer based
on a system clock or as an event counter, Timer
2 is also the heart of the PWM counter outputs
and the compare and capture units.

Each of the VMX51C1016’s timers has a
dedicated interrupt vector, which can be
triggered when the timers overflow.

Timer 0 and Timer 1

Timer 0 and Timer 1 are similar in their structure
and operation. The main differences between
them is that the Timer 1 serves as a baud rate
generator for UART0 and shares some of its
resources when Timer 0 is used in Mode 3.

Timer 0 and Timer 1 each consist of a 16-bit
register, for which content is accessible as two
independent SFR registers: TLx and THx.

TABLE 39: (TL0) TIMER 0 LOW BYTE - SFR 8AH

7 6 5 4 3 2 1 0
TL0 [7:0]

TABLE 40: (TH0) TIMER 0 HIGH BYTE - SFR 8CH
7 6 5 4 3 2 1 0

TH0 [7:0]

TABLE 41: (TL1) TIMER 1 LOW BYTE - SFR 8BH
7 6 5 4 3 2 1 0

TL1 [7:0]

TABLE 42: (TH1) TIMER 1 HIGH BYTE - SFR 8DH
7 6 5 4 3 2 1 0

TH1 [7:0]

With the exception of their associated interrupts,
the configuration and control of timers 0 and 1
are performed via the TMOD and TCON SFR
registers.

The following table shows the TCON special
function register of the VMX51C1016. This
register contains the Timer 0/1 overflow flags,
Timer 0/1 run control bits, INT0 edge flags and
INT0 interrupt type control bits.

TABLE 43: (TCON) TIMER 0, TIMER 1 TIMER/COUNTER CONTROL - SFR 88H

7 6 5 4
TF1 TR1 TF0 TR0

3 2 1 0
- - IE0 IT0

Bit Mnemonic Function
7 TF1 Timer 1 overflow flag.

Set by hardware when Timer 1 overflows.
It is automatically cleared when the
Timer 1 interrupt is serviced.
This flag can also be cleared by software.

6 TR1 Timer 1 Run control bit.
TR1 = 0, Stop Timer 1
TR1 = 1, Start Timer 1

5 TF0 Timer 0 overflow flag.
Set by hardware when Timer 0 overflows.
It is automatically cleared when the
Timer 0 interrupt is serviced.
This flag can also be cleared by software.

4 TR0 Timer 0 Run control bit.
TR0 = 0, Stop Timer 0
TR0 = 1, Start Timer 0

3 - Reserved
2 - Reserved
1 IE0 INT0 edge flag configuration

Set by hardware when falling edge on
external pin INT0 is observed.
It is cleared when interrupt is processed.

0 IT0 INT0 interrupt event type control bit.
IT0 = 0, interrupt will be caused by
 a Low Level on INT0
IT0 = 1, Interrupt will be caused by a
 High to Low transition on INT0.

VMX51C1016

www.ramtron.com page 24 of 76

The TMOD register is used mainly to set the
timers’ operating mode and allows the user to
enable the external gate control as well as select
a timer or counter operation.

TABLE 44: (TMOD) TIMER MODE CONTROL - SFR 89H

7 6 5 4
- CT1 M11 M01

3 2 1 0

GATE0 CT0 M10 M00

Bit Mnemonic Function
7 Reserved
 CT1 Selects TIMER1 Operation.

CT1 = 0, Sets the Timer 1 as a Timer
 which value is incremented
 by SYSCLK events.

CT1 = 1, The Timer 1 operates as a
 counter which counts the
 High to Low transition on
 that occurs on the T1IN
 input.

5 M11
4 M01

Selects mode for Timer/Counter 1, as
shown in the Table below.

3 GATE0 GATE0 = 0,
The level present on the INT0 pin has
no affect on Timer1 operation.

GATE0 = 1,
The level of INT0 pin serves as a Gate
control on to Timer/Counter operation
provided the TR1 bit is set. Applying a
Low Level on the INT0 pin makes the
Timer stop.

2 CT0 Selects Timer 0 Operation.
CT1 = 0, Sets the Timer 0 as a Timer
 which value is incremented
 by SYSCLK events.

CT1 = 1, The Timer 0 operates as a
 counter which counts the
 High to Low transition on
 that occurs on the T1IN
 input.

1 M10
0 M00

Selects mode for Timer/Counter 0, as
shown in the Table below.

Timer 0/Timer 1/Counter Operation

The CT0 and CT1 bits of the TMOD register
control the clock source for Timer 0 and Timer 1,
respectively. When the CT bit is set to 0 (timer
mode), the timer is sourced from the system
clock divided by 12.

Setting the CTx bit to 1 configures the timer to
operate in event counter mode. In this mode,
high to low transitions on the TxIN pin of the
VMX51C1016 increment the timer value.

Note that when Timer 0 and Timer 1 operate in
timer mode, they use the system clock as their
source. Therefore, configuring the CLKDIVCTRL
register will affect the timers’ operation.

Timer 0, Timer 1 Gate Control
Gate control makes it possible for an external
device to control the Timer 0 operation through
the interrupt (INT0) pins.

When the GATE0 and TR0 bits of the TMOD
register are set to 1:

o INT0 = Logic low, Timer 0 stops
o INT0 = Logic high, Timer 0 runs

When the gate bit equals 0, the logic level
presented at the INT0 pin has no affect on the
Timer 0 operation.

Gate control is not possible on Timer 1 because
the INT1 is not pinned out and an internal pull-
up resistor keeps its level high.

FIGURE 15: TIMER 0, TIMER 1 CTX & GATE CONTROL

SYSCLK ÷12

T0IN

CT0=0

CT0=1

TR0

GATE0

INT0

0

1

CLK

SYSCLK ÷12

T1IN

CT1=0

CT1=1

TR1

0

1

CLK

VMX51C1016

www.ramtron.com page 25 of 76

Timer 0, Timer 1 Operation Modes
The operating mode of Timer 0 and Timer 1 is
determined by the value of the M1x and M0x bits
in the TMOD register. The table below
summarizes the four modes of operation for
timers 0 and 1.

TABLE 45: TIMER/COUNTER MODE DESCRIPTION SUMMARY

M1 M0 Mode Function
0 0 Mode 0 13-bit Timer / Counter, with 5

lower bits in TL0 or TL1 register
and bits in TH0 or TH1 register
(for timer 0 and timer 1,
respectively). The 3 high order
bits of TL0 and TL1 are held at
0.

0 1 Mode 1 16-bit Timer / Counter
1 0 Mode 2 8-bit auto reload Timer /

Counter. The reload value is
kept in TH0 or TH1, while TL0
or TL1 is incremented every
machine cycle. When TLx
overflows, a value from THx is
copied to TLx.

1 1 Mode 3 If Timer 1 M1 and M0 bits are
set to 1, Timer 1 stops. If Timer
0 M1 and M0 bits are set to 1,
Timer 0 acts as two
independent 8-bit Timers /
Counters.

Mode 0, 13-bit Timer/Counter

Mode 0 operation is the same for Timer 0 and
Timer 1.

In Mode 0, the timer is configured as a 13-bit
counter that uses bits 0-4 of the TLx register and
all 8 bits of the THx register. The timer run bit
(TRx) of the TCON SFR starts the timer. The
value of the CTx bit defines if the timer will
operate as a timer (CTx = 0), deriving its source
from the system clock, or if the timer will count
the high to low transitions (CTx = 1) that occur
on the external timer input pin (TxIN). When the
13-bit count increments from 1FFFh (all ones) to
all zeros, the TF0 (or TF1) bit will be set in the
TCON SFR.

The state of the upper 3 bits of the TLx register
is indeterminate in Mode 0 and must be masked
when the software evaluates the register’s
contents.

Timers 0, Timer 1: Mode 0 - Overflow Rate (Hz)
CTx = 0

 Timer overflow rate (Hz) = fSYSCLK_________
 12 x [8192-(THx, TLx)]

CTx = 1

 Timer overflow rate (Hz) = fTxIN_________
 [8192-(THx,TLx)]

Mode 1 (16-bit)

The Mode 1 operation is the same for Timer 0
and Timer 1. In Mode 1, the timer is configured
as a 16-bit counter. Besides rollover at FFFFh,
Mode 1 operation is the same as Mode 0.

FIGURE 16 : TIMER 0 MODE 0 & MODE 1

SYSCLK ÷12

P3.2-T0IN

CT0=0

CT0=1

TR0

GATE0

INT0

0

1

0 74

Mode = 0

0 7

TH0

TF0 INT

TL0

CLK

Mode = 1

FIGURE 17: TIMER 1 MODE 0 & MODE 1
SYSCLK ÷12

P3.5-T1IN

CT1=0

CT1=1

TR1

0

1

0 74

Mode = 0

TH1

CLK

Mode = 1

0 7

TF1 INT

TL1

To UART0

The Timer 0 and Timer 1 overflow rate in Mode
1 can be calculated using the following
equations:

Timers 0, Timer 1: Mode 1 - Overflow Rate (Hz)
CTx = 0

 Timer overflow rate (Hz) = fSYSCLK_________
 12 x [65536-(THx, TLx)]
CTx = 1

 Timer overflow rate (Hz) = fTxIN_________
 [65536-(THx, TLx)]

VMX51C1016

www.ramtron.com page 26 of 76

Mode 2 (8-bit)

The operation of Mode 2 is the same for Timer 0
and Timer 1. In Mode 2, the timer is configured
as an 8-bit counter, with automatic reload of the
start value. The LSB of the timer register, TLx, is
the counter itself and the MSB portion of the
timer (THx) stores the timer reload value.

The Mode 2 counter control is the same as for
Mode 0 and Mode 1. However, in Mode 2, when
TLx rolls over from FFh, the value stored in THx
is reloaded into TLx.

FIGURE 18 : TIMER 0 MODE 2

÷12

P3.2 - T0IN

CT0 = 0

CT0 = 1

TR0

GATE0

0

1

0 7

TH0

SYSCLK

TF0 INT

0 7

INT0

TL0

FIGURE 19: TIMER 1 MODE 2

÷12

P3.5 - T1IN

CT1 = 0

CT1 = 1

TR1

0

1

0 7

TH1

SYSCLK

TF1

To UART0

INT

0 7

TL1

The Timer 0 and Timer 1 overflow rate in Mode
2 can be calculated using the following
equations:

Timers 0, Timer 1: Mode 2 - Overflow Rate (Hz)
CTx = 0

 Timer overflow rate (Hz) = fSYSCLK_________
 12 x [256-(THx)]

CTx = 1

 Timer overflow rate (Hz) = __ fTxIN________
 [256--(THx)]

Using the Timer 1 as Baud Rate generator

Using Timer 1 in Mode 2 is recommended as the
best approach when using Timer 1 as the
UART0 baud rate generator.

Mode 3 (2 x 8-bit)

In Mode 3, Timer 0 operates as two 8-bit
counters and Timer 1 stops counting and holds
its value.

FIGURE 20: TIMER0, TIMER 1 STRUCTURE IN MODE 3USING

SYSCLK ÷12

P3.2-T0IN

CT0 = 0

CT0 = 1

TR0

GATE0

INT0

0

1

TR1

0 7TH0
CLK

0 7TL0
CLK

TF0

TF1

INT

INT

To UART0

The Timer 0 overflow rate in Mode 3 can be
calculated using the following equations:

Timers 0, Timer 1: Mode 3 - Overflow Rate (Hz)
TH0, CTx = 0 or 1

 Timer overflow rate (Hz) = fSYSCLK_____
 12 x 256

TL0, CTx = 0

 Timer overflow rate (Hz) = fSYSCLK_____
 12 x 256

TL0, CTx = 1

 Timer overflow rate (Hz) = __ fTxIN_____
 256

In Mode 3, the values present in the TH1 and
TL1 registers and CT1 control bits have no
impact on the timer operation.

VMX51C1016

www.ramtron.com page 27 of 76

Timer 0 and Timer 1 Interrupts
Timer 0 and Timer 1 each have dedicated
interrupt vectors located at:

o 000Bh for the Timer 0
o 001Bh for the Timer 1

The natural priority of Timer 0 is higher than that
of Timer 1.

The following table summarizes the interrupt
control and flag bits associated with the Timer 0
and Timer 1 interrupts.

Bit Name Location Description

EA IEN0.7 General interrupt control bit
0, Interrupt Disabled
1, Enabled Interrupt active

T0IE IEN0.1 Timer 0 Overflow Interrupt
1 = Enable
0 = Disable

T1IE IEN0.3 Timer 1 Overflow Interrupt
1 = Enable
0 = Disable

TF0 TCON.5 TF0 Flag is set when Timer 0
Overflow occurs.
Automatically cleared when
Timer 0 interrupt is serviced.
This flag can also be cleared
by software

TF1 TCON.7 TF1 Flag is set when Timer 1
Overflow occurs.
Automatically cleared when
Timer 1 interrupt is serviced.
This flag can also be cleared
by software

Setting Up Timer 0 Example

To use Timer 0, first setup the interrupt and then
configure the module. This is described in the
following code example.

Sample C code to set up Timer 0:
//---
// Sample C code to setup Timer 0

//---
// (…) PROGRAM INITIALIZATION OMITTED

AT 0X0100 VOID MAIN(VOID){

// INTERRUPT + TIMER 0 SETUP
IEN0 |= 0X80; // ENABLE ALL INTERRUPTS
IEN0 |= 0X02; // ENABLE INTERRUPT TIMER 0
TMOD = 0X02; // TIMER 0 MODE 2
TCON = 0X10; // START TIMER 0

DO{}WHILE(1); //WAIT FOR TIMER 0 INTERRUPT

}//END OF MAIN()

//---
// INTERRUPT FUNCTION

VOID INT_TIMER_0 (VOID) INTERRUPT 1

{
IEN0 &= 0X7F; // DISABLE ALL INTERRUPTS

/*------------------------*/
/*Put Interrupt code here*/
/*------------------------*/

IEN0 |= 0x80; // Enable all interrupts
}
//---

Setting Up Timer 1 Examples

The following code provides an example of how
to configure Timer 1 (the first part of the code is
the interrupt setup and module configuration,
while the second part is the interrupt function).

Example1: Delay function

//---
// Sample C code using the Timer 1: Delay function
//---
VOID DELAY1MS(UNSIGNED CHAR DLAIS) {
 IDATA UNSIGNED CHAR X=0;
 TMOD = 0X10;
 TL1 = 0X33;
 TH1 = 0XFB;
 ;//TIMER1 RELOAD VALUE FOR
 TCON = 0X40;

 WHILE (DLAIS > 0)
 {
 DO{
 X=TCON;
 X= X&0X80;
 }WHILE(X==0);

 TCON = TCON&0X7F;
 TL1 = 0X33;
 TH1 = 0XFB;
 ;//TIMER1 RELOAD VALUE FOR

 DLAIS = DLAIS-1;
 }
}//END OF DELAY 1MS

Example2: Timer 1 interrupt example

//---
// Sample C code using the Timer 1: Interrupt
//---
// (…) PROGRAM INITIALIZATION OMITTED
at 0xo100 void main(void){

// TIMER 1 setup

IEN0 |= 0x80; // Enable all interrupts
IEN0 |= 0x08; // Enable interrupt Timer1
TMOD = 0x20; // Timer 1 mode 2
TCON = 0x40; // Start Timer 1
TL1 = 0xFC; // Timer1 offset

do {

}while(1); //Wait Timer 1 interrupt

}//end of main() function
//--
// Timer 1 Interrupt function
//--
void int_timer_1 (void) interrupt 3
{
IEN0 &= 0x7F; // Disable all interrupts

/* Put Interrupt code here*/

IEN0 |= 0x80; // Enable all interrupts
}

VMX51C1016

www.ramtron.com page 28 of 76

Timer 2
The VMX51C1016 Timer 2 and its associated
peripherals include the following capabilities:

o 16-bit timer
o 16-bit auto-reload timer
o Compare and capture units
o 8/16 PWM outputs

TABLE 46: (TL2) TIMER 2, LOW BYTE - SFR CCH

7 6 5 4 3 2 1 0
TL2 [7:0]

TABLE 47: (TH2) TIMER 2, HIGH BYTE - SFR CDH

7 6 5 4 3 2 1 0
TH2 [7:0]

Figure 21 shows the Timer 2/compare and
capture unit block diagram. The following
paragraphs will describe how these blocks work.

Timer 2 Registers

Timer 2 consists of a 16-bit register, whose
upper and lower bytes are accessible via two
independent SFR registers (TL2, TH2).

TABLE 48: (TL2) TIMER 2 LOW BYTE - SFR CCH

7 6 5 4 3 2 1 0
TL2 [7:0]

TABLE 49: (TH2) TIMER 2 HIGH BYTE - SFR CDH

7 6 5 4 3 2 1 0
TH2 [7:0]

Timer 2 Control Register

Most of Timer 2’s control is accomplished via the
T2CON register located at SFR address C8h.

The T2CON register controls:

o T2 clock source prescaler
o T2 count size (8/16-bits)
o T2 reload mode
o T2 input selection

TABLE 50: (T2CON) TIMER 2 CONTROL REGISTER -SFR C8H

7 6 5 4
T2PS T2PSM T2SIZE T2RM1

3 2 1 0

T2RM0 T2CM T2IN1 T2IN0

Bit Mnemonic Function
7 T2PS Prescaler select bit:

0 = Timer 2 is clocked with 1/12 of
the oscillatory frequency
1 = Timer 2 is clocked with 1/24 of
the oscillatory frequency

6 T2PSM 0 = Prescaler
1 = clock/2

5 T2SIZE Timer 2 Size
0 = 16-bit
1 = 8-bit

4 T2RM1
3 T2RM0

Timer 2 reload mode selection
0X = Reload disabled
10 = Mode 0
11 = Mode 1

2 T2CM Timer 2 compare mode selection
0 = Mode 0
1 = Mode 1

1 T2IN1
0 T2IN0

Timer 2 input selection
00 = Timer 2 stops
01 = Input frequency f/2, f/12 or f/24
10 = Timer 2 is incremented by
external signal at pin T2IN
11 = Internal clock is gated to the
T2IN input.

