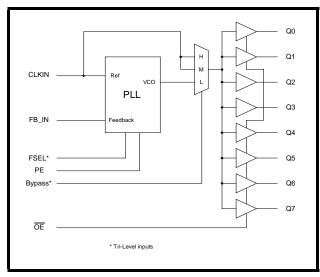


3.3V LOW SKEW PLL CLOCK DRIVER

JULY 2006

FUNCTIONAL DESCRIPTION

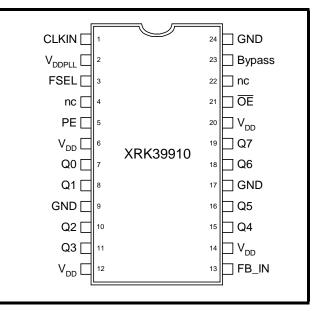
The XRK39910 is a high fanout phase locked-loop clock driver intended for high performance computing and data-communications applications. It has eight zero delay LVTTL outputs.


When the \overline{OE} pin is held low, all the outputs are synchronously enabled. However, if \overline{OE} is held high, all the outputs except Q₂ and Q₃ are synchronously disabled.

Furthermore, when the PE is held high, all the outputs are synchronized with the positive edge of the CLKIN. When PE is held low, all the outputs are synchronized with the negative edge of CLKIN.

The FB_IN signal is compared with the input CLKIN signal at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to

adjust upwards or downwards accordingly. An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.


FIGURE 1. FUNCTIONAL BLOCK DIAGRAM

FEATURES

- Eight zero delay outputs
- 12mA balanced drive outputs
- Output frequency: 15MHz to 85MHz
- <250ps of output to output skew</p>
- Low Jitter: <200ps peak-to-peak
- 3 skew grades
- External feedback, internal loop filter
- Selectable positive or negative edge synchronization
- Synchronous output enable
- 3-level inputs for PLL range control
- PLL bypass for DC testing
- Available in SOIC package

FIGURE 2. PIN CONFIGURATION

REV. 1.0.0

XRK39910 3.3V LOW SKEW PLL CLOCK DRIVER

TABLE 1: ORDERING INFORMATION

PRODUCT NUMBER	ACCURACY	TEMP RANGE
XRK39910CD-2	250ps	0°C to +70°C
XRK39910ID-2	250ps	-40°C to +85°C
XRK39910CD-5	500ps	0°C to +70°C
XRK39910ID-5	500ps	-40°C to +85°C
XRK39910CD-7	750ps	0°C to +70°C
XRK39910ID-7	750ps	-40°C to +85°C

TABLE 2: ABSOLUTE MAXIMUM RATINGS⁽¹⁾

SYMBOL	DESCRIPTION	ΜΑΧ	UNIT
	Supply Voltage to Ground	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to VDD+0.5	V
	CLKIN Input Voltage	-0.5 to +5.5	V
	Maximum Power Dissipation (TA = 85°C)		mW
Тѕтс	TSTG Storage Temperature		°C

Note: (1) Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

TABLE 3: CAPACITANCE (TA= +25°C, f= 1MHz, VIN= 0V)

PARAMETER	DESCRIPTION	Түр	ΜΑΧ	Unit
CIN	Input Capacitance	5	7	pF

NOTE: Capacitance applies to all inputs except BYPASS and FSEL. It is characterized but not production tested

TABLE 4: PIN DESCRIPTIONS

PIN NAME	PIN NUMBER	Түре	DESCRIPTION
CLKIN	1	IN	Reference Clock Input
VDDPLL	2	PWR	Power supply for phase locked loop and other internal circuitry.
FSEL ^(1,3)	3	IN	Frequency range select: FSEL = GND:15 to 35MHz FSEL = MID (or open): 25 to 60MHz FSEL = VDD: 40 to 85MHz
PE	5	IN	Selectable positive or negative edge control. When LOW/HIGH the outputs are synchronized with the negative/positive edge of the reference clock.
Vdd	6,12,14,20	PWR	Power supply for output buffers.

3.3V LOW SKEW PLL CLOCK DRIVER

TABLE 4: PIN DESCRIPTIONS

PIN NAME	PIN NUMBER	Түре	DESCRIPTION
Q0 - Q7	7,8,10,11, 15,16,18,19	OUT	Eight clock output.
GND	9,17,24	PWR	Ground.
FB_IN	13	IN	Feedback Input
OE ⁽²⁾	21	IN	Synchronous Output Enable. When HIGH, it stops clock outputs (except Q ₂ and Q ₃) in a LOW state - Q ₂ and Q ₃ may be used as the feedback signal to maintain phase lock. Set \overrightarrow{OE} LOW for normal operation.
BYPASS ^(1,2)	23	IN	When MID or HIGH, disable PLL (except for conditions of Note 2). CLKIN goes to all outputs. Set LOW for normal operations.

NOTE:

- 1. Tri-Level Input
- 2. When BYPASS = MID and \overline{OE} = HIGH, PLL remains active.
- 3. This input is wired to VDD, GND, or unconnected. Default is MID level. If it is switched in the real time mode, the outputs may glitch, and the PLL may require an additional lock time before all data sheet limits are achieved.

