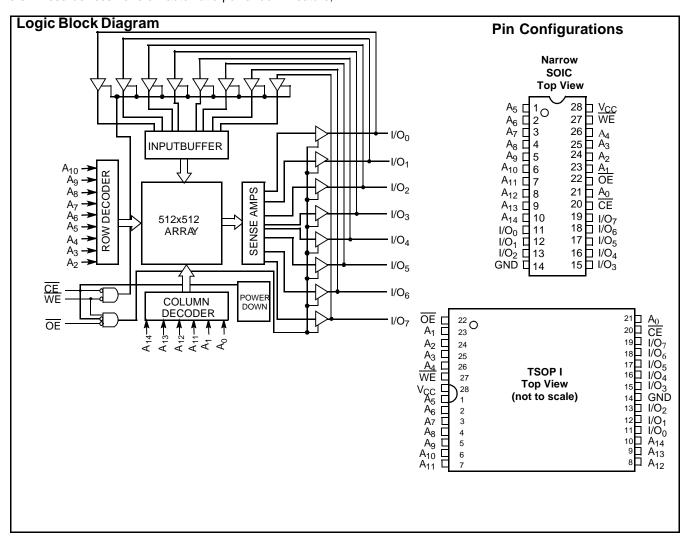


32K x 8 Static RAM

Features

- Low voltage range:
 - -2.7V 3.6V
- · Low active power and standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power


Functional Description

The WCMS0808U1X is composed of a high-performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}) and active LOW output enable (\overline{OE}) and three-state drivers. These devices have an automatic power-down feature,

reducing the power consumption by over 99% when deselected. The WCMS0808U1X is available in the 450-mil-wide (300-mil body width) narrow SOIC and TSOP.

An active LOW write enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE} and \overline{WE} inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.

Maximum Ratings

DC Input Voltage ^[1]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Industrial	–40°C to +85°C	2.7V to 3.6V

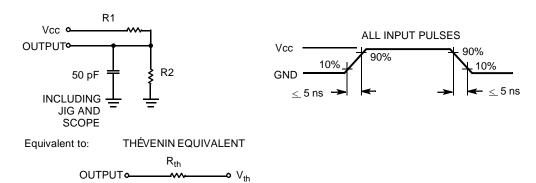
Product Portfolio

					Power Dissipat		on (LL Device	es)
Product	,	V _{CC} Range	•	Speed Operating (I _{CC}) Standby (Operating (I _{CC})		y (I _{SB2})
	Min.	Тур.	Max.		Тур.	Max.	Тур.	Max.
WCMS0808U1X	2.7V	3.0	3.6V	70 ns	11 mA	30 mA	0.1 μΑ	40 μΑ

Electrical Characteristics Over the Operating Range

				wo	MS0808N	J1X	
Parameter	Description	Test Conditions	Min.	Typ . ^[1]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ mA}$		2.4			V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.1 mA				0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage			-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Output Disabled		-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = 3.6V$, $I_{OUT} = 0 \text{ mA}$, $f = f_{MAX} = 1/t_{RC}$	Ind'I		11	30	mA
I _{SB1}	Automatic CE Power-Down Current— TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$	Ind'I		100	300	μА
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = 0$	Ind'I		0.1	40	μА

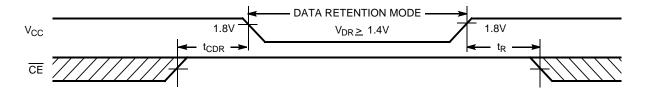
Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF

Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = Vcc Typ., T_A = 25°C, and t_{AA}=70ns.
- 3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms



Parameters	3.3 V	Unit
R1	1103	KOhms
R2	1554	KOhms
RTH	645	KOhms
VTH	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[4]	Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.4			V
ICCDR	Data Retention Current	$\frac{V_{CC}}{CE} = 1.6$ $\frac{V_{CC}}{CE} = V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		0.1	6	uA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		0			ns
t _R ^[3]	Operation Recovery Time		t _{RC}			ns

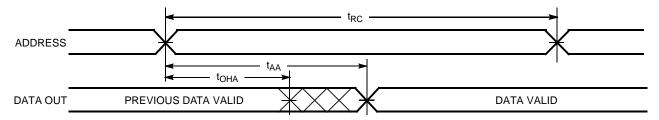
Data Retention Waveform

Switching Characteristics Over the Operating Range^[5]

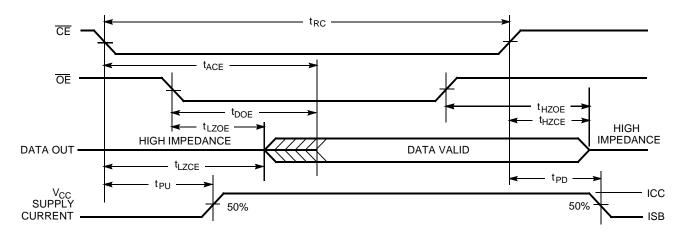
		WCMS	0808U1X	
Parameter	Description	Min.	Max.	Unit
READ CYCLE		•	•	•
t _{RC}	Read Cycle Time	70		ns
t _{AA}	Address to Data Valid		70	ns
t _{OHA}	Data Hold from Address Change	10		ns
t _{ACE}	CE LOW to Data Valid		70	ns
t _{DOE}	OE LOW to Data Valid		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25	ns
t _{PU}	CE LOW to Power-Up	0		ns
t _{PD}	CE HIGH to Power-Down		70	ns
WRITE CYCLE ^[8]	9]	•	•	•
t _{WC}	Write Cycle Time	70		ns
t _{SCE}	CE LOW to Write End	60		ns
t _{AW}	Address Set-Up to Write End	60		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	50		ns
t _{SD}	Data Set-Up to Write End	30		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	10		ns