VMX51C1016

www.ramtron.com page 29 of 76

FIGURE 21: TIMER 2 AND COMPARE/CAPTURE UNIT

T2EXIE

SYSCLK

Interrupt Request

INPUT/OUTPUT Control

Timer 2

16-bit
Comparator

16-bit
Comparator

16-bit
Comparator

16-bit
Comparator

TL2
TH2

T2IF

Sync

T2EXIF

Reload

SyncT2EX

T2IN

CRCL

CRCH
CCL1

CCL2

CCL3

CCH1

CCH2

CCH3

Data
Latch

Data
Latch

Data
Latch

Data
Latch

Capture

Compare

Capture

Compare

Capture

Compare

Capture

CaptureCompare

Capture

Capture
Comp

Capture

Capture
Reload

Compare

CaptureComp

Capture

CaptureComp

Capture

CaptureComp

Capture

Data
Latch

Enable

Enable

Enable

Enable

COCAH3

COCAH3

COCAH3

COCAH2

COCAH2

COCAH2

COCAH1

COCAH1

COCAH1

COCAH0

COCAH0 COCAH0

COCAH0

T2SIZE

÷2

÷12

÷2

T2PSM
T2PS

T2INxx

00

01

11

10

0

10

1

CCU0
CCU1
CCU2

INTCOMP2
INTCOMP3

INTCOMP0
INTCOMP1

P1.0-PWM0
P1.1-PWM1
P1.2-PWM2
P1.3-PWM3

Timer 2 Clock Sources

As previously stated, Timer 2 can operate in
timer mode, in which case it derives its source
from the system clock (SYSCLK), or it can be
configured as an event counter where the high
to low transition on the T2IN input causes Timer
2 to increment.

The T2IN0 and T2IN1 bits of the T2CON register
serve to define the selected Timer 2 input and
the operating mode (see the following table):
TIMER 2 CLOCK SOURCE

T2IN1 T2IN0 Selected Timer 2 input

0 0 Timer 2 Stop

0 1 Standard Timer mode using internal
clock with or without prescaler

1 0 External T2IN pin clock Timer2

1 1 Internal Clock is gated by the T2IN input
When T2IN = 0, the Timer2 stop

When in timer mode, Timer 2 derives its source
from the system clock and the CLKDIVCTRL
register will affect Timer 2’s operation.

Timer 2 Stop

When both the T2IN1 and T2IN0 bits are set to
0, Timer 2 is in STOP mode.

Timer 2 Operating Modes

When the T2IN1 bit is set to 0 and the T2IN0 bit
is set to 1, the Timer 2 register may or may not
derive its source from the internal pre-scaled
clock, depending on the T2PSM bit value.

Event Counter Mode

When operating in event counter mode, the
timer is incremented as soon as the external
signal T2IN transitions from a 1 to a 0. A sample
of the T2IN input is taken at every machine
cycle. Timer 2 is incremented in the cycle
following the one in which the transition was
detected.

Gated Timer Mode

In the gated timer mode, the internal clock,
which serves as the Timer 2 clock source, is
gated by the external signal T2IN. In other
words, when T2IN is high, the internal clock is
allowed to pass through the AND gate. A low
value of T2IN will disable the clock pulse. This
allows an external device to control the Timer 2
operation or to use Timer 2 to monitor the
duration of an event.

VMX51C1016

www.ramtron.com page 30 of 76

Timer 2 Clock Prescaler
When Timer 2 is configured to derive its clock
source from the system clock, the clock
prescaling value can be controlled by software
using the t2psm and T2PS bits of the T2CON
register.

The different system clock prescaling values are
shown in the table below:

T2PSM T2PS Timer 2 input clock

1 X SYSCLK / 2

0 0 SYSCLK / 12

0 1 SYSCLK / 24

Timer 2 Count Size
Timer 2 can be configured to operate in 8-bit or
16-bit format. The T2SIZE bit of the T2CON
register selects the Timer 2 count size.

o If T2SIZE = 0, Timer 2 size is 16 bits
o If T2SIZE = 1, Timer 2 size is 8 bits

Timer 2 Reload Modes
The Timer 2 reload mode is selected by the
T2RM1 and T2RM0 bits of the T2CON register.
The following figure shows the reload operation.

Timer 2 must be configured as a 16-bit
timer/counter for the reload modes to be
operational by clearing the T2SIZE bit.

Timer 2 Mode 0

When the timer overflows, the T2IF overflow flag
is set. Concurrently, this overflow causes Timer
2 to be reloaded with the 16-bit value contained
in the CRCx register, (which has been preset by
software). This reload operation will occur during
the same clock cycle in which T2IF was set.

Timer 2 Mode 1

In Mode 1, a 16-bit reload from the CRCx
register on the falling edge of T2EX occurs. This
transition will set T2EXIF if T2EXIE is set. This
action will cause an interrupt (providing that the
Timer 2 interrupt is enabled) and the T2IF flag
value will not be affected.

The value of T2SIZE does not affect reload in
Mode 1. Also, the reload operation is performed
independently of the state of the T2EXIE bit.

FIGURE 22: TIMER 2 RELOAD MODE

EXF2

T2IF

Timer 2 interrupt
request

Reload Mode 1

Reload Mode 0

T2EX

Input
Clock

Reload

Data Bus

Data Bus

TL2

TH2

Data Bus

Data Bus

CRCL

CRCH

T2EXIE

Data Latch

Data Latch

Timer 2 Overflows and Interrupts

Timer 2’s interrupt is enabled when the Timer 2
counter, the T2IF flag, is set and a Timer 2
interrupt occurs.

A Timer 2 interrupt may also be raised from
T2EX if the T2EXIE bit of the IEN1 register is
set.

The exact source of a Timer 2 interrupt can be
verified by checking the value of the T2IF and
T2EXIF bits of the IRCON register.

Timer 2’s interrupt vector is located at address
002Bh.

VMX51C1016

www.ramtron.com page 31 of 76

Timer 2 Setup Example
To use Timer 2, the user must first set up and
configure the module (see the following code
example).

//---
// Sample C code to setup Timer 2
//---
// (…) PROGRAM INITIALIZATION OMITTED

at 0x100 void main(void){

// TIMER 2 & Interrupt setup

DIGPWREN = 0x80; // Enable Timer2,
T2CON = 0x01; // Set timer 2 to OSC/12
TL2 = 0xE0;
TH2 = 0xFF;

IEN0 |= 0x80; // Enable all interrupts
IEN0 |= 0x20; // Enable interrupt Timer 2

do{ //wait for Timer 2 interrupt
 }while(1);

}//end of main()

//---
// Timer 2 Interrupt Function
//---
void int_timer_2 (void) interrupt 5
{
IEN0 &= 0x7F; // Disable all interrupts

/*------------------------*/
/*Interrupt code here*/
/*------------------------*/

IEN0 |= 0x80; // Enable all interrupts
}

Timer 2 Special Modes

For general timing/counting operations, the
VMX51C1016 Timer 2 includes four compare
and capture units that can be used to monitor
specific events and drive PWM outputs. Each
compare and capture unit provides three specific
operating modes that are controlled by the
CCEN register:

o Compare modes enable
o Capture on write into CRCL/CCLx

registers
o Capture on transitions at CCU input pins

level

TABLE 51: (CCEN) COMPARE/CAPTURE ENABLE REGISTER -SFR C9H

7 6 5 4
COCAH3 COCAL3 COCAH2 COCAL2

3 2 1 0

COCAH1 COCAL1 COCAH0 COCAL0

The CCEN register bits are grouped in pairs of
COCAHx/COCALx bits. Each pair corresponds
to one compare and capture unit. The compare
and capture unit operating mode versus the

configuration bit is described in the following
table:

Bit
Mnemonic Mnemonic Function
COCAH0 COCAL0 Compare and Capture mode

for CRC register
0 0 Compare/capture disabled
0 1 Capture on a falling edge at

pin CCU0 (1 cycle)
1 0 Compare enabled (PWM0)
1 1 Capture on write operation

into register CRC1
COCAH1 COCAL1 Compare/capture mode for

CC register 1
0 0 Compare/capture disabled
0 1 Capture on a rising edge at

pin CCU1 (2 cycles)
1 0 Compare enabled (PWM1)
1 1 Capture on write operation

into register CCL1
COCAH2 COCAL2 Compare/capture mode for

CC register 2
0 0 Compare/Capture disabled
0 1 Capture on a rising edge at

pin CCU2 (2 cycles)
1 0 Compare enabled (PWM2)
1 1 Capture on write operation

into register CCL2
COCAH3 COCAL3 Compare/Capture mode for

CC register 3
0 0 Compare/capture disabled
0 1 N/A - CCU3 not pinned out
1 0 Compare enabled (PWM)
1 1 Capture on write operation

into register CCL3

This allows individual configuring and operation
of each compare and capture unit..

Compare/Capture, Reload Registers
Each compare and capture unit has a specific
16-bit register accessible via two SFR
addresses.

Note that the CRCHx/CRCLx registers
associated with Compare/Capture Unit 0 are the
only ones that can be used to perform a reload
of the Timer 2 operation.

The following tables describe the different
registers that may be captured or compared to
the value of Timer 2.

TABLE 52: (CRCL) COMPARE/RELOAD/CAPTURE REGISTER, LOW BYTE - SFR CAH

7 6 5 4 3 2 1 0
CRCL [7:0]

TABLE 53: (CRCH) COMPARE/RELOAD/CAPTURE REGISTER, HIGH BYTE - SFR CBH

7 6 5 4 3 2 1 0
CRCH [7:0]

VMX51C1016

www.ramtron.com page 32 of 76

TABLE 54: (CCL1) COMPARE/CAPTURE REGISTER 1, LOW BYTE - SFR C2H

7 6 5 4 3 2 1 0
CCL1 [7:0]

TABLE 55: (CCH1) COMPARE/CAPTURE REGISTER 1, HIGH BYTE - SFR C3H

7 6 5 4 3 2 1 0
CCH1 [7:0]

TABLE 56: (CCL2) COMPARE/CAPTURE REGISTER 2, LOW BYTE - SFR C4H

7 6 5 4 3 2 1 0
CCL2 [7:0]

TABLE 57: (CCH2) COMPARE/CAPTURE REGISTER 2, HIGH BYTE - SFR C5H

7 6 5 4 3 2 1 0
CCH2 [7:0]

TABLE 58: (CCL3) COMPARE/CAPTURE REGISTER 3, LOW BYTE - SFR C6H

7 6 5 4 3 2 1 0
CCL3 [7:0]

TABLE 59: (CCH3) COMPARE/CAPTURE REGISTER 3, HIGH BYTE - SFR C7H

7 6 5 4 3 2 1 0
CCH3 [7:0]

Compare/Capture Data Line Width

The VMX51C1016 is capable of comparing and
capturing data using data lines up to 16 bits
wide. When comparing two registers or
capturing one register, the T2SIZE bit of the
T2CON register must be set to 1. This adjusts
the line width to 8 bits.

When comparing two pairs of registers, for
example, CCH1 and CCL1 to TH2 and TL2, the
T2SIZE bit must be set to 0. This adjusts the line
width to 16 bits.

Timer 2 Capture Modes
Timer 2 capture modes makes it possible to
acquire and store the 16-bit content of Timer 2
into a capture/compare registers following a
MOV SFR operation or the occurrence of an
external event on one of the CCU pins, as
described below:

Capture input Timer2 Capture triggering event

CCU0 High to Low Transition on CCU0
CCU1 Low to High Transition on CCU1
CCU2 Low to High Transition on CCU2

Timer 2 capture is done without affecting the
Timer 2 operation.

Each individual compare and capture unit can
be configured for capture mode by configuring
the appropriate bit pair of the CCEN register.

The two capture modes are:

Capture Mode 0

In Capture Mode 0, the transition on a given
CCU pin triggers the latching of Timer 2’s data
into the associated compare/capture register.

Capture Mode 1

In Capture Mode 1, a capture of the Timer 2
value will occur upon writing to the low byte of
the chosen capture register.

Note: On the VMX51C1016, the CCU2 and
CCU3 input is not pinned out.

FIGURE 23:TIMER 2 CAPTURE MODE 0 FOR CRCL AND CRCH BLOCK DIAGRAM

Input
Clock

Reload

Data Bus

Data Bus

TL2

TH2

Data Bus

Data Bus

CRCL / CCLx

CRCH / CCHx

Data Latch

Data Latch

Write to CRCL, CCLx

Timer 2 interrupt
request

Capture
Mode 1

Capture
Mode 0

CCUx Pin

T2IF

The capture modes can be especially useful for
external event duration calculations with the
ability to latch the timer value at a given time
(computation can be performed at a later time).

When operating in capture mode, the compare
and capture units do not affect the
VMX51C1016 interrupts.

Timer 2 Compare Modes
In compare mode, a Timer 2 count value is
compared to a value that is stored in the
CCHxx/CCLx or CRCHx/CRCLx registers. If the
values compared match (i.e. when the pulse
changes state), a compare/capture interrupt is
generated, if enabled. Varying the value of the
CCHx/CCLx or the CRCHx/CRCLx allows a
variation of the rectangular pulse generated at
the output. This variation can be used to perform
pulse width modulation. (See PWM in the
following section.)
To activate the compare mode on one of the
four compare and capture units, the associated

VMX51C1016

www.ramtron.com page 33 of 76

COCAHx bit must be set to 1 and the associated
COCALx bit must be set to 0.

When compare mode is enabled, the
corresponding output pin value is controlled by
the internal timer circuitry.

On the VMX51C1016, two compare modes are
possible. In both modes, the new value arrives
at Port Pin 1 in the same clock cycle as the
internal compare signal is activated. The T2CM
of the T2CON register defines the compare
mode and is described below:

Compare Mode 0

A functional diagram of Compare Mode 0 is
shown below. A comparison is made between
the 16-bit value of the compare/capture
registers and the TH2, TL2 registers. When the
Timer 2 value exceeds the value stored in the
CRCH, CRCL/CCHx and CCLx registers, a high
compare signal is generated and a
compare/capture interrupt is activated if
enabled. If T2SIZE = 1, the comparison is made
between the TL2 and CRCL/CCLx registers.

This compare signal is then propagated to the
corresponding P1.x Pin(s) and to the associated
COMPINTx interrupt (if enabled). The
corresponding P1.x pin is reset when a Timer 2
overflow occurs.

FIGURE 24: TIMER 2 COMPARE MODE 0 BLOCK DIAGRAM

Comparator

TH2 TL2

Timer 2

CRCH,
CCHX

CRCL,
CCLX

Overflow

Timer 2
Interrupt

Reset
Register

Compare
Signal

P1.0-
PWM0

Set
Register

P1.1-
PWM1

P1.2-
PWM0

P1.3-
PWM0

COMPxINT
Interrupt

Compare Mode 1

When a given compare capture unit is operating
in Mode 1, any write operations to the
corresponding output register of the port P1.x
(x=0 to3) will not appear on the physical port pin
until the next compare match occurs.
Like Compare Mode 0, the compare signal in
Mode 1 can also generate an interrupt (if
enabled).

The figure below shows the operating structure
of a given capture and compare unit operating in
Compare Mode 1.

FIGURE 25: TIMER 2 COMPARE MODE 1 BLOCK DIAGRAM

Comparator

TH2 TL2

Timer 2

CRCH,
CCHX

CRCL,
CCLX

Overflow

Timer 2
Interrupt

Compare
Signal

P1.0-
PWM0

Data
Latch

Shadow Register

Output Register

Port Register
Circuit

COMPxINT
Interrupt

P1.1-
PWM1

P1.2-
PWM2

P1.3-
PWM3

Timer 2 Compare Mode Interrupt

Configuration of the compare and capture units
for the “Compare Mode” through the CCEN
register impacts on the interrupt structure of the
VMX51C1016. In that specific mode each
compare and capture unit controls one interrupt
line.

When using the PWM output device, care must
be exercised to avoid other peripheral interrupts
from being blocked by this mechanism.

VMX51C1016

www.ramtron.com page 34 of 76

FIGURE 26: COMPARE AND CAPTURE UNIT INTERRUPT CONTROL

COMPINT0
Interrupt

0

1
Interrupt Vector

0053h
SPI Rx &
RxOV INT

CCEN(1,0) = 1,0

COMPINT1
Interrupt

0

1
Interrupt Vector

005Bh
I2C INT

CCEN(3,2) = 1,0

COMPINT2
Interrupt

0

1
Interrupt Vector

0063h
MAC

Overflow INT

CCEN(5,4) = 1,0

COMPINT3
Interrupt

0

1
Interrupt Vector

006Bh
ADC & Port
Change INT

CCEN(7,6) = 1,0

Using Timer 2 for PWM Outputs

Configuring the compare and capture units in
Compare Mode 0 allows PWM output generation
on the Port1 I/O pins. This mode can be used for
PWM applications, such as:

o D/A conversion
o Motor control
o Light control, etc.

When a specific compare and capture unit is
configured for this mode, its associated I/O pin is
reserved for this operation only and any write
operations to the associated I/O pin of the P1
register will have no affect.

The following table shows the association
between the compare and capture units,
associated registers and I/O pins.

TABLE 60: COMPARE AND CAPTURE UNIT PWM ASSOCIATION

Compare
Capture

Unit

Registers I/O pin

0 CRCH / CRCL P1.0
1 CCH1 / CCL1 P1.1
2 CCH2 / CCL2 P1.2
3 CCH3 / CCL3 P1.3

PWM signal generation is derived from the
comparison result between the values stored in
the compare and capture registers and the
Timer 2 value.

When a digital value is written into one of the
compare and capture registers, a comparison is
performed between this register and the Timer 2
value (providing that Timer 2 is in compare

mode). As long as the value present in the
compare and capture register is greater than the
Timer 2 value, the compare unit will output a
logic low.

When the value of Timer 2 equals the value of
the compare and capture register, the compare
unit will change from a logic low to a logic high.

The clock source for the PWM is derived from
Timer 2, which is incremented at every signal
pulse of the appropriate source. The source is
selected by the T2IN1 and T2IN0 bits of the
T2CON register.

The T2SIZE bit of the T2CON register allows
configuring the PWM output for 8 or 16-bit
operation. The Timer 2 size affects all the PWM
outputs.

When the Timer 2 size is 8 bits, the comparison
is performed between Timer 2 and the LSB of
the compare and capture unit register. The
resulting PWM resolution is 8 bits.

When the Timer 2 size is configured for a 16-bit
operation, the comparison is performed between
Timer 2 and the contents of the entire compare
and capture unit register. The resulting PWM
resolution is 16 bits, but the PWM frequency is
consequently low.

When the system clock is used as the Timer 2
clock source, the PWM output frequency equals
the Timer 2 overflow rate. Note that the
CLKDIVCTRL register content affects the Timer
2 operation and, thus, the PWM output
frequency.

Fosc T2CON
T2PSM

T2CON
T2PS

T2CON
T2SIZE

Freq
PWM

1 X 0 112.5Hz
1 x 1 28.8KHz
0 0-12 1-8 4.8KHz
0 0-12 0-16 18.8Hz
0 1-24 1-8 2.4KHz

14.74MHz

0 1-24 0-16 9.38Hz

VMX51C1016

www.ramtron.com page 35 of 76

The duty cycle of the PWM output is proportional
to the ratio of the compare and capture unit
register’s content versus Timer 2’s maximum
number of cycles before overflow: 256 or 65536
depending on the T2SIZE bit value.

PWM Duty Cycle Calculation: 8-bit

PWM duty cycle CCU0 (%) = 100% x (256-CRCL)_
 256

PWM duty cycle CCU1-3 (%) = 100% x (256-CCLx)_
 256

PWM Duty Cycle Calculation: 16-bit

PWM duty cycle CCU0 (%) = 100% x 65536–(CRCH, CRCL)
 (CRCH, CRCL)

PWM duty cycle CCU1-3 (%) = 100% x 65536–(CRCH, CRCL)
 (CRCH, CRCL)

PWM Configuration Example

The following example shows how to configure
the Timer 2 based PWM in 8-bit mode.

(…)
DIGPWREN = 0x80; //ENABLE TIMER 2 MODULE
T2CON = 0x61; //BIT 7 - Select 0=1/12, 1=1/24 of Fosc

//BIT 6 - T2 clk source: 0 = Presc,
1=clk/2

 //BIT 5 - T2 size: 0=16-bit, 1=8-bit
 //BIT 4,3 - T2 Reload mode:
 //BIT 2 - T2 Compare mode
 //BIT 1,0 - T2 input select: 01= input

derived from osc.

//WHEN THE PWM IS CONFIGURED IN 16-BIT FORMAT, THE PWM OUTPUT
FREQUENCY IS GIVEN BY //THE FOLLOWING EXPRESSION:
// PWM Freq = [(FOSC/2)] / 65536
// WITH A 14.7456MHZ CRYSTAL PWM FREQUENCY = 112.5HZ

//When the PWM is configured in 8-bit its output freq = [(Fosc/2)] / 256
//USING A 14.7456MHZ CRYSTAL PWM FREQUENCY = 28.8KHZ

CCEN = 0x0AA; //Enable Compare on 4 PWM outputs

// In 16-bit PWM resolution both LSB and MSB of compare unit are used

//In 8-bit PWM Resolution, only the LSB of compare units are used
// and MSB is kept to 00h

CRCL = 0x0E6; //PWM0 duty = [(256-CRCL)/256]
x100%
CRCH = 0x000; //E6h => 10.1%
CCL1 = 0x0C0; //PWM1 duty = [(256-CCL1)/256]
x100%
CCH1 = 0x000; //C0h => 25%
CCL2 = 0x080; //PWM2 duty = [(256-CCL2)/256] x100%
CCH2 = 0x000; //80h => 50%
CCL3 = 0x033; //PWM3 duty = [(256-CCL3)/256] x100%
CCH3 = 0x000; //33h => 80%
P1PINCFG = 0x0F; //Configure P1 LSQ as output to enable

PWM

(…)

Using the PWM as a D/A Converter
One of the popular uses of the PWM is to
perform D/A conversion by low pass filtering its
modulated square wave output. The greater the
duty cycle of the square wave, the greater the
DC value is at the output of the low pass filter
and vice versa.

Variations in the duty cycle of the PWM when
filtered can therefore generate arbitrary
waveforms.

VMX51C1016

www.ramtron.com page 36 of 76

Serial UART Interfaces

The VMX51C1016 includes two serial UART
interface ports (UART0 and UART1). Each serial
port has a 10-bit timer devoted to baud rate
generation.

Both serial ports can operate in full duplex
asynchronous mode. The VMX51C1016 also
includes a double buffer, enabling the UART to
accept an incoming word before the software
has read the previous value.

UART0 Serial Interface

The operation of the UART0 on the
VMX51C1016 is similar to a standard 8051
UART.

UART0 can derive its clock source from a 10-bit
dedicated baud rate generator or from the Timer
1 overflow.

UART0 transmit and receive buffers are
accessed through a unique SFR register
(S0BUF).

UART0 S0BUF has a double buffering feature
on reception, which allows the UART to accept
an incoming word before the software has read
the previous value from the S0BUF.

TABLE 61: (S0BUF) SERIAL PORT 0, DATA BUFFER - SFR 99H

7 6 5 4 3 2 1 0
S0BUF [7:0]

UART0 Control Register

UART0 configuration is performed mostly via the
S0CON SFR register located at address 98h.

TABLE 62: (S0CON) SERIAL PORT 0, CONTROL REGISTER - SFR 98H

7 6 5 4
S0M0 S0M1 MPCE0 R0EN

3 2 1 0

T0B8 R0B8 T0I R0I

Bit Mnemonic Function
7 S0M0
6 S0M1

Sets Serial Port Operating Mode
See Table

5 MPCE 1 = Enables the multiprocessor
communication feature.

4 R0EN 1 = Enables serial reception.
Cleared by software to disable
reception.

3 T0B8 The 9th transmitted data bit in Modes
2 and 3. Set or cleared by the CPU,
depending on the function it
performs (parity check,
multiprocessor communication etc.)

2 R0B8 In Modes 2 and 3, it is the 9th data bit
received. In Mode 1, if sm20 is 0,
RB80 is the stop bit. In Mode 0, this
bit is not used. Must be cleared by
software.

1 T0I Transmit interrupt flag set by
hardware after completion of a serial
reception. Must be cleared by
software.

0 R0I Receive interrupt flag set by
hardware after completion of a serial
reception. Must be cleared by
software.

UART0 Operating Modes

UART0 can operate in four distinct modes,
which are defined by the SM0 and SM1 bits of
the S0CON register (see the following table):

TABLE 63: SERIAL PORT 0 MODES

SM0 SM1 MODE DESCRIPTION BAUD RATE
0 0 0 Shift Register Fosc/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fclk/32 or /64
1 1 3 9-bit UART Variable

**Note that the speed in mode 2 depends on SMOD bit in the Special
Function Register PCON when SMOD = 1 fclk/32

VMX51C1016

www.ramtron.com page 37 of 76

UART0 - Mode 0

In this mode, pin RX0 is used as an input and an
output, while TX0 is used only to output the shift
clock. For an operation in this mode, 8 bits are
transmitted with the LSB as the first bit. In
addition, the baud rate is fixed at 1/12 of the
crystal oscillator frequency. In order to initialize
reception in this mode, the user must set bits
R0I and R0EN in the S0CON register to 0 and 1,
respectively. Note that in other modes, when
R0EN=1, the interface begins to receive data.

UART0 - Mode 1

In this mode, the RX0 pin serves uniquely as an
input and the TX0 pin serves as a serial output
and no external shift clock is used. In Mode 0,
10 bits are transmitted:

o One*** Start bit (active low)
o 8 bits of data starting with the LSB;
o One logical high Stop bit

The Start bit synchronizes data reception with
the 8 bits of received data available in the
S0BUF register. Reception is complete once the
Stop bit sets the R0B8 flag in the S0CON
register.

UART0 - Mode 2

In this mode, the RX0 pin is used as an input
and as an output, while the TX0 pin is used to
output the shift clock. In Mode 2, 11 bits are
transmitted or received. These 11 bits consist of:

o One logic low Start bit
o 8 bits of data (LSB first)
o One programmable 9th bit
o One logic high Stop bit

The 9th bit is used for parity. In the case of data
transmission, bit TB80 of the S0CON is output
as the 9th bit. For reception, the 9th bit is
captured in the RB80 bit of the S0CON register.

UART0 - Mode 3

Mode 3 is essentially identical to Mode 2, the
difference being that in Mode 3, the internal
baud rate generator or Timer 1 can be used to
set the baud rate.

UART0 - Baud Rate Generator Source

As mentioned previously, the UART0 baud rate
clock can be sourced from either Timer 1 or the
10-bit dedicated baud rate generator

Selection between these two clock sources is
enabled via the BAUDSRC bit of the U0BAUD
register (see the following table).

TABLE 64: (U0BAUD) UART0 BAUD RATE SOURCE SELECT - SFR D8H

7 6 5 4 3 2 1 0
BAUDSRC - - - - - - -

7 BAUDSRC Baud rate generator clock source

0 = Timer 1
1 = Use UART0 dedicated baud rate
generator

,6:0 - -

VMX51C1016

www.ramtron.com page 38 of 76

Using the UART0 dedicated baud rate generator
frees up Timer 1 for other uses.

The S0RELH and S0REL registers are used to
store the 10-bit reload value of the UART0 baud
rate generator.

TABLE 65: (S0RELL) SERIAL PORT 0, RELOAD REGISTER, LOW BYTE - SFR 96H

7 6 5 4 3 2 1 0
S0RELL [7:0]

TABLE 66: (S0RELH) SERIAL PORT 0, RELOAD REGISTER, HIGH BYTE - SFR 97H

7 6 5 4 3 2 1 0
S0RELH [15:8]

The following equations should be used to
calculate the reload value for the SOREL
register (examples follow).

Mode 3: For BAUDSRC=1

 SOREL = 1024 – 2SMODx fclk_______

 64 x Baud Rate

 Baud Rate = 2SMOD x fclk____

 64 x (1024 – S0REL)

TABLE 67: SERIAL 0 BAUD RATE SAMPLE VALUES BAUDSRC = 1, SMOD = 1

Desired
Baud Rate

S0REL @ fclk=
11.059 MHz

S0REL @ fclk=
14.746 MHz

500.0 kbps - -
460.8 kbps - 3FFh
230.4 kbps - 3FEh
115.2 kbps 3FDh 3FCh
57.6 kbps 3FAh 3F8h
19.2 kbps 3EEh 3E8h
9.6 kbps 3DCh 3D0h
2.4 kbps 370h 340h
1.2 kbps 2E0h 280h
300 bps - -

TABLE 68: SERIAL 0 BAUD RATE SAMPLE VALUES BAUDSRC =1, SMOD = 0

Desired
Baud Rate

S0REL @ fclk=
11.059 MHz

S0REL @ fclk=
14.746 MHz

115.2 kbps - 3FEh
57.6 kbps 3FDh 3FCh
19.2 kbps 3F7h 3F4h
9.6 kbps 3EEh 3E8h
2.4 kbps 3B8h 3A0h
1.2 kbps 370h 340h
300 bps 1C0h 100

Timer 1 can also be used as the baud rate
generator for the UART0. Set BAUDSRC to 0
and assign Timer 1’s output to UART0.

When the baud rate clock source is derived from
Timer 1, the baud rate and the timer reload
values can be calculated using the following
formulas (examples follow):

TABLE 69: EQUATION TO CALCULATE BAUD RATE FOR SERIAL 0

Serial 0: mode 1 and 3
Mode 1: ForU0BAUD.7=0 (standard mode)

 Baud Rate = 2SMOD x fclk _

 32 x 12 x (256-TH1)

TH1 = 256 - 2SMOD x fclk____

 32x12x Baud Rate

TABLE 70: UART0 BAUD RATE SAMPLE VALUES BAUDSRC =0, SMOD = 1

Desired
Baud Rate

TH1 @ fclk=
 11.059 MHz

TH1 @ fclk=
 14.746 MHz

115.2 kbps - -
57.6 kbps FFh -
19.2 kbps FDh FCh
9.6 kbps FAh F8h
2.4 kbps E8h E0h
1.2 kbps D0h C0h
300 bps 40h -

TABLE 71:UART0 BAUD RATE SAMPLE VALUES BAUDSRC =0, SMOD = 0

Desired
Baud Rate

TH1 @ fclk=
 11.059 MHz

TH1 @ fclk=
 14.746 MHz

115.2 kbps - -
57.6 kbps - -
19.2 kbps - FEh
9.6 kbps FDh FCh
2.4 kbps F4h F0h
1.2 kbps E8h E0h
300 bps A0h 80h

VMX51C1016

www.ramtron.com page 39 of 76

Example of UART0 Setup and Use

In order to use UART0, the following operations
must be performed:

o Enable UART0 interface
o Set I/O pad direction TX=output, RX=Input
o Enable reception (if required)
o Configure the UART0 controller S0CON

The following are configuration and transmission
code examples for UART0.

//--//
// UART0 CONFIG with S0REL
//
// Configure the UART0 to operate in RS232 mode at 19200bps
// with a crystal of 14.7456MHz
//
//--//
void uart0ws0relcfg()
 {
 P3PINCFG |= 0x01; // pads for uart 0
 DIGPWREN |= 0x01; // enable uart0/timer1
 S0RELL = 0xF4; //com speed = 19200bps
 S0RELH = 0x03;
 S0CON = 0x50; // Uart0 in mode1, 8 bit, var. baud rate
 U0BAUD = 0x80; //Set S0REL is source for UART0
 //Baud rate clock

 }//end of uart0ws0relcfg() function

//--//
// UART0 CONFIG with Timer 1
//
// Configure the UART0 to operate in RS232 mode at 19200bps
// with a crystal of 14.746MHz
//
//--//
void uart0wTimer1cfg()
 {
 P3PINCFG |= 0x01; // pads for uart0
 DIGPWREN |= 0x01; // enable uart0/timer1
 TMOD &= 0x0F;
 TMOD =0x20; //Set Timer 1, Gate 0, Mode 2
 TH1 = 0xFE; //Com Speed = 19200bps
 TCON &= 0x0F;
 TCON =0x40; //Start Timer 1
 U0BAUD = 0x00; //Set Timer 1 Baud rate

//generator for UART0

 PCON = 0x00; //Set SMOD = 0
 S0CON = 0x50; // Config Uart0 in mode 1,

//8 bit, variable baud rate
 }//end of uart1Config() function

//--//
// Txmit0()
//
// One Byte transmission on UART0
//--//

// - Constants definition
sbit UART_TX_EMPTY = USERFLAGS^1;

void txmit0(unsigned char charact){
 S0BUF = charact;
 USERFLAGS = S0CON;
 //Wait TX EMPTY flag to be raised

while (!UART_TX_EMPTY) {USERFLAGS = S0CON;} S0CON =

//clear both R0I & T0I bits
S0CON & 0xFD;

 }//end of txmit0() function

See the interrupt section for examples of how to
setup UART0 interrupts.

VMX51C1016

www.ramtron.com page 40 of 76

UART1 Serial Interface

The UART1 serial interface is based on a subset
of UART0. It provides two operating modes and
its clock source is derived exclusively from a
dedicated 10-bit baud rate generator.

The UART1 transmit and receive buffers are
accessed via a unique SFR register named
S1BUF.

TABLE 72: (S1BUF) SERIAL PORT 1, DATA BUFFER - SFR C1H

 7 6 5 4 3 2 1 0
S1BUF [7:0]

As is the case with UART0, UART1 has a
double buffering feature in order to avoid an
overwriting of the receive register.

UART1 Control Register
UART1 is controlled by the S1CON register. The
following table provides a description of the
UART 1 control register.

TABLE 73: (S1CON) SERIAL PORT 1, CONTROL REGISTER - SFR C0H

7 6 5 4
S1M Reserved MPCE1 R1EN

3 2 1 0

T1B8 R1B8 T1I R1I

Bit Mnemonic Function
7 S1M Operation Mode Select
6 Reserved -
5 MPCE1 1 = Enables multiprocessor

communication feature.
4 R1EN If set, enables serial reception.

Cleared by software to disable
reception.

3 T1B8 The 9th transmitted data bit in mode
A. Set or cleared by the CPU,
depending on the function it performs
(parity check, multiprocessor
communication, etc.)

2 R1B8 In Mode A, it is the 9th data bit
received. In Mode B, if SM21 is 0,
RB81 is the stop bit. Must be cleared
by software.

1 T1I Transmit interrupt flag, set by
hardware after completion of a serial
transfer. Must be cleared by software

0 R1I Receive interrupt flag, set by
hardware after completion of a serial
reception. Must be cleared by
software

UART1: Operating Modes

The VMX51C1016 UART1 provides two
operating modes, Mode A and Mode B, which
provide 8 or 9-bit operation, respectively.

Below is a summary table of operating modes of
UART1.

TABLE 74: UART1 MODES

SM MODE DESCRIPTION BAUD RATE
0 A 9-bit UART Variable
1 B 8-bit UART Variable

UART1 - Mode A

In this mode, 11 bits are transmitted or received.
These 11 bits are composed of:

o A Start bit (logic low)
o 8-bits of data (LSB first)
o A programmable 9th bit
o A Stop bit (logic low)

As in modes 2 and 3 of UART0, the 9th bit is
used for parity control. For data transmission,
the TB81 bit of the S1CON register holds the 9th
bit. In the case of reception, the 9th bit will be
captured into the R1B8 bit of the S1CON
register.

UART1 - Mode B

In this mode, 10 bits are transmitted and consist
of:

o A Start bit (logic low)
o 8-bits of data (LSB first)
o A Stop bit (logic low)

Received data (8 bits) is read via the S1BUF
register. Reception is completed once the Stop
bit sets the R1B8 flag in the S1CON register.

UART1 - Baud Rate Generator
As mentioned previously, the UART1 clock
source is derived from a dedicated 10-bit baud
rate generator module.

VMX51C1016

www.ramtron.com page 41 of 76

The S1REL registers are used to adjust the
baud rate of UART 1.

TABLE 75: (S1RELL) UART1, RELOAD REGISTER, LOW BYTE - SFR BEH

7 6 5 4 3 2 1 0
S1RELL [7:0]

TABLE 76: (S1RELH) UART 1, RELOAD REGISTER, HIGH BYTE - SFR BFH

7 6 5 4 3 2 1 0
S1RELH [7:0]

The following formulas are used to calculate the
baud rate, S1RELL and S1RELH values:

Serial 1

Baud Rate= fclk__________
 32 x (1024-S1REL)

Note: S1REL.9-0 = S1RELH.1-0 + S1RELL.7-0

S1REL = 1024 - fclk__________

 32 x Baud Rate

TABLE 77: SERIAL 1 BAUD RATE SAMPLE VALUES

Desired
Baud Rate

S1REL @ fclk=
11.059 MHz

S1REL @ fclk=
14.746 MHz

500.0 kbps - -
460.8 kbps - 3FFh
230.4 kbps - 3FEh
115.2 kbps 3FDh 3FCh
57.6 kbps 3FAh 3F8h
19.2 kbps 3EEh 3E8h
9.6 kbps 3DCh 3D0h
2.4 kbps 370h 34Fh
1.2 kbps 2E0h 280h

Setting Up and Using UART1

In order to use UART1, the following operations
must be performed:

o Enable UART1 interface
o Set I/O pad direction TX= output, RX=Input
o Enable reception (if required)
o Configure UART1 controller S1CON

Example of UART1 Setup and Use

The following are C code examples of UART1
configuration, serial byte transmission and
interrupt usage.

//--//
// UART1 CONFIG
//
// Configure the UART1 to operate in RS232 mode at 115200bps
// with a crystal of 14.746MHz
//--//
void uart1Config(void)
 {
 P0PINCFG |= 0x04; // pads for uart 1
 DIGPWREN |= 0x02; // enable uart1
 S1RELL = 0xFC; // Set com speed = 115200bps
 S1RELH = 0x03;
 S1CON = 0x90; // Mode B, receive enable
 }//end of uart1Config() function

//--//
// TXMIT1 -- Transmit one byte on the UART1
//--//
void txmit1(unsigned char charact){
 S1BUF = charact;
 USERFLAGS = S1CON;
 while (!UART_TX_EMPTY) {USERFLAGS = S1CON;}

 //Wait TX EMPTY flag
 S1CON = S1CON & 0xFD; //clear both R1I & T1I bits
 }//end of txmit1() function

//--//
// Interrupt configuration
//---//

IEN0 |= 0x80; // Enable all interrupts
IEN2 |= 0x01; // Enable interrupt UART 1

//--//
// Interrupt function
//--//

void int_serial_1 (void) interrupt 16
{
IEN0 &= 0x7F; // Disable all interrupts

 /*------------------------*/

/*Interrupt code here*/
 /*------------------------*/

if (S1CON&0x01==0x01)

{
S1CON &= 0xFE; // Clear RI (it comes

// before T1I)
}
else
{
S1CON &= 0xFD; // Clear T1I
}
IEN0 |= 0x80;} // Enable all interrupts

}
}
/---

VMX51C1016

www.ramtron.com page 42 of 76

UART1 Driven Differential
Transceiver

The VMX51C1016 includes a differential
transceiver compatible with the standard
J1708/RS-485. These are driven by UART1.