Notes:

No input may exceed V_{CC}+0.3V.
Test conditions assume signal transition time of 5 ns or less timing reference levels of Vcc/2, input pulse levels of 0 to Vcc, and output loading of the specified I_{OL}/O_H and 100-pF load capacitance.
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device. 6.


terminates the write. The minimum write cycle time for write cycle #3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD}

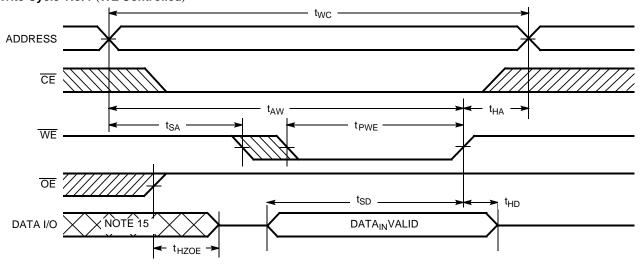
the order to the control of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can extension as write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that

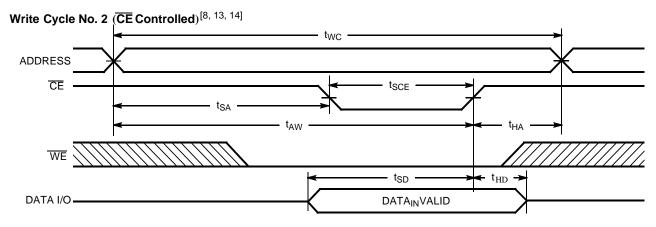


Switching Waveforms

Read Cycle No. 1[10, 11]

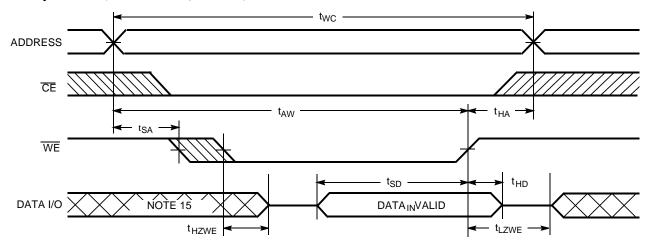
Read Cycle No. 2 $^{[11,\ 12]}$


Notes:


- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.

Switching Waveforms (continued)

Write Cycle No.1 (WE Controlled) $^{[8,\ 13,\ 14]}$


Notes:

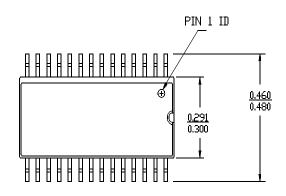
- Data I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)

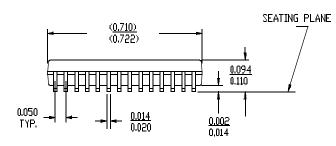
Write Cycle No. 3 (WE Controlled, $\overline{\text{OE}}$ LOW) $^{[~9,~14]}$

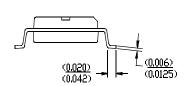
Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})



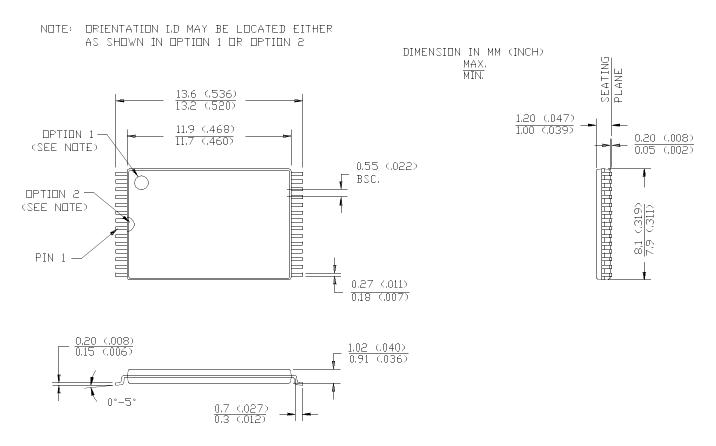
Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	WCMS0808U1X -NF70	N28	28-Lead 450-Mil (300-Mil Body Width) narrow SOIC	Industrial
	WCMS0808U1X-TF70	T28	28-Lead Thin Small Outline Package	


Package Diagrams

28-Lead 450-Mil (300-Mil Body Width) SOIC, N28

DIMENSIONS IN INCHES $\frac{\text{MIN.}}{\text{MAX.}}$ LEAD COPLANARITY 0.004 MAX.



Package Diagrams (continued)

28-Lead Thin Small Outline Package, T28

Document Title: WCMS0808U1X, 32K x 8 Static RAM						
REV.	Spec #	ECN#	Issue Date	Orig. of Change	Description of Change	
**	38-14009	115224	1/17/02	MGN	New Datasheet	