The transceiver’s signals are differential,
providing high electrical noise immunity. The
differential interface is capable of
transferring/receiving data over hundreds of feet
of twisted pair wires.

A number of devices can be connected in
parallel to the differential bus in order to
implement a multi-drop network. The number of
devices that can be networked depends on bus
length and configuration.

The admissible common mode voltage range of
the differential interface is –2.0 to +7.0 volts.
When implementing this type of transmission
network over long distances in noisy
environments, appropriate protection is
recommended to prevent the common mode
voltage from causing any damage to the
VMX51C1016.

FIGURE 28: DIFFERENTIAL INTERFACE (RS485 CONFIG)

+5V

Versa Mix

TX1D+

RX1D+

TX1D-

RX1D-

From a software point of view, the differential
transceiver is viewed as a differential UART.

The differential transceiver I/Os are connected
to UART1 of the VMX51C1016, therefore,
communication parameters such as the data
length, communication speed, etc. are managed
by the UART1 peripheral interface/registers.

Using the UART 1 Differential
Transceiver

To use the differential transceiver interface, the
following operations must be performed:

o Enable both UART1 and the differential
interface by setting bits 1 and 2 of the
DIGPWREN

o Configure UART1’s operating mode via
the S1CON register

o Set the baud rate via the S1RELH and
S1RELL registers

o Enable UART1’s interrupt (if required)

Use UART1’s S1BUF register to transmit and
receive data through the differential transceiver.
If the P0.2 pin is configured as an output, the
signal corresponding to the TX1 signal of
UART1 will appear on this pin (note that the
P0.3-RX1 pin can be used as a regular digital
output).

When the transceiver is connected in half-duplex
mode (RX1D+ connected to TX1D+ and RX1D-
connected to TX1D-) and the UART1 interrupts
are enabled, careful management of the UART1
interrupts will be required as every byte
transmitted will generate a local Rx interrupt.

VMX51C1016

www.ramtron.com page 43 of 76

Differential Interface Use Example
The following code provides an example of
configuration and use of the VMX51C1016
differential interface.

#pragma SMALL
#pragma UNSIGNEDCHAR
#include <vmixreg.h>

// --- function prototypes
void txmit1(unsigned char charact);
void uart1differential(void);

// - global variables

// - Constants definition
sbit UART_TX_EMPTY = USERFLAGS^1;

code char irq0msg[]="Ramtron inc”;

//---//
// MAIN FUNCTION
//---//

 at 0x0100 void main (void) {

// Enable and configure the UART1
 uart1differential(); //Config UART1 diff interface

// Warning: The Clock Control circuit does affect the dedicated baud rate
// generator S0REL, S1REL and Timer1 operation

//*** Configure the interrupts
 IEN0 |= 0x81; //Enable interrupts + Ext. 0 interrupt
 IEN2 |= 0x01; //Enable UART1 Interrupt

 Txmit1(“A’); //Transmit one character on UART1

do
 {

 }while(1); //Wait for UART1 Rx interrupt

}// End of main()...

//---//
// UART1 Differential interface interrupt
//
// In this example, the source of UART1 interrupt would be caused
// by bytes reception on the differential interface
//--//
void int_uart1 (void) interrupt 16 {
 unsigned char charact;

 IEN0 &= 0x7F;

 // -- Put you code here…

 S1CON = S1CON & 0xFC; //clear both R1I & T1I bits
 IEN0 |= 0x80; // enable all interrupts

}// end of uart1 INTERRUPT

//---//
// EXT INT0 interrupt
//
//
// when the External interrupt 0 is triggered A Message string is sent over the
// the serial UART1
//---//
void int_ext_0 (void) interrupt 0 {

 int x=0;
 idata unsigned char cptr=0x01;

 IEN0 &= 0x7F;
 //disable ext0 interrupt

 cptr = cptr-1;
 while(irq0msg[cptr] != '\n')
 //Send a text string over the differential interface
 {
 txmit1(irq0msg[cptr]);
 cptr = cptr +1;
 }

 IEN0 = 0x81;
 //Enable all interrupts + int_0

//--//
//------------------------------- Individual Functions --//
//--//

//--//
// UART1 DIFFERENTIAL CONFIG
//
// Configure the UART1 differential interface to operate in
// RS232 mode at 115200bps with a crystal of 14.746MHz
//
//--//
void uart1differential(void)
 {

DIGPWREN |= 0x06; // enable uart1 & differential transceiver
 P0PINCFG |= 0x04; // pads for uart1
 P0PINCFG = 0x00;

 S1RELL = 0xFC; // Set com speed = 115200bps
 S1RELH = 0x03;
 S1CON = 0x90; // Mode B, receive enable
 }//end of uart1differential() function

//---//
// TXMIT1
//
// Transmit one byte on the UART1 Differential interface
//
//---//
void txmit1(unsigned char charact){
 S1BUF = charact;
 USERFLAGS = S1CON;

 //Wait TX EMPTY flag to be raised

 while (!UART_TX_EMPTY) {USERFLAGS = S1CON;}

S1CON = S1CON & 0xFD; //clear both R1I & T1I bits
 }//end of txmit1() function

VMX51C1016

www.ramtron.com page 44 of 76

SPI Interface

The VMX51C1016 SPI peripheral is a highly
configurable and powerful interface enabling
high speed serial data exchange with external
devices such as A/Ds, D/As, EEPROMs, etc.

The SPI interface can operate as either a master
or a slave device. In master mode, it can control
up to four slave devices connected to the SPI
bus.

The following lists a number of the
VMX51C1016’s SPI features:

o Permits synchronous serial data
transfers

o Transaction size is configurable from 1
to 32 bits and more

o Full duplex support
o SPI modes 0, 1, 2, 3, 4-supported (full

clock polarity and phase control)
o Up to four slave devices can be

connected to the SPI bus when
configured in master mode

o Slave mode operation
o Data transmission speed is configurable
o Double 32-bit buffers in transmission

and reception
o 3 dedicated interrupt flags

• TX-Empty
• RX Data Available
• RX Overrun

o Automatic/Manual control of the chip
selects lines

o SPI operation is not affected by the
clock control unit

The following provides a block diagram view of
the SPI interface.

FIGURE 29: SPI INTERFACE BLOCK DIAGRAM

Processor

SPI SFRs

SPI IRQs

VERSA MIX SPI
INTERFACE

Serial Data IN

Serial Data OUT

Serial Clock IN/OUT

SDI

SDO

SCK

CS0

CS1

CS2

CS3

SS

Chip Select Output

Chip Select Output

Chip Select Output

Slave Select Input

Chip Select Output

To Slave Device #1

To Slave Device #2

To Slave Device #3

To Slave Device #4

From Master Device

SPI Transmit/Receive Buffer
Structure
When receiving data bytes, the first byte
received is stored in the SPIRX0 buffer. As bits
continue to arrive, the data already present in
the buffer is shifted toward the least significant
byte end of the receive registers.

For example (see the following figure), assume
the SPI is about to receive four consecutive
bytes of data: W, X, Y and Z, where the first
byte received is byte W. The first received byte
(W) will be placed in the SPIRX0 register. Upon
reception of the next byte (X), the contents of
SPIRX0 will be shifted into SFR register SPIRX1
and byte X will be placed in the SPIRX0
registers. Following this same procedure, bytes
W, X, Y and Z will end up in RX data buffer
registers SPIRX0, SPIRX1, SPIRX2 and
SPIRX3, respectively.

The case where the SDO and SDI pins are
shorted together is represented in the following
diagram.

VMX51C1016

www.ramtron.com page 45 of 76

FIGURE 30 : SPI INTERFACE RECEIVE TRANSMIT SCHEMATIC

WZ Y XRX Data Buffer

TX Data Buffer

Close-Up View of how the bits within
the byte is placed after it has been
received

7 6 5 4 3 2 1 0

MSBit LSBit

Bytes are Shifted 1 byte position
at a time each time a new byte is
received

W ZYX

RX Data Buffer

TX Data Buffer

0 1 2 3 4 5 6 7

LSBit MSBit

BEFORE A RECEPTION

SPITX3

SPIRX0

SPITX0

SPIRX3

AFTER A RECEPTION

First Byte to be
Transmitted

SPIRX3

SPITX3

SPIRX0

SPITX0

First Byte Received is
Placed in the least
significant byte register

msb

msblsb

lsb

lsb

lsbmsb

msb

SPIRX2 SPIRX1

SPITX2 SPITX1

SPITX2 SPITX1

SPIRX2 SPIRX1

When using the SPI interface, it is important to
keep in mind that a transmission is started when
the SPIRX3TX0 register is written to.

From an SFR point of view, the transmission
and reception buffers of the SPI interface
occupy the following addresses:

TABLE 78: (SPIRX3TX0) SPI DATA BUFFER, LOW BYTE - SFR E1H

7 6 5 4 3 2 1 0
SPIRX3TX0 [7:0]

Bit Mnemonic Function

SPITX0 SPI Transmit Data Bits 7:0 7-0
SPIRX3 SPI Receive Data Bits 31:24

TABLE 79: (SPIRX2TX1) SPI DATA BUFFER, BYTE 1 - SFR E2H

7 6 5 4 3 2 1 0
SPIRX2TX1 [15:8]

Bit Mnemonic Function

SPITX1 SPI 1 Transmit Data Bits 15:8 15:8
SPIRX2 SPI Receive 1 Data Bits 22:16

TABLE 80: (SPIRX1TX2) SPI DATA BUFFER, BYTE 2 - SFR E3H

7 6 5 4 3 2 1 0
SPIRX1TX2 [23:16]

Bit Mnemonic Function

SPITX2 SPI Transmit Data Bits 22:16 22:16
SPIRX1 SPI Receive Data Bits 15:8

TABLE 81: (SPIRX0TX3) SPI DATA BUFFER, HIGH BYTE - SFR E4H

7 6 5 4 3 2 1 0
SPIRX0TX3 [31:24]

Bit Mnemonic Function

SPITX3 SPI Transmit Data Bits 31:24 31:24
SPIRX0 SPI Receive Data Bits 7:0

SPI Control Registers

The SPI control registers are used to define:

o SPI operating speed (master mode)

o Active chip select output (master mode)

o SPI clock phase (master/slave modes)

o SPI clock polarity (master/slave modes)

TABLE 82: (SPICTRL) SPI CONTROL REGISTER - SFR E5H

7 6 5 4
SPICK [2:0] SPICS_1

3 2 1 0

SPICS_0 SPICKPH SPICKPOL SPIMA_SL

Bit Mnemonic Function
7:5 SPICK[2:0] SPI Clock control

000 = OSC Ck Div 2
001 = OSC Ck Div 4
010 = OSC Ck Div 8
011 = OSC Ck Div 16
100 = OSC Ck Div 32
101 = OSC Ck Div 64
110 = OSC Ck Div 128
111 = OSC Ck Div 256

4:3 SPICS[1:0] Active CS line in Master Mode
00 = CS0- Active
01 = CS1- Active
10 = CS2- Active
11 = CS3- Active

2 SPICKPH SPI Clock Phase
1 SPICKPOL SPI Clock Polarity

0 – CK Polarity is Low
1 – CK Polarity is High

0 SPIMA_SL Master / -Slave
1 = Master
0 = Slave

VMX51C1016

www.ramtron.com page 46 of 76

SPI Operating Speed
Three bits in the SPICTRL register serve to
adjust the communication speed of the SPI
interface.

SPICK[2:0]
Div Ratio

Fosc =
14.74MHz

Fosc =
11.059MHz

Clk Div 2 7.37 MHz 5.53 MHz
Clk Div 4 3.68 MHz 2.76 MHz
Clk Div 8 1.84 MHz 1.38 MHz
Clk Div 16 922 kHz 691 kHz
Clk Div 32 461 kHz 346 kHz
Clk Div 64 230 kHz 173 kHz
Clk Div 128 115 kHz 86 kHz
Clk Div 256 57.6 kHz 43.2 kHz

SPI Master Chip Select Control

When the SPI is configured in master mode, the
value of the SPICS[1:0] bits define which chip
select pins will be active during the transaction.

The following sections describe how the SPI
clock polarity and phase affects the read and
write operations of the SPI interface.

SPI Operating Modes
The SPI interface can operate in four distinct
modes defined by the value of the SPICKPH
and SPICKPOL bits of the SPICTRL register.

SPICKPH defines the SPI clock phase and
SPICKPOL defines the clock polarity for data
exchange.

SPICKPOL
bit value

SPICKPH
bit value

SPI Operating Mode

0 0 SPI Mode 0
0 1 SPI Mode 1
1 0 SPI Mode 2
1 1 SPI Mode 3

SPI Mode 0

o Data is placed on the SDO pin at the
rising edge of the clock.

o Data is sampled on the SDI pin at the
falling edge of the clock

FIGURE 31 : SPI MODE 0

MSB LSB

CSX

SCK

SDI

SDO

SPI MODE 0: SPICKPOL =0,SPICKPH =0

*Arrows indicate the edge where the data acquisition occurs

SPI Mode 1

o Data is placed on the SDO pin at the
falling edge of the clock

o Data is sampled on the SDI pin at the
rising edge of the clock

FIGURE 32: SPI MODE 1

CSX

SCK

SDI

SDO

SPI MODE 1: SPICKPOL =0,SPICKPH =1

MSB LSB

*Arrows indicate the edge where the data acquisition occurs

VMX51C1016

www.ramtron.com page 47 of 76

SPI Mode 2

o Data is placed on the SDO pin at the
falling edge of the clock

o Data is sampled on the SDI pin at the
rising edge of the clock

FIGURE 33: SPI MODE 2

CSX

SDI

SDO

SPI MODE 2: SPICKPOL =1,SPICKPH =0

SCK

MSB LSB

*Arrows indicate the edge where the data acquisition occurs

SPI Mode 3

o Data is placed on the SDO pin at the
rising edge of the clock.

o Data is sampled on the SDI pin at the
falling edge of the clock

FIGURE 34: SPI MODE 3

CSX

SDO

SPI MODE 3: SPICKPOL =1,SPICKPH =1

SCK

SDI

MSB LSB

*Arrows indicate the edge where the data acquisition occurs

SPI Transaction Size

Many microcontrollers only allow a fixed SPI
transaction size of 8 bits. However, most
devices requiring SPI control demand
transactions of more than 8 bits, giving way to
alternate inefficient methods of dealing with SPI
transactions.

The VMX51C1016 SPI interface includes a
transaction size control register (SPISIZE) that
enables different sized transactions to be
performed. The SPI interface also automatically
controls the chip select line.

The following table describes the SPISIZE
register:

TABLE 83: (SPISIZE) SPI SIZE CONTROL REGISTER - SFR E7H

7 6 5 4 3 2 1 0
SPISIZE[7:0]

Bit Mnemonic Function
7:0 SPISIZE[7:0] Value of the SPI packet size

The following formula is used to calculated the
SPI transaction size:

For SPISIZE from 0 to 31:

SPI Transaction Size = [SPISIZE + 1]

For SPISIZE from 32 to 255*:

SPI Transaction Size = [SPISIZE*8 - 216]

An SPI transaction size greater than 32 bits is
possible when using the VMX51C1016 SPI
interface, however, data packets of this size
require careful management of the associated
interrupts in order to avoid buffer overwrites.

SPI Interrupts
The SPI interface has three associated
interrupts:

o SPI RX Overrun
o SPI RX Data Available
o SPI TX Empty

VMX51C1016

www.ramtron.com page 48 of 76

The SPIRXOVIE, SPIRXAVIE and SPITXEMPIE
bits of the SPICONFIG register allow individual
enabling of the above interrupt sources at the
SPI interface level.

At the processor level, two interrupt vectors are
dedicated to the SPI interface:

o SPI RX data available and overrun
interrupt

o SPI TX empty interrupt

In order to have the processor jump to the
associated interrupt routine, one or both of these
interrupts in the IEN1 register must be enabled,
and the EA bit of the IEN0 register must be set
(see interrupt section).

TABLE 84: (SPICONFIG) SPI CONFIG REGISTER - SFR E6H

7 6 5 4
SPICSLO - FSONICS3 SPILOAD

3 2 1 0
- SPIRXOVIE SPIRXAVIE SPITXEMPIE

Bit Mnemonic Function
7 SPICSLO Manual CS up (Master mode)

0 = The CSx goes low when
transmission begins and returns
to high when it ends.

1 = The CSx stays low after
transmission ends. The user
must clear this bit for the CSx
line to return high.

6 - -
5 FSONCS3 This bit sends the frame select

pulse on CS3.
4 SPILOAD This bit sends load pulse on

CS3.
3 - -
2 SPIRXOVIE SPI Receiver overrun interrupt

enable.
1 SPIRXAVIE SPI Receiver available interrupt

enable.
0 SPITXEMPIE SPI Transmitter empty interrupt

enable.

The SPIIRQSTAT register contains the
interrupts flags associated with the SPI
interface.

Monitoring these bits enables polling the control
of the SPI interface.

TABLE 85: (SPIIRQSTAT) SPI INTERRUPT STATUS REGISTER - SFR E9H

7 6 5 4
- - SPITXEMPTO SPISLAVESEL

3 2 1 0

SPISEL SPIOV SPIRXAV SPITXEMP

Bit Mnemonic Function
7:6 - -

5 SPITXEMPTO

Flag that indicates that we have
not reloaded the transmit buffer
fast enough (only used for
packets greater than 32 bits.).

4 SPISLAVESEL Slave Select “NOT” (SSN)

3 SPISEL

This bit is the result of the
logical AND operation between
CS0, CS1, CS2 and CS3.
(Indicates if one chip is
selected.)

2 SPIOV SPI Receiver overrun
1 SPIRXAV SPI Receiver available

0 SPITXEMP

SPI Transmit buffer is ready to
receive mode data. It does not
flag that the transmission is
completed.

SPI Manual Chip Select Control

In some applications, manual control of the
active select line can be useful. Setting the
SPICSLO bit of the SPICONFIG register forces
the active chip select line to stay low when the
SPI transaction is completed in master mode.
When the SPICSLO bit is cleared, the chip
selected line returns to its active state.

SPI Manual Load Control

The SPI can generate a LOAD pulse on the CS3
pin when the SPILOAD bit is set. This is useful
for some D/A converters and avoids having to
use a separate I/O pin for this purpose.

VMX51C1016

www.ramtron.com page 49 of 76

SPI Frame Select Control
It is also possible to generate a positive pulse on
the CS3 pin of the SPI interface by setting the
FSONCS3 bit of the SPICONFIG register. This
feature can be used to generate a frame select
signal required by some DSP compatible
devices without requiring the use of a separate
I/O pin.

Note that when both the SPILOAD and
FSONCS3 are selected, the internal logic gives
priority to the frame select pulse.

SPI Interface to 16-bit D/A Example

The following is a code for executing 16-bit
transfers over the SPI interface.

//---//
// VMIX_SPI_to_dac_interface. c //
//---//
//
// This demonstration program show the how to interface a 16-bit D/A
// to the VMX51C1016 SPI interface.
//
#pragma SMALL
#include <vmixreg.h>

// --- function prototypes

//Function Prototype: Send Data to the 16 bit D/A

void send16bitdac(unsigned char valhigh, unsigned char vallow);

// Bit definition
sbit SPI_TX_EMPTY = USERFLAGS^0;

//--//
// MAIN FUNCTION //
//---//
 at 0x0100 main (void) {

 unsigned char dacvall=0; //LSB of current DAC value
 unsigned char dacvalh=0; //MSB of current DAC value
 DIGPWREN |= 0x08; //ENABLE SPI INTERFACE

 //*** Initialise the SPI interface ****
 P2PINCFG |= 0x68; // config I/O port to allow the SPI

//interface to access the pins
// In this application we only need to configure the 5 upper bit of P2PINCFG
 // P2PINCFG bit 7 - SDIEN = 0 -> INPUT (NOT USED)

 // P2PINCFG bit 6 - SDOEN = 1 -> OUTPUT TO DAC SDI PIN
 // P2PINCFG bit 5 - SCKEN = 1 -> OUTPUT TO DAC SCK PIN
 // P2PINCFG bit 4 - SSEN = 0 -> INPUT (NOT USED)

 // P2PINCFG bit 3 - CS0EN = 1 -> OUTPUT TO DAC CS PIN
 // P2PINCFG bit 2 - CS1EN = 0 -> INPUT (NOT USED)
 // P2PINCFG bit 1 - CS2EN = 0 -> INPUT (NOT USED)
 // P2PINCFG bit 0 - CS3EN = 0 -> INPUT (NOT USED)

 SPICTRL = 0x25;

// SPI ctrl: OSC/16, CS0, phase=0, pol=0, master
 // SPICK BIT 7:5 = 001 -> SPI CLK SPEED = OSC/2
 // SPICS BIT 4:3 = 00 -> CS0 LINE IS ACTIVE
 // SPICKPH BIT 2 = 1 SPI CLK PHASE
 // SPICKPOL BIT 1 = 0 SPI CLOCK POLARITY
 // SPIMA_SL BIT 0 = 1 -> SET SPI IN MASTER MODE

 SPICONFIG = 0x00;
 // SPI CONFIG: auto CSLO, no FS, NO Load, clear IRQ flags
 // SPICSLO BIT 7 = 0 AUTOMATIC CHIP SELECT CONTROL
 // UNSUSED BIT 6 = 0
 // FSONCS3 BIT 5 = 0 Do not send FrameSelect Signal on CS3
 // SPILOAD BIT 4 = 0 do not Sen the Low pulse on CS3
 // UNUSED BIT 3 = 0
 // SPIRXOVIE BIT 2 = 0 Dont enable SPI RX Overrun IRQ
 // SPIRXAVIE BIT 1 = 0 Dont enable SPI RX AVAILLABLE IRQ
 // SPITXEMPIE BIT 0 = 0 Dont Enable SPI TX EMPTY IRQ

 SPISIZE = 0x0F; // SPI SIZE: 16-bits

 // GENERATE A TRIANGLE WAVE ON THE DAC OUTPUT

 while(1){
 do{
 dacvall = dacvall + 1;
 if(dacvall==0xff)

{
 dacvalh = dacvalh +1;

 dacvall = 0x00;
 }

 send16-bitdac(dacvalh, dacvall);
 }while((dacvall != 0xff) && (dacvalh != 0xff));

 do{
 dacvall = dacvall - 1;
 if(dacvall==0x00)
 {
 dacvalh = dacvalh - 1;
 dacvall = 0xff;
 }

send16-bitdac(dacvalh, dacvall);
 }while((dacvall != 0x00) && (dacvalh != 0x00));
 };

}// End of main()...

//---//
// Send16-bitdac - Send data to 16 bit D/A Converter //
//---//
void send16-bitdac(unsigned char valhigh, unsigned char vallow){

// USERFLAGS = 0x00;
// while(!SPI_TX_EMPTY){USERFLAGS = SPIIRQSTAT;}

 SPIRX2TX1 = vallow; //Put LSB of value in SPI transmit buffer

//-> trigger transmission
 SPIRX3TX0 = valhigh; //Put MSB of value in SPI transmit buffer

//-> trigger transmission

 do{ //Wait SPI TX empty flag to be activated
 USERFLAGS = P2;
 USERFLAGS &= 0x08;
 }while(USERFLAGS == 0);
}//end of send16-bitdac

VMX51C1016

www.ramtron.com page 50 of 76

SPI Interrupt Example
The following provides an example of basic SPI
configuration and interrupt handling.

//---//

// Sample C code for SPI RX & TX interrupt set-up
//---//
//
#pragma SMALL
#include <vmixreg.h>

at 0x0100 main (void) {

DIGPWREN = 0x08; // Enable SPI
P2PINCFG = 0x4F; // Set pads direction
SPICONFIG = 0x03; // Enable Rx_avail + TX_empty
SPISIZE = 0x07; // SPI SIZE: 8 bits

IEN0 |= 0x80; // Enable all interrupts
IEN1 |= 0x06; // Enable SPI Txempty + RXavail interrupt

SPIRX3TX0 = valhigh; //Put MSB of value in SPI transmit buffer

//-> trigger transmission

 Do{
 }while(1)

}//end of main()

//---//
// SPI TX Empty Interrupt function
//---//

void int_2_spi_tx (void) interrupt 9
{
IEN0 &= 0x7F; // Disable all interrupts

 /*-------------------------*/

/* Interrupt code here*/
 /*-------------------------*/

IRCON &= 0xFD; // Clear flag SPITXIF
IEN0 |= 0x80; // Enable all interrupts
}

//---//
// SPI RX availlable function
//---//

void int_2_spi_rx (void) interrupt 10
{
IEN0 &= 0x7F; // Disable all interrupts

 /*-------------------------*/

/* Interrupt code here*/
 /*-------------------------*/

IRCON &= 0xFB; // Clear flag SPIRXIF
IEN0 |= 0x80; // Enable all interrupts
}

//---//

Due to the double buffering of the SPI interface,
an SPI TX empty interrupt will be activated as
soon as the data to be transmitted is written into
the SPI interface transmit buffer. If data is
subsequently written into the SPI transmit buffer
before the original data has been transmitted,
the TX empty interrupt will only be activated
when the original data has been fully
transmitted.

The SPI also includes double buffering for data
reception. Once a data reception is completed,
the RX interrupt is activated and the data is
transferred into the SPI RX buffer. At this point,
the SPI interface can receive more data.
However, the processor must have retrieved the
first data stream before the second data stream
reception is complete, otherwise a data overrun
will occur and the SPI RX overrun interrupt will
be activated if enabled.

VMX51C1016

www.ramtron.com page 51 of 76

I²C Interface

The VMX51C1016 includes an I²C compatible
communication interface that can be configured
in master or slave mode.

I²C Control Registers
The I2CRXTX SFR register is used to retrieve
and transmit data on the I²C interface.

TABLE86: (I2CRXTX) I2C DATA BUFFER - SFR DEH

7 6 5 4 3 2 1 0
I2CRXTX [7:0]

Bit Mnemonic Function

7:0 I2CTX[7:0] I2C Data Receiver / Transmitter
buffer

The I2CCONFIG register serves to configure the
operation of the VMX51C1016 I²C interface.
The following table describes the I2CCONFIG
register bits:

TABLE 87: (I2CCONFIG) I2C CONFIGURATION - SFR DAH

7 6 5 4

I2CMASKID I2CRXOVIE I2CRXDAVIE I2CTXEMPIE

3 2 1 0

I2CMANACK I2CACKMODE I2CMSTOP I2CMASTER

Bit Mnemonic Function

7

I2CMASKID

This is used to mask the chip ID
when you have only two devices.
Therefore in a transaction, rather
that receiving the chip ID first,
you will receive the first packet of
data.

6 I2CRXOVIE I2C Receiver overrun interrupt
enable

5 I2CRXDAVIE I2C Receiver available interrupt
enable

4 I2CTXEMPIE I2C Transmitter empty interrupt
enable

3 I2CMANACK 1= Manual acknowledge line
goes to 0
0= Manual acknowledge line
goes to 1

2 I2CACKMODE Used only with Master Rx, Master
Tx, and Slave Rx.
1= Manual Acknowledge on
0= Manual Acknowledge off

1 I2CMSTOP I2C Master receiver stops at next
acknowledge phase. (read during
data phase)

0 I2CMASTER I2C Master mode enable
1= I2C interface is Master
0= I2C interface is Slave

The I2CIRQSTAT register provides the status of
the I²C interface operation and monitors the I²C
bus status.

TABLE 88: (I2CIRQSTAT) I2C INTERRUPT STATUS - SFR DDH

7 6 5 4

I2CGOTSTOP I2CNOACK I2CSDA I2CDATACK

3 2 1 0

I2CIDLE I2CRXOV I2CRXAV I2CTXEMP

Bit Mnemonic Function

7 I2CSGOTSTOP

This means that the slave
has received a stop (this bit is
read only). Reset only when
the master begins a new
transmission.

6 I2CNOACK

Flag that indicates that no
acknowledge has been
received. Is reset at the start
of the next transaction

5 I2CSDA Value of SDA line.

4 I2CDATACK Data acknowledge phase.

3 I2CIDLE Indicates that I2C is idle
2 I2CRXOV I2C Receiver overrun
1 I2CRXAV I2C Receiver available
0 I2CTXEMP I2C Transmitter empty

The I2CCHIPID register holds the VMX51C1016
I²C interface ID as well as the status bit that
indicates whether the last byte monitored on the
I²C interface was destined for the VMX51C1016
or not.

The reset value of this register is 0x42,
corresponding to an I²C chip ID of 0x21. The
chip ID value of the VMX51C1016 can be
dynamically changed by writing the desired ID
value into the I2CCHIPID register (see the
following table).

TABLE 89: (I2CCHIPID) I2C CHIP ID - SFR DCH

7 6 5 4 3 2 1 0
I2CID [6:0] I2CWID

Bit Mnemonic Function
7:1 I2CID[6:0] The value of this chip’s ID

0 I2WID

Read only and is used only in
slave mode

0: The ID received corresponds
to the I2CID
1: The ID received does not
correspond to the I2CID

The I2WID bit is “read only”, is used only in
slave mode and is an indicator of whether the
transaction is targeted to the VMX51C1016
device.

VMX51C1016

www.ramtron.com page 52 of 76

I²C Clock Speed
The VMX51C1016’s I²C interface
communication speed is fully configurable. This
provides the ability to adjust the speed to
various I²C bus configurations.

Control of the I²C interface communication
speed is enabled via the I2CCLKCTRL register.
The following formula is used to calculate the I2C
clock frequency in master mode:

 I2C Clk = ________fosc__________

 [8 x (I2CCLKCTRL)]

The table below provides I²C clock (on SCL pin)
speeds for various settings of the I2CCLKCTRL
register when using a 14.75MHz crystal
oscillator to the drive the VMX51C1016.

I2CCLKCTRL Value I2C Clock (SCL Value)
01h 920KHz
03h 461KHz
07h 230KHz
13h 92.1KHz
27h 46KHz
C7h 9.2KHz

When the I2C interface is configured for slave
mode, the I2CCLKCTRL is not used.

TABLE 90: (I2CCLKCTRL) I2C CLOCK CONTROL - SFR DBH

7 6 5 4 3 2 1 0
I2CCLKCTRL [7:0]

Bit Mnemonic Function
7:0 I2CCLKCTRL I2C Clock speed control

I²C Interface Interrupts
The I²C interface has a dedicated interrupt
vector located at address 0x5B. Three flags (see
below) share the I²C interrupt vector and can be
used to monitor the I²C interface status making it
possible to activate the I²C interrupt.

I2CTXEMP: Is set to 1 when the transmit buffer is
empty

I2CRXAV: Is set to 1 when data byte reception is
completed

I2CRXOV: Is set to 1 if a new byte reception is
completed before the previous data in
the reception buffer is read, resulting in
a data overrun

These flags can all trigger an I²C interrupt if their
corresponding bit in the I2CCONFIG register is
set to one.1

In the case where more than one of these flags
can activate an I²C interrupt, the interrupt
service routine is left to determine which
condition generated the interrupt.

Note that the I2CRXAV, I2CTXEMP and
I2CRXOV flags can still be polled if their
corresponding interrupt enable flags are cleared.
Therefore, they can still be used to monitor the
status.

Master I²C Operation

In master mode, the VMX51C1016 I²C interface
controls the I²C bus transfers. In order to
configure the I²C interface as a master, the
I2CMASTER bit of the I2CCONFIG register
must be set to 1.

Once the I²C interface is configured, sending
data to a slave device connected to the bus is
done by writing the data into the I2CRXTX
register.

Before sending data to a slave device, a byte
containing the target device’s chip ID and a
read/write bit must be sent to it.

A master mode data read is triggered by reading
the I2CRXAV (bit 1) of the I2CIRQSTAT
register. The data is present on the I2CRXTX
register when the I2CRXAV bit is set.

VMX51C1016

www.ramtron.com page 53 of 76

Reading the value of the I2CRXTX register
resets the I2CRXAV bit. Once started, the I²C
byte read process will continue until the master
generates a STOP condition.

When the I²C interface is configured as a
master, setting the I2CMSTOP bit of the
I2CCONFIG register to 1 will result in the
interface generating a STOP condition after the
reception of the next byte.

In master mode, it is possible to manually
control the operation of the acknowledged timing
when receiving data. To do this, the
I2CMANACK bit of the I2CCONFIG register
must be set to 1. Once you have received a
byte, you can manually control the acknowledge
level by clearing or setting the I2CMANACK bit.

Note: The VMX51C1016 I²C interface is not

compatible with I²C the multi-master
mode.

Slave I2C Operation
The VMX51C1016 I²C interface can be
configured as a slave by clearing the
I2CMASTER bit of the I2CCONFIG register.

In slave mode, the VMX51C1016 has no control
over the rate or the timing of the data exchange
that occurs on the I²C bus. Therefore, in slave
mode it is preferable to manage the transactions
using the I²C interrupts.

The I2CMASKID bit, when set, will configure to
the slave device mask the received ID byte and
receive the data directly. This is useful when
only two devices are present on the I²C bus.

Note: When the VMX51C1016 starts

transmitting data in slave mode, it will
continually transmit the value present in
the I²C transmit register as long as the
master provides the clock signal or until
the master device generates a STOP
condition

Errata:

The VMX1016 I2C interface has a critical timing
issue when the device is configured as a slave
and transmits multiple data bytes. Single byte
transmission in slave mode is not affected.

The condition arises if the master device
releases the SDA line at the same time it brings
the SCL line low for the acknowledge phase.

In order for the VMX1016 I2C slave transmission
to work properly for multiple bytes, the master
device MUST release the SDA line AFTER the
SCL negative edge.

For this reason it is not possible to have a
VMX1016 device configured as an I2C master
and VMX1016 devices configured as I2C slaves
on the same I2C bus, unless data transmitted
from VMX1016 I2C slaves to the I²C master is
done one byte at a time.

VMX51C1016

www.ramtron.com page 54 of 76

I²C EEPROM Interface Example
Program

The following provides an example program
using the VMX51C1016 interface to perform
read and write operations to an externally
connected EEPROM device.

#pragma SMALL
#include <vmixreg.h>

// --- Function prototypes
unsigned char eeread(idata unsigned char, idata unsigned char);
void eewrite(idata unsigned char, idata unsigned char, unsigned char);

// - Global variables
idata unsigned char irqcptr=0x00;

sbit I2C_TX_EMPTY = USERFLAGS^0;
sbit I2C_RX_AVAIL = USERFLAGS^1;
sbit I2C_IS_IDLE = USERFLAGS^3;
sbit I2C_NO_ACK = USERFLAGS^6;

//---//
// MAIN FUNCTION //
//--//
void main (void){

 unsigned char x=0;

 DIGPWREN = 0x13; //Enable the I2C peripheral

 //*** configure I2C Speed.
 I2CCLKCTRL = 0x013; //…To about 100KHZ...

 //*** Configure the interrupts
 IEN0 |= 0x81; //Enable Ext INT0 interrupt + main

 //*** infinite loop waiting for ext IRQ
 while(1){
 };

}// End of main()...

//---//
// EXT INT0 interrupt
//
// When the External interrupt 0 is triggered read and write
// operations are performed on the EEPROM
//---//
void int_ext_0 (void) interrupt 0 {

// Local variables declaration
 idata unsigned char eedata;
 idata unsigned char adrsh =0;
 idata unsigned char adrsl =0;
 idata int adrs =0;

// IEN0 &= 0x7F; //disable ext0 interrupt

//(Masked for debugger compatibility)

//Write irqcptr into the EEPROM at adrs 0x0100
 eewrite(0x01,0x00,irqcptr);

irqcptr = irqcptr + 1; //Increment the Interrupt counter

 //Perform an EEPROM read at address 0x100
 eedata = eeread(0x01, 0x00);

 delay1ms(100); //Debo delay for the switch on INT0
// IEN0 = 0x81; // enable all interrupts + int_0 (Removed

//for debugger compatibility)

}// end of EXT INT 0

//---//
// INDIVIDUALS FUNCTIONS //
//--//
//---//
// EEREAD - EEPROM Random Read //
//--//
 unsigned char eeread(idata unsigned char adrsh, idata unsigned char adrsl)
 {
 idata unsigned char x=0;
 idata unsigned char readvalue=0;

 I2CCONFIG = 0x03;
 //I2C MASTER MODE NO INTERRUPT

 I2CRXTX = 0xA8;
 //SEND 24LC64 ADRS + write COMMAND
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

 I2CRXTX = adrsh;
 //SEND 24LC64 ADRSH
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

 I2CRXTX = adrsl;
 //SEND 24LC64 ADRSL
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}
 USERFLAGS = 0x00;

//wait for I2C interface to be idle
 while(!I2C_IS_IDLE){USERFLAGS = I2CIRQSTAT;}

I2CCONFIG &= 0xFD; //set Master Rx Stop, only 1 byte to receive

I2CCONFIG |= 0x02;

 I2CRXTX = 0xA9; // Chip ID read

 USERFLAGS = 0x00;
 while(!I2C_RX_AVAIL){USERFLAGS = I2CIRQSTAT;}

 readvalue = I2CRXTX;

 USERFLAGS = 0x00;
 while(!I2C_IS_IDLE){USERFLAGS = I2CIRQSTAT;}
 //Wait for I2C IDLE
 return readvalue;

 }//End of EEREAD

//--//
// EEWRITE - EEPROM Random WRITE //
//--//
void eewrite(idata unsigned char adrsh, idata unsigned char adrsl, unsigned char
eedata)
 {
 idata unsigned char x;
 I2CCONFIG = 0x01; //I2C MASTER MODE NO INTERRUPT
 I2CRXTX = 0xA8; //SEND EEPROM ADRS + READ

//COMMAND
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

 I2CRXTX = adrsh; //SEND ADRSH
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

 I2CRXTX = adrsl; //SEND ADRSL
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

 I2CRXTX = eedata; //SEND 24LC64 DATA and wait

//for I2C bus IDLE
 USERFLAGS = 0x00;
 while(!I2C_IS_IDLE){USERFLAGS = I2CIRQSTAT;}
 ///--Wait Write operation to end

 I2CCONFIG = 0x01; //I2C Master Mode no Interrupt

 do{
 I2CRXTX = 0xA8; //Send 24LC64 Adrs +read Command
 USERFLAGS = 0x00;
 while(!I2C_TX_EMPTY){USERFLAGS = I2CIRQSTAT;}

USERFLAGS = I2CIRQSTAT;
 }while(I2C_NO_ACK);
 delay1ms(5); //5ms delay for EEPROM write
 }// End of EEPROM Write

VMX51C1016

www.ramtron.com page 55 of 76

Analog Signal Path

The VMX51C1016 implements a complete
single chip acquisition system by integrating the
following analog peripherals:

o 12-bit, A/D converter with 5 external
inputs. The ADC conversion rate is
programmable up to 10KHz

o Internal bandgap reference and PGA
o Digital switch

The following figure provides a block diagram of
the VMX51C1016 analog peripherals and their
connections.

FIGURE 35: ANALOG SIGNAL PATH OF THE VMX51C1016

AIN0

AIN1

AIN2

AIN3

PGA

XTVREF

Reserved

Reserved

A/D

BANDGAP

SW1

Reserved

ADCTA

T
o

ta
l o

f
5

A
/D

 in
p

u
ts

ADCTA

Reserved
unused
unused

AIN0
AIN1
AIN2
AIN3
VBGAP

The on-chip calibrated bandgap or the external
reference provides the reference for the ADC.

Analog Peripherals Power Control

Selection of the internal/external reference, the
ADC control and their respective power downs
are controlled via the ANALOGPWREN SFR
registers.

Internal Reference and PGA

The VMX51C1016 provides a temperature
calibrated internal bandgap reference coupled
with a programmable gain amplifier.

The programmable gain amplifier’s role is to
amplify the bandgap output and bring it to 2.7
volts and to provide the drive required for the
ADC reference input.

Both the bandgap and the PGA are calibrated
during production and their associated
calibration registers are automatically loaded
with the appropriate calibration vectors when the
device is reset.

The bandgap and PGA calibration vectors are
stored into the BGAPCAL and PGACAL SFR
registers when a reset occurs. It is possible for
the user program to overwrite the contents of
these registers. .

TABLE 91: (BGAPCAL) BAND-GAP CALIBRATION VECTOR REGISTER - SFR B3H

7 6 5 4 3 2 1 0
BGAPCAL [7:0]

Bit Mnemonic Function
7:0 BGAPCAL Band-gap data calibration

TABLE 92: (PGACAL) PGA CALIBRATION VECTOR REGISTER - SFR B4H

7 6 5 4 3 2 1 0
PGACAL [7:0]

Bit Mnemonic Function
7:0 PGACAL 8 MSBs of PGA Calibration

Vector (LSBit is on PGACAL0)

Using the VMX51C1016 Internal
Reference
The configuration and setup up of the
VMX51C1016 internal reference is achieved by
setting bits 0 and 1 of the ANALOGPWREN
register to 1. This powers-on the bandgap and
the PGA, respectively.

Use of the internal reference requires the
addition of two external tank capacitors on the
XTVREF pin. These capacitors consist of one
4.7uF to 10uF tantalum capacitor in parallel with
one 0.1uF ceramic capacitor.

The next figure shows the connection of the tank
capacitors to the XTVREF pin.

FIGURE 36: TANK CAPACITORS CONNECTION TO THE XTVREF PIN

XTVREF

4.7uF
to

10uF
0.1uF

2.7V

VMX51C1016

www.ramtron.com page 56 of 76

The VMX51C1016 internal reference can also
be used as an external reference,,provided that
the load on the XTVREF pin is kept to a
minimum. The following table shows the typical
affect of loading on the XTVREF voltage.

FIGURE 37: TANK CAPACITORS CONNECTION TO THE XTVREF PIN

X
T

V
R

E
F

re
fe

re
nc

e
vo

lta
ge

 (V
ol

ts
)

Load current on XTVREF (mA)

2.65

2.70

2.75

0.0 1.0 2.0 3.0 4.0 5.0

It is recommended that the external load on the
XTVREF pin to be less than 1mA.

Note: A stabilization delay of more than 1ms
should be provided between the activation of the
bandgap, the PGA and the first A/D conversion.

Using an External Reference

An external reference can be used to drive the
VMX51C1016 ADC instead of the internal
reference.

The external reference voltage source can be
set from 0.5 to 3.5 volts and must provide
sufficient drive to operate the ADC load.

FIGURE 38: EXTERNAL REFERENCE CONNECTION TO THE XTVREF PIN

XTVREF

4.7uF
to

10uF
0.1uF V

Warning:

When an external reference source is
applied to the XTVREF pin, it is
mandatory not to power-on the PGA.
The internal bandgap reference should
also remain deactivated.

A/D Converter

The VMX51C1016 includes a feature rich and
highly configurable on-chip 12-bit A/D converter.

The A/D conversion data is output as an
unsigned 12-bit binary with 1 LSB = Full
Scale/4096. The following figure describes the
ideal transfer function for the ADC.

FIGURE 39: IDEAL A/D CONVERTER TRANSFER FUNCTION

1111_1111_1111

0000_0000_0000
0000_0000_0001

1111_1111_1110

0000_0000_0010
0000_0000_0011

1111_1111_1101
1111_1111_1100

0V XTVREF

1 LSB = XTVREF / 4096

OUTPUT
CODE

The A/D converter includes a system that
provides the ability to trigger automatic periodic
conversions of up to 10kHz without processor
intervention.

Once the conversion is complete, the A/D
system can activate an interrupt that can wake-
up the processor (assuming it has been put into
idle mode) or automatically throttle the
processor clock to full speed.

The VMX51C1016 ADC can also be configured
to perform conversion on one specific channel or
on four consecutive channels (in round-robin
fashion).

These features make the A/D converter
adaptable for many applications.

The following paragraphs describe the A/D
converter register features.

ADC Data Registers

The ADC data registers hold the ADC
conversion results. The ADCDxLO register(s)
hold the eight least significant bits (LSBs) of the
conversion results, while the ADCDxHI
register(s) hold the four most significant bits
(MSB) of the conversion results.

VMX51C1016

www.ramtron.com page 57 of 76

TABLE 93: (ADCD0LO) ADC CHANNEL 0 DATA REGISTER, LOW BYTE - SFR A6H

Bit Mnemonic Function
7:0 ADCD0LO ADC channel 0 low

TABLE 94: (ADCD0HI) ADC CHANNEL 0 DATA REGISTER, HIGH BYTE - SFR A7H

Bit Mnemonic Function
3:0 ADCD0HI ADC channel 0 high

TABLE 95: (ADCD1LO) ADC CHANNEL 1 DATA REGISTER, LOW BYTE - SFR A9H

7 6 5 4 3 2 1 0
ADCD1LO [7:0]

Bit Mnemonic Function
7:0 ADCD1LO ADC channel 1 low

TABLE 96: (ADCD1HI) ADC CHANNEL 1 DATA REGISTER, HIGH BYTE - SFR AAH

7 6 5 4 3 2 1 0
- - - - ADCD1HI [3:0]

Bit Mnemonic Function
3:0 ADCD1HI ADC channel 1 high

TABLE 97: (ADC2LO) ADC CHANNEL 2 DATA REGISTER, LOW BYTE - SFR ABH

7 6 5 4 3 2 1 0
ADCD2LO [7:0]

Bit Mnemonic Function
7:0 ADCD2LO ADC channel 2 low

TABLE 98: (ADCD2HI) ADC CHANNEL 2 DATA REGISTER, HIGH BYTE - SFR ACH

7 6 5 4 3 2 1 0
- - - - ADCD2HI [3:0]

Bit Mnemonic Function
7:4 - -
3:0 ADCD2HI ADC channel 2 high

TABLE 99: (ADCD3LO) ADC CHANNEL 3 DATA REGISTER, LOW BYTE - SFR ADH

7 6 5 4 3 2 1 0
ADCD3LO [7:0]

Bit Mnemonic Function
7:0 ADCD3LO ADC channel 3 low

TABLE 100: (ADCD3HI) ADC CHANNEL 3 DATA REGISTER, HIGH BYTE - SFR AEH

7 6 5 4 3 2 1 0
- - - - ADCD3HI [3:0]

Bit Mnemonic Function
7:4 - -
3:0 ADCD3HI ADC channel 3 high

ADC Input Selection
A/D conversions can be performed on a single
channel, sequentially on the four lower channels
or sequentially on the four upper channels of the
ADC input multiplexer.

An input buffer is present on each of the four
external ADC inputs (ADIN0 to AIN3).

These buffers must be enabled before a
conversion can take place on the ADC AIN0-
AIN3 inputs. These buffers are enabled by

setting the corresponding bits of the lower
quartet (AIEN [3:0]) of the INMUXCTRL register
to 1.

TABLE 101: (INMUXCTRL) ANALOG INPUT MULTIPLEXER CONTROL REGISTER -
SFR B5H

7 6 5 4 3 2 1 0
- ADCINSEL [2:0] AINEN [3:0]

Bit Mnemonic Function
7 - -

6:4 ADCINSEL[2:0] ADC Input Select
000 - AIN0
001 - AIN1
010 - AIN2
011 - AIN3
111 - ADCTA

3:0 AINEN[3:0] Analog Input Enable

The upper four bits of the INMUXCTRL register
are used to define the channel on which the
conversion will take place when the ADC is set
to perform the conversion on one specific
channel.

ADC Control Register

The ADCCTRL register is the main register used
for control and operation of the ADC operating
mode.

TABLE 102: (ADCCTRL) ADC CONTROL REGISTER - SFR A2H

7 6 5 4
ADCIRQCLR XVREFCAP 1 ADCIRQ

3 2 1 0

ADCIE ONECHAN CONT ONESHOT

Bit Mnemonic Function
7 ADCIRQCLR ADC interrupt clear

Writing 1 Clears interrupt
6 XVREFCAP Always keep this bit at 1
5 Reserved = 1 Keep this bit = 1
4 ADCIRQ Read ADC Interrupt Flag

Write 1 generate ADC IRQ
3 ADCIE ADC interrupt enable
2 ONECHAN 1 = Conversion is performed on

one channel
Specified ADCINSEL
0 = Conversion is performed on
4 ADC channels

1 CONT 1 = Enable ADC continuous
conversion

0 ONESHOT 1 = Force a single conversion
on 1 or 4 channels

ADC Continuous / One Shot Conversion

The CONT bit sets the ADC conversion mode.
When the CONT bit is set to 1, the ADC will
implement continuous conversions at a rate
defined by the conversion rate register.

VMX51C1016

www.ramtron.com page 58 of 76

When the CONT bit is set to 0, the A/D operates
in “one shot” mode, initiating a conversion when
the ONESHOT bit of the ADCCONTRL register
is set.

ADC One Channel/Four Channel Conversion

The VMX51C1016’s ADC includes a feature that
renders it possible to perform a conversion on
one specific channel or on four consecutive
channels.

This feature minimizes the load on the processor
when reading more than one ADC input is
required.

The ONECHAN bit of the ADCCTRL register
controls this feature. When the ONECHAN is set
to 1, the conversion will take place on the
channel selected by the INMUXCTRL register.
Once the conversion is complete, the result will
be placed into the ADCD0LO and ADCD0HI
registers

When the ONECHAN bit is set to 0, the
conversion, once triggered, will be done
sequentially on four channels and the
conversion results will be placed into the
ADCDxLO and ADCDxHI registers.

Bit 6 of the INMUXCTRL register controls
whether the conversion will take place on the
four upper channels of the input multiplexer or
on the four lower channels.

VMX51C1016

www.ramtron.com page 59 of 76

ADC Clock Source Configuration
The A/D converter derives its clock source from
the main VMX51C1016 clock. .The frequency of
the ADC clock should be set between 250kHz
and 1.25MHz.

Configuration of the ADC clock source
frequency is done by adjusting the value of the
ADCCLKDIV register. The following equation is
used to calculate the ADC reference clock.

ADC Clock Reference Equation:

 ADC Clk ref = fOSC

 4x (ADCCDIV +1)

The ADC conversion requires 111 ADC clock
cycles to perform the conversion on one
channel.

The following table provides recommended
ADCCLKDIV register values versus conversion
rate. The numbers given are conservative
figures and derived from a 14.74MHz clock.

ADCCLKDIV Maximum Conv. Rate*
0x02 10500 Hz
0x03 8000 Hz
0x05 5000 Hz
0x07 4000 Hz
0x08 3500 Hz
0x09 3200 Hz
0x0B 2500 Hz

0x0D, 0x0E, 0x0F 2200 Hz

* The maximum conversion rate is for the single
channel condition. If the conversion is performed
on four channels, divide the maximum
conversion rate by 4. For example, performing
the conversion at 25KHz on four channels, the
ADCCLKDIV register should be set to 0x02 (4 x
2500Hz = 10KHz).

TABLE 103: (ADCCLKDIV) ADC CLOCK DIVISION CONTROL REGISTER - SFR 95H

7 6 5 4 3 2 1 0
ADCCLKDIV [7:0]

Bit Mnemonic Function
7:0 ADCCLKDIV[7:0] ADC clock divider

ADC Conversion Rate Configuration
The VMX51C1016’s ADC conversion rate, when
configured in continuous mode, is defined by the
value present in a 24-bit A/D conversion rate
register that serves as the time base for
triggering the ADC conversion process.

The following equation is used to calculate the
value of the conversion rate.

Conversion Rate Equation:

Conversion rate registers value (24-bit) = fOSC
 Conv_Rate

The conversion rate register is accessible using
three SFR registers as follows:

TABLE 104: (ADCCONVRLOW) ADC CONVERSION RATE REGISTER LOW BYTE -
SFR A3H

Bit Mnemonic Function
7:0 ADCCONVRLOW Conversion rate low byte

TABLE 105: (ADCCONVERMED) ADC CONVERSION RATE REGISTER MED BYTE -
SFR A4H

Bit Mnemonic Function
7:0 ADCCONVRMED Conversion rate medium byte

TABLE 106: (ADCCONVRHIGH) ADC CONVERSION RATE REGISTER HIGH BYTE -
SFR A5H

Bit Mnemonic Function
7:0 ADCCONVRHIGH Conversion rate high byte

The following table provides examples of typical
values versus conversion rate.

Conversion
Rate Fosc= 14.74MHz
1Hz E10000h
10Hz 168000h
100Hz 024000h
1kHz 003999h
2.5kHz 00170Ah
5kHz 000B85h
8kHz 000733h
10kHz 0005C2h

VMX51C1016

www.ramtron.com page 60 of 76

ADC Status Register
The ADC shares interrupt vector 0x6B with the
interrupt on Port 1 change and Compare and
Capture Unit 3. To enable the ADC interrupt, the
ADCIE bit of the ADCCTRL register must be set.
Before or at the same time this bit is set, the
ADCIRQCLR and ADCIRQ bits must be cleared.
The ADCPCIE bit of the IEN1 register must also
be set, as well as the EA bit of the IEN0 register.

Once the ADC interrupt occurs, the ADC
interrupt must be cleared by writing a ‘1’ into the
ADCINTCLR bit of the ADCCTRL register. The
ADCIF flag in the IRCON register must also be
cleared.

A/D Converter Use Example

The following provides example code for the A/D
converter. The first section of the code is the
interrupt setup/module configuration, whereas
the second section is the interrupt function itself.

Sample C code to setup the A/D converter:

//---//
// MAIN FUNCTION
//---//

(…)
at 0x0100 void main (void) {

//*** Initialize the Analog Peripherals ***

ANALOGPWREN = 0x07; //Enable the following analog

//peripherals: ADC, PGA,
// BGAP. TA = OFF (mandatory)

//Configure the ADC and Start it
ADCCLKDIV=0x0F; //SET ADC CLOCK SOURCE
ADCCONVRLOW=0x00; //CONFIGURE CONVERSION RATE
ADCCONVRMED=0x40; //= 100Hz @ 14.74 MHz
ADCCONVRHIGH =0x02;

INMUXCTRL=0x0F; //Enable All ADC External inputs

//buffers and select ADCI0
ADCCTRL=0xEA; //Configure the ADC as follow:

 //bit 7: =1 ADCIRQ Clear
 //Bit 6: =1 XVREFCAP (always)

 //Bit 5: =1 (always)
 //Bit 4: =0 = ADCIRQ (don’t care)
 //Bit 3: =1 = ADC IRQ enable
 //Bit 2: =0 conversion on 4

//channels
 //Bit 1: =1 Continuous conversion
 //Bit 0: =0 No single shot mode

//*** Configure the interrupts
IEN0 |= 0x80; //enable main interrupt
IEN1 |= 0x020; //Enable ADC Interrupt
while(1); //Infinite loop waiting ADC interrupts
}// End of main()...

//---//
// ADC INTERRUPT ROUTINE
//---//
void int_adc (void) interrupt 13 {
idata int value = 0;

IEN0 &= 0x7F; //disable ext0 interrupts
ADCCTRL |=0x80; //Clear ADC interrupt

// Read ADC channel 0
value = ADCD0HI;
value = valeur*256;
value = valeur + ADCD0LO;
(…)
// Read ADC channel 3
value = ADCD3HI;
value = valeur*256;
value = valeur + ADCD3LO;
(…)
IRCON &= 0xDF; //Clear adc irq flag
ADCCTRL |=0xFA; //prepare adc for next acquisition
IEN0 |= 0x80; // enable all interrupts

}// End of ADC IRQ

(…)

Warning:

When using the ADC, make sure the
output multiplexer controlled by the
TAEN bit of the ANALOGPWREN
register (92h) is powered-down at all
times, otherwise, the signal present on
the ISRCOUT can be routed back to the
selected ADC input, causing conversion
errors.

TABLE 107: (PGACAL0) PGA CALIBRATION BIT 0 VALUE - SFR BCH

7 6 5 4 3 2 1 0
PGACAL0 Reserved

Bit Mnemonic Function

7 PGACAL0 Bit 0 of PGACAL
6:0 -- Reserved

VMX51C1016

www.ramtron.com page 61 of 76

Digitally Controlled Switches

On the VMX51C1016 includes a digital switch
composed of four sub-switches connected in
parallel. These sub-switches can be individually
controlled by writing to the SFR register at B7h.

FIGURE 42: SWITCH FUNCTIONAL DIAGRAM

SW1BSW1A

sw1d sw1c sw1b sw1axxxx

SWITCHCTRL register

The “ON” switch resistance is between 50 and
100 Ohms, depending on the number of sub-
switches being used. If, for example, one sub-
switch is closed, the switch resistance will be
about 100 Ohms, and if all four switches are
closed, the switch resistance will go down to
about 50 Ohms.

TABLE 108: (SWITCHCTRL) USER SWITCHES CONTROL REGISTERS - SFR B7H

7 6 5 4 3 2 1 0
Not Used but implemented SWTCH1 [3:0]

Bit Mnemonic Function

7:4 User Flags
Not used but implemented bits
Can be used as general
purpose storage

3:0 SWITCH1[3:0]
Switch 1 control (composed of 4
individual switches each bit
controlled)

The upper 4 bits of the SWITCHCTRL register
are not used but they are implemented. They
can be used as general purpose flags.

Analog Output Multiplexer

The VMX51C1020’s analog output multiplexer is
used for production test purposes and provides
access to internal test points of the analog signal
path. It can however, be used in applications,
but due to its high intrinsic impedance, care
must be taken with respect to loading.

We recommend not accessing this SFR register.

TABLE 109: (OUTMUXCTRL) ANALOG OUTPUT MULTIPLEXER CONTROL REGISTER
- SFR B6H

7 6 5 4 3 2 1 0
- - - - - TAOUTSEL [2:0]

Bit Mnemonic Function
7:3 Unused Unused
2:0 TAOUTSEL[2:0] Signal output on TA

000 – AIN0
001 – AIN1
010 – AIN2
011 – AIN3
100 – VBGAP
101 – reserved
110 – unused
111 – unused

VMX51C1016

www.ramtron.com page 62 of 76

VMX51C1016 Interrupts

The VMX51C1016 is a highly integrated device
incorporating a vast number of peripherals for
which a comprehensive set of 24 interrupt
sources sharing 11 interrupt vectors is available
to ease system program development. Most of
the VMX51C1016 peripherals can generate an
interrupt, providing feedback to the MCU core
that an event has occurred or a task has been
completed.

The following are key VMX51C1016 interrupt
features:

o Each digital peripheral on the
VMX51C1016 has an interrupt channel

o The SPI, UARTs and I²C all have event
specific flag bits

o When the processor is in IDLE mode, an
interrupt may be used to wake it up

o The processor can run at full speed
during interrupt routines

The following table summarizes the interrupt
sources, natural priority and associated interrupt
vector addresses on the VMX51C1016.

TABLE 110: INTERRUPT SOURCES AND NATURAL PRIORITY

Interrupt Interrupt Vector
Reserved 0E43h
INT0 0003h
UART1 0083h
TIMER 0 000Bh
SPI TX Empty 004Bh
Reserved 0013h
SPI RX & SPI RX OVERRUN
/ COMPINT0

0053h

TIMER 1 001Bh
I2C (Tx, Rx, Rx Overrun)
/ COMPINT1 005Bh

UART0 0023h
MULT/ACCU 32bit Overflow /
COMPINT2 0063h

TIMER 2: T2 Overflow, T2EX 002Bh
ADC and interrupt on Port 1
change (8 int.) / COMPINT3 006Bh

It is also possible to program the interrupts to
wake-up the processor from an IDLE condition
or force its clock to throttle up to full speed when
an interrupt condition occurs.

Interrupt Enable Registers
The following tables describe the interrupt
enable registers and their associated bit
functions:

TABLE 111: (IEN0) INTERRUPT ENABLE REGISTER 0 - SFR A8H

7 6 5 4
EA WDT T2IE S0IE

3 2 1 0

T1IE 0 T0IE INT0IE

Bit Mnemonic Function
7 EA General Interrupt control

0 = Disable all Enabled interrupts
1 = Authorize all Enabled interrupts

6 WDT Watch Dog timer refresh flag. This bit
is used to initiate a refresh of the
watchdog timer. In order to prevent
an unintentional reset, the watchdog
timer the user must set this bit
directly before SWDT.

5 T2IE Timer 2 Overflow / external Reload
interrupt
0 = Disable
1 = Enable

4 S0IE Uart0 interrupt.
0 = Disable
1 = Enable

3 T1IE Timer 1 overflow interrupt
0 = Disable
1 = Enable

2 Reserved Always keep this bit to 0
1 T0IE Timer 0 overflow interrupt

0 = Disable
1 = Enable

0 INT0IE External Interrupt 0
0 = Disable
1 = Enable

VMX51C1016

www.ramtron.com page 63 of 76

TABLE 112: (IEN1) INTERRUPT ENABLE 1 REGISTER -SFR E8H

7 6 5 4
T2EXIE SWDT ADCPCIE MACOVIE

3 2 1 0

I2CIE SPIRXOVIE SPITEIE reserved

Bit Mnemonic Function
7 T2EXIE T2EX interrupt Enable

0 = Disable
1 = Enable

6 SWDT Watch Dog timer start/refresh flag.
Set to activate/refresh the watchdog
timer. When directly set after setting
WDT, a watchdog timer refresh is
performed. Bit SWDT is reset.

5 ADCPCIE ADC and Port change interrupt
0 = Disable
1 = Enable

4 MACOVIE MULT/ACCU Overflow 32 bits
interrupt
0 = Disable
1 = Enable

3 I2CIE I2C Interrupt
0 = Disable
1 = Enable

2 SPIRXOVIE SPI Rx avail + Overrun
0 = Disable
1 = Enable

1 SPITEIE SPI Tx Empty interrupt
0 = Disable
1 = Enable

0 reserved

TABLE 113: (IEN2) INTERRUPT ENABLE 2 REGISTER - SFR 9AH

7 6 5 4 3 2 1 0
- - - - - - - S1IE

Bit Mnemonic Function
7-1 - -
0 S1IE UART 1 Interrupt

0 = Disable UART 1 Interrupt
1 = Enable UART 1 Interrupt

Timer 2 Compare Mode Impact on
Interrupts

The SPI RX (and RXOV), I²C, MULT/ACCU and
ADC interrupts are shared with the four Timer 2
compare and capture unit interrupts.

When the compare and capture units of Timer 2
are configured in compare mode via the CCEN
register, the compare and capture unit takes
control of one interrupt vector as shown in the
next figure.

FIGURE 43: COMPARE CAPTURE INTERRUPT STRUCUTRE

COMPINT0
Interrupt

0

1
Interrupt Vector

0053h
SPI Rx &
RxOV INT

CCEN(1,0) = 1,0

COMPINT1
Interrupt

0

1
Interrupt Vector

005Bh
I2C INT

CCEN(3,2) = 1,0

COMPINT2
Interrupt

0

1
Interrupt Vector

0063h
MAC

Overflow INT

CCEN(5,4) = 1,0

COMPINT3
Interrupt

0

1
Interrupt Vector

006Bh
ADC & Port
Change INT

CCEN(7,6) = 1,0

The impact of this is that the corresponding
peripheral interrupt, if enabled, will be blocked.
The output signal from the comparison module
will be routed to the interrupt system and the
control lines will be dedicated to the compare
and capture unit.

This interrupt control “take over” is specific to
each individual compare and capture unit. For
example if Compare and Capture Unit 2 is
configured to generate a PWM signal on P1.2,
the MULT/ACCU overflow interrupt, if enabled,
will be dedicated to Compare and Capture Unit 2
and the SPI, I²C and ADC interrupts won’t be
affected.

VMX51C1016

www.ramtron.com page 64 of 76

Interrupt Status Flags
The IRCON register is used to identify the
source of an interrupt. Before exiting the
interrupt service routine, the IRCON register bit
that corresponds with the serviced interrupt
should be cleared.

TABLE 114: (IRCON) INTERRUPT REQUEST CONTROL REGISTER - SFR 91H

7 6 5 4
T2EXIF TF2IF ADCIF MACIF

3 2 1 0

I2CIF SPIRXIF SPITXIF Reserved

Bit Mnemonic Function
7 T2EXIF Timer 2 external reload flag

This bit informs the user
whether an interrupt has been
generated from T2EX, if the
T2EXIE is enabled.

6 TF2IF Timer 2 overflow flag
5 ADCIF /

COMPINT3
A/D converter interrupt request
flag/ port 0 change.
 / COMPINT3

4 MACIF /
COMPINT2

MULT/ACCU unit interrupt
request flag / COMPINT2

3 I2CIF /
COMPINT1

I2C interrupt request flag
/ COMPINT1

2 SPIRXIF /
COMPINT0

RX available flag SPI + RX
Overrun / / COMPINT0

1 SPITXIF TX empty flag SPI
0 Reserved Reserved

Interrupt Priority Register

All of the VMX51C1016’s interrupt sources are
combined into groups with four levels of priority.

These groups can be programmed individually
to one of the four priority levels: from Level 0 to
Level 3, with Level 3 being the highest priority.

The IP0 and IP1 registers serve to define the
specific priority of each of the interrupt groups.
By default, when the IP0 and IP1 registers are at
reset state 00h, the natural priority order of the
interrupts described above is in force.

TABLE 115: (IP0) INTERRUPT PRIORITY REGISTER 0 - SFR B8H

7 6 5 4 3 2 1 0
UF8 WDTSTAT IP0 [5:0]

Bit Mnemonic Function
7 UF8 User Flag bit
6 WDTSTAT Watch Dog Timer status flag. Set to 1

by hardware when the Watch Dog
Timer overflows. Must be cleared
manually

5 IP0.5 Timer 2 Port1
Change ADC

4 IP0.4 UART0 - MULT/ACCU
3 IP0.3 Timer 1 - I2C
2 IP0.2 - - SPI RX

available
1 IP0.1 Timer 0

Interrupt
- SPI TX

Empty
0 IP0.0 External

INT0 UART1 External
INT 0

Table 116: (IP1) Interrupt Priority Register 1 - SFR B9h

7 6 5 4 3 2 1 0
- - IP1 [5:0]

Bit Mnemonic Function
7 - -
6 - -
5 IP1.5 Timer 2 Port1

Change
ADC

4 IP1.4 UART0 - MULT/ACCU
3 IP1.3 Timer 1 - I2C
2 IP1.2 - - SPI RX

available
1 IP1.1 Timer 0

Interrupt - SPI TX
Empty

0 IP1.0 External
INT0

UART1 External
INT 0

Configuring the IP0 and IP1 registers makes it
possible to change the priority order of the
peripheral interrupts in order to give higher
priority to a specified interrupt that belongs to a
specified group.

TABLE 117: INTERRUPT GROUPS

Bit Interrupt Group
IP1.5, IP0.5 Timer 2 Port1

Change
ADC

IP1.4, IP0.4 UART0 - MULT/ACCU
IP1.3, IP0.3 Timer 1 - I2C
IP1.2, IP0.2 - - SPI RX

available
IP1.1, IP0.1 Timer 0

Interrupt - SPI TX
Empty

IP1.0, IP0.0 External
INT0

UART1 External
INT 0

VMX51C1016

www.ramtron.com page 65 of 76

The respective values of the IP1.x and IP0.x bits
define the priority level of the interrupt group vs.
the other interrupt groups as follows:

TABLE 118: INTERRUPT PRIORITY LEVEL

IP1.x IP0.x Priority Level
0 0 Level 0 (Low)
0 1 Level 1
1 0 Level 2
1 1 Level 3 (High)

The WDTSTAT bit of the IP0 register is the
watchdog status flag, which is set to 1 by the
hardware whenever a watchdog timer overflow
occurs. This bit must be cleared manually.

Finally, bit 7 of the IP0 register can be used as a
general purpose user flag.

VMX51C1016

www.ramtron.com page 66 of 76

Setting up INT0 Interrupts
The IT0 bit of the TCON register defines
whether external interrupt 0 will be edge or level
triggered.

When an interrupt condition occurs on INT0, the
associated interrupt flag IE0 will be set. The
interrupt flag is automatically cleared when the
interrupt is serviced.

TABLE 119: (TCON) TIMER 0, TIMER 1 TIMER/COUNTER CONTROL - SFR 88H

7 6 5 4
TF1 TR1 TF0 TR0

3 2 1 0
-- -- IE0 IT0

Bit Mnemonic Function
7 TF1 Timer 1 overflow flag set by hardware

when Timer 1 overflows. This flag can be
cleared by software and is automatically
cleared when interrupt is processed.

6 TR1 Timer 1 Run control bit. If cleared Timer 1
stops.

5 TF0 Timer 0 overflows flag set by hardware
when Timer 0 overflows. This flag can be
cleared by software and is automatically
cleared when interrupt is processed.

4 TR0 Timer 0 Run control bit. If cleared timer 0
stops.

3 -- Reserved
2 -- Reserved
1 IE0 Interrupt 0 edge flag. Set by hardware

when falling edge on external pin INT0 is
observed. Cleared when interrupt is
processed.

0 IT0 Interrupt 0 type control bit. Selects falling
edge or low level on input pin to cause
interrupt.

INT0 example
The following provides example code for
interrupt setup and module configuration:
//---
// Sample C code to setup INT0
//---
#pragma TINY
#include <vmixreg.h>

at 0x0100 void main (void) {

// INT0 Config

TCON |= 0x01; //Interrupt on INT0 will be caused by a High->Low
 //edge on the pin

// Enable INT0 interrupts
IEN0 |= 0x80; // Enable all interrupts
IEN0 |= 0x01; // Enable interrupt INT0

// Wait for INT0…
do
{
}while(1); //Wait for INT0 interrupts

}//end of main function

//---
// Interrupt Function

void int_ext_0 (void) interrupt 0
{
IEN0 &= 0x7F; // Disable all interrupts

/* Put the Interrupt code here*/

IEN0 |= 0x80; // Enable all interrupts
}
//---

VMX51C1016

www.ramtron.com page 67 of 76

UART0 and UART1 Interrupt Example

The following program example demonstrates
how to initialize the UART0 and UART1
interrupts.

//---
// Sample C code for UART0 and UART1 interrupt example
//---
#pragma TINY
#include <vmixreg.h>

// --- function prototypes
void txmit0(unsigned char charact);
void txmit1(unsigned char charact);
void uart1Config(void);
void uart0ws0relcfg(void);

// - Constants definition
sbit UART_TX_EMPTY = USERFLAGS^1;

//---
// MAIN FUNCTION
//---
 at 0x0100 void main (void) {

 // Enable and configure the UART0 & UART1
 uart0ws0relcfg(); //Configure UART0
 uart1Config(); //Configure UART1

//*** Configure the interrupts
 IEN0 |= 0x91; //Enable UART0 Int + enable all int
 IEN2 |= 0x01; //Enable UART1 Interrupt
 do
 {
 }while(1); //Wait for UARTs interrupts
 // End of main()...

//---
// INTERRUPT ROUTINES
//---

//---
// UART0 interrupt
//
// Retrieve character received in S0BUF and transmit it
// back on UART0
// //---
void int_uart0 (void) interrupt 4 {

 IEN0 &= 0x7F; //disable All interrupts

//--- The only UART0 interrupt source is Rx...

txmit0(S0BUF); // Return the character
//received on UART0

 S0CON = S0CON & 0xFC; //clear R0I & T0I bits
 IEN0 |= 0x80; // enable all interrupts

}// end of UART0 interrupt

//---
// UART1 interrupt
//
// Retrieve character received in S1BUF and transmit it
// back on UART1
// //---
void int_uart1 (void) interrupt 16 {

 IEN0 &= 0x7F; //disable All interrupts

//--- The only UART1 interrupt source is Rx...
 txmit1(S1BUF); // Return the character

// received on UART1
 S1CON = S1CON & 0xFC; // clear both R1I & T1I bits
 IEN0 |= 0x80; // enable all interrupts

}// end of UART1 interrupt

Note: See UART0 / UART1 section for configuration examples and

TXMITx functions

Interrupt on P1 change

The VMX51C1016 includes an interrupt on the
port change feature, which is available on the
Port 1 pins of the VMX51C1016.

This feature is like having eight extra external
interrupt inputs sharing the ADC interrupt vector
at address 006Bhc and can be very useful for
applications such as switches, keypads, etc.

To activate this interrupt, the bits corresponding
to the pins being monitored must be set in the
PORTIRQEN register. The ADCPCIE bit in the
IEN1 register must be set as well as the EA bit
of the IEN0 register.

TABLE 120: (PORTIRQEN) PORT CHANGE IRQ CONFIGURATION - SFR 9FH

7 6 5 4
-- -- -- --

3 2 1 0

P13IEN P12IEN P11IEN P10IEN

Bit Mnemonic Function
7 -- Reserved, Keep at 0
6 -- Reserved, Keep at 0
5 -- Reserved, Keep at 0
4 -- Reserved, Keep at 0
3 P13IEN Port 1.3 IRQ on change enable

0 = Disable
1 = Enable

2 P12IEN Port 1.2 IRQ on change enable
0 = Disable
1 = Enable

1 P11IEN Port 1.1 IRQ on change enable
0 = Disable
1 = Enable

0 P10IEN Port 1.0 IRQ on change enable
0 = Disable
1 = Enable

The PORTIRQSTAT register monitors the
occurrence of the interrupt on port change.
This register serves to define which P1 pin has
changed when an interrupt occurs.

VMX51C1016

www.ramtron.com page 68 of 76

TABLE 121: (PORTIRQSTAT) PORT CHANGE IRQ STATUS - SFR A1H

7 6 5 4
P17ISTAT P16ISTAT P15ISTAT P14ISTAT

3 2 1 0

P13ISTAT P12ISTAT P11ISTAT P10ISTAT

Bit Mnemonic Function
7 -- Unused
6 -- Unused
5 -- Unused
4 -- Unused
3 P13ISTAT Port 1.3 changed

0 = No
1 = Yes

2 P12ISTAT Port 1.2 changed
0 = No
1 = Yes

1 P11ISTAT Port 1.1 changed
0 = No
1 = Yes

0 P10ISTAT Port 1.0 changed
0 = No
1 = Yes

FIGURE 44: APPLICATION EXAMPLE OF PORT CHANGE INTERRUPT

1 2 3

4 5 6

7 8 9

* 0 #
VMX51C1016

P1.3

P1.2

P1.1

P1.0

P2.0
P2.1
P2.2

Numeric Keypad

The following provides an assembler example
for configuration of the interrupt on Port 1 pin
change and how it is shared with the ADC
interrupt.

include VMIXreg.INC
;*** INTERRUPT VECTORS JUMP TABLE *
ORG 0000H ;BOOT ORIGIN VECTOR

LJMP START
ORG 006BH ;INT ADC and P1 change interrupt
 LJMP INT_ADC_P1

;*** MAIN PROGRAM
ORG 0100h

START: MOV DIGPWREN,#01H ;ENABLE TIMER 2
 MOV P2PINCFG,#0FFH

;*** Initialise Port change interrupt on P1.0 - P1.7
 MOV PORTIRQSTAT,#00H
 MOV PORTIRQEN,#11111111B

;*** Initialise the ADC, BGAP, PGA Operation

MOV ANALOGPWREN,#07h

;Select CH0 as ADC input + Enable input buffer + Adc clk

MOV INMUXCTRL,#0Fh
MOV ADCCLKDIV,#0Fh

 MOV ADCCONVRLOW,#000h

;*** configure ADC Conversion Rate
 MOV ADCCONVRMED,#080h
 MOV ADCCONVRHIGH,#016h
 MOV ADCCTRL,#11111010b

;***Activate All interrupts + (serial port for debugger support)

MOV IEN0,#090H
;*** Enable ADC interrupt

MOV IEN1,#020H

;***Wait IRQ…
WAITIRQ: LJMP WAITIRQ

ORG 0200h
;**
;* IRQ ROUTINE: IRQADC + P1Change
;**
INT_ADC_P1:
 ;MOV IEN0,#00h ;DISABLE ALL INTERRUPT

;***Check if IRQ was caused by Port Change
;***If PORTIRQSTAT = 00h -> IRQ comes from ADC
 MOV A,PORTIRQSTAT
 JZ CASE_ADC

;*** If interrupt was caused by Port 1, change
CASE_P0CHG:
 MOV PORTIRQSTAT,#00H
;*** Perform other instructions related to Port1 change IRQ

;(...)

;*** Jump to Interrupt end

AJMP ENDADCP1INT

;*** If interrupt was caused by ADC
CASE_ADC:

ANL ADCCTRL,#11110011b
;***Reset ADC interrupt flags & Reset ADC for next acquisition
 ORL ADCCTRL,#080h
 ORL ADCCTRL,#11111010b
;*** Perform other instructions related to Port1 change IRQ
;(...)

;** End of ADC and Port 1 Change interrupt
ENDADCP0INT:

ANL IRCON,#11011111b

;***Enable All interrupts before exiting

; MOV IEN0,#080H
 RETI
END

VMX51C1016

www.ramtron.com page 69 of 76

The Clock Control Circuit

The VMX51C1016’s clock control circuit allows
dynamic adjustment of the clock from which the
processor and the peripherals derive their clock
source. This enables reduction of overall power
consumption by modulating the operating
frequency according to processing requirements
or peripheral use.

A typical application for this is a portable
acquisition system, in which significant power
savings can be achieved by lowering the
operating frequency between A/D conversions,
and automatically throttling it to full speed when
an A/D converter interrupt is generated. Note
that the ADC operation is not affected by the
clock control unit.

The clock control circuit allows adjusting the
system clock from [Fosc/1] (full speed) down to
[Fosc/512]. The clock division control is done via
the CLKDIVCTRL register located at address
94h of the SFR register area.

TABLE 122: (CLKDIVCTRL) CLOCK DIVISION CONTROL REGISTER -SFR 94H

7 6 5 4
SOFTRST - - IRQNORMSPD

3 2 1 0

MCKDIV [3:0]

Bit Mnemonic Function

7 SOFTRST Writing 1 into this bit location
provokes a reset. Read as a 0

6:5 - -

4 IRQNORMSPD
0 = Full Speed in IRQ
1 = Selected speed during
IRQs

3:0 MCKDIV [3:0]

Master Clock Divisor
0000 – Sys CLK
0001 = SYS /2
0010 = SYS /4
0011 = SYS /8
0100 = SYS /16
0101 = SYS /32
0110 = SYS /64
0111 = SYS /128
1000 = SYS /256
1001 = SYS /512
(…)
1111 = SYS /512

The value written into the lower nibble of the
CLKDIVCTRL register, MCKDIV [3:0], defines
the clock division ratio.

When the IRQNORMSPD bit is cleared, the
VMX51C1016 will run at the maximum operating

speed when an interrupt occurs (see the
following figure).

FIGURE 45: CLOCK TIMING WHEN AN INTERRUPT OCCURS

INTERNAL
CLOCK

INTERRUPT

INTERRUPT
CLEARED

INTERRUPT
SET

Once the interrupt is cleared, the VMX51C1016
returns to the selected operating speed as
defined by the MCKDIV [3:0] bits of the
CLKDIVCTRL register.

When the IRQNORMSPD bit is set the
VMX51C1016 will continue to operate at the
selected speed as defined by the MCKDIV [3:0]
bits of the CLKDIVCTRL register.

Note With the exception of the A/D converter,

all the peripheral operating speeds are
affected by the clock control circuit.

Software Reset

Software reset can be generated by setting the
SOFTRST bit of the CLKDIVCTRL register to 1.

VMX51C1016

www.ramtron.com page 70 of 76

Power-on/Brown-Out Reset

The VMX51C1016 includes a power-on-
reset/brown-out detector circuit that ensures the
VMX51C1016 enters and stays in the reset state
as long as the supply voltage is below the reset
threshold voltage (in the order of 3.7 – 4.0 volts).

In most applications, the VMX51C1016 requires
no external components to perform a power-on
reset when the device is powered-on.

The VMX51C1016 also has a reset pin for
applications in which external reset control is
required. The reset pin includes an internal pull-
up resistor. When a power-on reset occurs, all
SFR locations return to their default values and
peripherals are disabled.

Errata:

The VMX51C1016 may fail to exit the reset state
if the supply voltage drops below the reset
threshold, but not below 3 volts. For
applications where this condition can occur, use
an external supply monitoring circuit to reset the
device.

Processor Power Control

The processor power management unit has two
modes of operation: IDLE mode and STOP
mode.

IDLE Mode

When the VMX51C1016 is in IDLE mode, the
processor clock is halted. However, the internal
clock and peripherals continue to run. The
power consumption drops because the CPU is
not active. As soon as an interrupt or reset
occurs, the CPU exits IDLE mode.

In order to enter IDLE mode, the user must set
the IDLE bit of the PCON register. Any enabled
interrupts will force the processor to exit IDLE
mode.

STOP Mode

In order to enter STOP mode, the user must set
the STOP bit of the PCON register. In this mode,
in contrast to IDLE mode, all internal clocking

shuts down. The CPU will exit this state only
when a non-clocked external interrupt or reset
occurs (internal interrupts are not possible
because they require clocking activity).

The following interrupts can restart the
processor from STOP mode: Reset, INT0, SPI
Rx/Rx Overrun, and the I²C interface.

FIGURE 46: POWER MANAGEMENT ON THE VMX51C1016

CLKCPU
GATE

CLKPER
GATE

IDLE

STOP

INTERRUPT
REQUEST

CLK

CLK FOR
CPU

CLK FOR
PERIPHERALS

The following table describes the power control
register of the VMX51C1016.

TABLE 123: (PCON) POWER CONTROL (CPU) - SFR 87H

7 6 5 4 3 2 1 0
SMOD - - - GF1 GF0 STOP IDLE

Bit Mnemonic Function
7 SMOD The speed in Mode 2 of Serial Port 0

is controlled by this bit. When
SMOD= 1, fclk /32. This bit is also
significant in Mode 1 and 3, as it
adds a factor of 2 to the baud rate.

6 - -
5 - -
4 - -
3 GF1 Not used for power management
2 GF0 Not used for power management
1 STOP Stop mode control bit. Setting this bit

turns on the STOP Mode. STOP bit
is always read as 0.

0 IDLE IDLE mode control bit. Setting this bit
turns on the IDLE mode. IDLE bit is
always read as 0.

VMX51C1016

www.ramtron.com page 71 of 76

Watchdog Timer

The VMX51C1016’s watchdog timer is used to
monitor program operation and reset the
processor in cases where the code could not
refresh the watchdog before it’s timeout period
has lapsed. This can come about from an event
that results in the program counter executing
faulty or incorrect code and inhibiting the device
from doing its intended job.

The watchdog timer consists of a 15-bit counter
composed of two registers (WDTL and WDTH)
and a reload register (WDTREL). See the
following figure.

FIGURE 47: WATCH DOG TIMER

÷16

÷2

0 7
Control Logic

0 7 8 14

WDTREL

WDTHWDTL
WDTR

SYSCLK ÷ 12

WDTR WDTS
(Start)(Refresh)

The WDTL and WDTH registers are not
accessible from the SFR register. However, the
WDTREL register makes it possible to load the
upper 6 bits of the WDTH register.

The PRES bit of the WDTREL register selects
the prescaler clock that is fed into the watchdog
timer.

When PRES = 0, the clock prescaler = 24
When PRES = 1, the clock prescaler = 384

TABLE 124: (WDTREL) WATCHDOG TIMER RELOAD REGISTER - SFR D9H

7 6 5 4 3 2 1 0
PRES WDTREL [6:0]

Bit Mnemonic Function
7 PRES Prescaler select bit. When set, the

watchdog is clocked through an
additional divide-by-16 prescaler.

6-0 WDTREL 7-bit reload value for the high-byte
of the watchdog timer. This value
is loaded into the WDT when a
refresh is triggered by a
consecutive setting of the WDT
and SWDT bits.

TABLE 125: (IP0) INTERRUPT PRIORITY REGISTER 0 - SFR B8H

7 6 5 4 3 2 1 0
UF8 WDTSTAT IP0 [5:0]

Bit Mnemonic Function
7 UF8 User Flag bit
6 WDTSTAT Watchdog timer status flag. Set to 1

by hardware when the Watch Dog
timer overflows. Must be cleared
manually

5 IP0.5 Timer 2 Port1
Change ADC

4 IP0.4 UART0 - MULT/ACCU
3 IP0.3 Timer 1 - I2C
2 IP0.2 - - SPI RX

availlable
1 IP0.1 Timer 0

Interrupt
- SPI TX

Empty
0 IP0.0 External

INT0 UART1 External
INT 0

The WDTSTAT bit of the IP0 register is the
watchdog status flag. This bit is set to 1 by the
hardware whenever a watchdog timer overflow
occurs. This bit must be cleared manually.

Setting-up the Watchdog Timer

Control of the watchdog timer is enabled by the
following bits;

Bit Location Role
WDOGEN DIGPWREN.6 Watchdog timer enable
WDTR IEN0.6 Watchdog timer refresh flag
WDTS IEN1.6 Watchdog timer Start bit

In order for the watchdog to begin counting, the
user must set the WDOGEN bit (bit 6) of the
DIGPWREN register as follows:

MOV DIGPWREN,#x1xxxxxxB ;x=0 or 1 depending
 ;of other peripherals
 ;to enable

VMX51C1016

www.ramtron.com page 72 of 76

The value written into the WDTREL register
defines the delay time of the watchdog timer as
follows:

WDT delay when the WDTREL bit 7 is cleared

WDT Delay = 24*[32768–(WDTREL(6:0) x 256)]

 Fosc

WDT delay when the WDTREL bit 7 is set

WDT Delay = 384*[32768–(WDTREL(6:0) x 256)]

 Fosc

The following table demonstrates WDT reload
values and their corresponding delay times:

Fosc WDTREL WDT Delay
14.74MHz 00h 53.3ms
14.74MHz 4Fh 20.4ms
14.74MHz CCh 347ms

Note: The value present in the CLKDIVCTRL
register affects the watchdog timer delay time.
The above equations and examples assume that
the CLKDIVCTRL register content is 00h.

Starting the Watchdog Timer

To start the watchdog timer using the hardware
automatic start procedure, the WDTS (IEN1)
and WDTR (IEN0) bits must be set. The
watchdog will begin to run with default settings
i.e. all registers will be set to zero.

;*** Do a Watchdog Timer Refresh / Start sequence

SETB IEN0.6 ;Set the WDTR bit first
SETB IEN1.6 ;Then without delay set the
;WDTS bit

When the WDT registers enter the state 7FFFh,
the asynchronous signal, WDTS will become
active. This signal will set bit 6 in the IP0 register
and trigger a reset.

To prevent the watchdog timer from resetting the
VMX51C1016, reset it periodically by clearing
the WDTR and clear the WDTS bit immediately
afterward,.

As a security feature to prevent an inadvertent
clearing of the watchdog timer, no delay
(instruction) is allowed between the clearing of
the WDTR and WDTS bits.
a) Watchdog timer refresh example 1:

*** The Simple way ***

MOV IEN0,#x1xxxxxxB ;DIRECT WRITE THAT SET BIT

;WDTR (x = 0 or 1)
MOV IEN1,#x1xxxxxxB ;DIRECT WRITE THAT SET BIT

;WDTS (x = 0 or 1)

In the case where the program makes use of the
interrupts, it is recommended to deactivate the
interrupts before the watchdog refresh is
performed and reactivate them afterward.

b) Watchdog timer refresh example 2:

*** If Interrupts are used: ***

CLR IEN0.7 ;Deactivate the interrupt
MOV A,IEN0 ;Retrieve IEN0 content
ORL A,#01000000B ;set the bit 6 (WDTR)
XCH A,R1 ;Store IENO New Value
MOV A,IEN1 ;Retrieve IEN1 content
ORL A,#01000000B ;Set bit 6, (WDTS)
MOV IEN0,R1 ; Set WDTR BIT
MOV IEN1,A ;Set WDTS BIT
SETB IEN0.7 ;Reactivate the Interrupts

Watchdog Timer Reset

To determine whether the reset condition was
caused by the watchdog timer, the state of the
WDTSTAT bit of the IP0 register should be
monitored. On a standard power-on reset
condition, this bit is cleared.

VMX51C1016

www.ramtron.com page 73 of 76

WDT Initialization and Use Example
Program

ORG 0000H ;RESET & WD IRQ VECTOR
LJMP START

;*************************************
;* MAIN PROGRAM BEGINNING *
;*************************************

ORG 0100h
;*** Initialize WDT and other peripherals***
MOV DIGPWREN,#40H ;ENABLE WDT OPERATION

;*** INITIALIZE WATCHDOG TIMER RELOAD VALUE
MOV WDTREL,#04FH ;The WDTREL register is used to

;define the Delay Time WDT.
;Bit 7 of WDTREL define clock
;prescalng value

 ;Bit 6:0 of WDTREL defines the
;upper 7 bits reload value of the
;watchdog Timer 15-bit timer

;*** PERFORM A WDT REFRESH/START SEQUENCE
SETB IEN0.6 ;Set the WDTR bit first
SETB IEN1.6 ;Then without delay (instruction)

;set the WDTS bit right after.
 ;No Delays are permitted between

;setting of the WDTR bit and
;setting of the WDTS bit.

 ;This is a security feature to
;prevent inadvertent reset/start of
;the WDT

;IF other interrupt are enabled,

 ;It is recommended to disable
;interrupts before refreshing the
;WDT and reactivate them after

;*** Wait WDT Interrupt

WAITWDT: NOP

;*** If the two following code lines below are put "in-comment", the ;***WDT will
trigger a reset, and the program will restart.

;*** PERFORM A WATCHDOG TIMER REFRESH/START SEQUENCE
;SETB IEN0.6 ;Set the WDTR bit first
;SETB IEN1.6 ;Then without delay (instruction)
LJMP WAITWDT ;set the WDTS bit right after.

;No Delays are permitted between
;setting of the WDTR bit and
;setting of WDTS bit.

 ;This is a security feature to
;prevent inadvertent reset/start of
;the WDT

 ;It is recommended to disable
;interrupts before refreshing the ;WDT
and reactivate them after

VMX51C1016 Programming

When the PM pin is set to 1, the I²C interface
becomes the programming interface for the
VMX51C1016’s Flash memory.

An in-circuit programming interface is easy to
implement at the board level. See VMIX APP-
Note001.

Erasing and programming the VMX51C1016’s
Flash memory requires an external
programming voltage of 12 volts. The voltage is
supplied/controlled by the programming
hardware/tools.

The VMX51C1016 can be programmed using
Ramtron in-circuit programmers.

FIGURE 48: VMX51C1016 PROGRAMMING

VERSA-ICP

Target PC Board

R
S

-232

5V (optional)

SCL

SDA

VPP 12V

PM

RES - (RESET)

GND

VMX51C1016

www.ramtron.com page 74 of 76

VMX51C1016 Debugger

The VMX51C1016 includes hardware debugging
features that can help speed up embedded
software development time.

Debugger Features

The VMX51C1016 debugger supports
breakpoints and single-stepping of the user
program. It supports retrieval and editing of the
SFR register and RAM memory contents when a
breakpoint is reached or when the device
operates in single-step mode. Unlike ROM
monitor programs that execute user program
instructions at a much lower speed, the
VMX51C1016 debugger does not affect program
operating speed when in “Run Mode” before
encountering a breakpoint.

Debugger Hardware Interface

The VMX51C1016’s development system
provides the ideal platform for running the
VMX51C1016 debugger. Interfacing the
VMX51C1016 debugger is done via the UART0
serial interface.

It is possible to run the VMX51C1016 debugger
on the end user’s PCB providing that access to
the VMX51C1016 UART0 is available.
However, a connection to a stand alone in-circuit
programmer (ICP) will be required to perform
Flash programming, control the reset line and
activate the debugger on the target
VMX51C1016 device.

FIGURE 49: VMX51C1016 DEBUGGER HARDWARE INTERFACE

VERSA-ICP

Target PC Board

To UART0RS232
Transceiver

VERSA WARE
In-Circuit
Debugger
Software

R
S

-2
32 R

S
-2

32

Debugger Software Interface

The Versa Ware VMX51C1016 software running
on Windows™ provides an easy-to-use user
interface for in-circuit debugging.

For more details on the VMX51C1016 debugger,
consult the “Versa Ware VMX51C1016 – V1
Software User Guide.pdf”

All documents are also accessible on the
Ramtron web site at http://www.ramtron.com/

VMX51C1016

www.ramtron.com page 75 of 76

VMX51C1016 - 44 pin Quad Flat Package

VMX51C1016
QFP-44

E2

E1

E

D2 D1 D

cop
Seating
Plane

e1

L

e

b

A

A1

A2

TABLE 126: DIMENSIONS OF QFP-44 CHIP CARRIER

Dimension in
mm Symbol
Minimal/Maximal

A -/2.45
Al 0.25/0.50
A2 1.95/2.10
b 0.30/0.40
e1 10º typ
D 13.20 BSC
D1 10.00 BSC
E 13.20 BSC
E1 10.00 BSC
e 0.80
L 0.78/1.03
cop -/0.10
R1 0.2 RAD typ.
R2 0.3 RAD typ.

R1

R2