SYMBOL	DESCRIPTION	XRK3991 (Indus	0-2, -5, -7 itrial)	ХRК3991 (Сомм	Unit	
		Min.	MAX.	Min.	Max.	
Vdd	Power Supply Voltage	3	3.6	3	3.6	V
TA	Ambient Operating Temperature	-40	+85	0	+70	°C

TABLE 6: DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

SYMBOL	PARAMETER	Conditions	Min.	MAX.	Unit
Vih	Input HIGH Voltage	Guranteed Logic HIGH (CLKIN, FB_IN, OE, PE Inputs Only)	2		V
VIL	Input LOW Voltage	Guaranteed Logic LOW (CLKIN, FB_IN, OE, PE Inputs Only)		0.8	V
Vihh	Input HIGH Voltage ⁽¹⁾	3-Level Inputs Only (FSEL, BYPASS)	Vdd-0.6		V
Vimm	Input MID Voltage ⁽¹⁾	3-Level Inputs Only (FSEL, BYPASS)	Vdd/2-0.3	VDD/2+0.3	V
Vill	Input LOW Voltage ⁽¹⁾	3-Level Inputs Only (FSEL, BYPASS)		0.6	V
lin	Input Leakage Current (CLKIN, FB_IN Inputs Only)	VIN = VDD or GND VDD = Max.		<u>+</u> 5	μA

XRK39910

3.3V LOW SKEW PLL CLOCK DRIVER

TABLE 6: DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

SYMBOL	PARAMETER	Condi	Min.	MAX.	Unit	
lз	3-Level Input DC Current (BYPASS, FSEL)	Vin = Vdd	HIGH Level		<u>+</u> 400	μΑ
		VIN = VDD/2	MID Level		<u>+</u> 200	
		VIN = GND	LOW Level		<u>+</u> 400	
IPU	Input Pull-Up current (PE)	VDD = Max., VIN =	GND		<u>+</u> 100	μΑ
IPD	Input Pull-Down Current (OE)	VDD= Max., VIN =	Vdd		<u>+</u> 100	μΑ
Vон	Output HIGH Voltage	VDD = Min., IOH =	-12mA	2.4		V
Vol	Output LOW Voltage	VDD = Min., IOL =	12mA		0.55	V

NOTE: (1) These inputs are normally wired to VDD, GND, or unconnected. Internal termination resistors bias unconnected inputs to VDD/2. If these inputs are switched, the function and timing of the outputs may be glitched, and the PLL may require an additional tLOCK time before all datasheet limits are achieved.

TABLE 7: POWER SUPPLY CHARACTERISTICS

SYMBOL	Parameter	TEST CONDITIONS ⁽¹⁾	Typ.	MAX.	Unit
Iddq	Quiescent Power Supply Current	VDD=Max., BYPASS=MID, CLKIN=LOW VDD/PE=LOW, OE=LOW, All outputs unloaded	8	25	mA
Ітот	Total Power Supply Current	VDD=3.3V, FREF=25MHz, CL=160pF ⁽¹⁾	34		mA
		Vdd=3.3V, Fref=33MHz, Cl=160pF ⁽¹⁾	42		
		Vdd=3.3V, Fref=66MHz, Cl=160pF ⁽¹⁾	76		

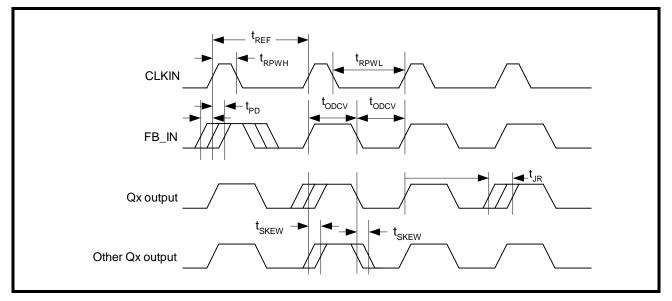
NOTE: (1) For eight outputs, each loaded with 20pF.

TABLE 8: INPUT TIMING REQUIREMENTS

Symbol	DESCRIPTION ⁽¹⁾	Min.	MAX.	Unit
tR, tF	Maximum input rise and fall times, 0.8V to 2V		10	ns/V
tPWC	Input clock pulse, HIGH or LOW	3		ns
Dн	Input duty cycle	10	90	%
Ref	Reference Clock Input	15	85	MHz

NOTE: (1) Where pulse width implied by DH is less than tPWC limit, tPWC limit applies.

SYMBOL	PARAMETER		XRI	< 3991	0-2	XRK39910-5			XRK39910-7			UNIT
STMBUL			Min	Түр	Мах	Min	Түр	Мах	Μιν	Түр	Мах	UNIT
Fref	CLKIN Frequency Range	FSEL = LOW	15		35	15		35	15		35	MHz
		FSEL = MED	25		60	25		60	25		60	
		FSEL = HIGH	40		85	40		85	40		85	
t RPWH	CLKIN Pulse Width HIGH		3			3			3			ns
tRPWL	CLKIN Pulse Width LOW		3			3			3			ns
t SKEW	Output Skew (All Outputs) ^[1, 3, 4]			0.1	0.25		0.25	0.5		0.3	0.75	ns
tDEV	Device-to-Device Skew ^[1, 2, 5]				0.75			1.25			1.65	ns
tPD	CLKIN Input to FB_IN Propa	agation Delay ^[1, 7]	-0.25	0	0.25	-0.5	0	0.5	-0.7	0	0.7	ns
tODCV	Output Duty Cycle Variation	from 50% ^[1]	-1.2	0	1.2	-1.2	0	1.2	-1.2	0	1.2	ns
tORISE	Output Rise Time ^[1]		0.15	1	1.2	0.15	1	1.5	0.15	1.5	2.5	ns
tOFALL	Output Fall Time ^[1]		0.15	1	1.2	0.15	1	1.5	0.15	1.5	2.5	ns
t LOCK	PLL Lock Time ^[1,6]				0.5			0.5			0.5	ms
tJR	Cycle-to-Cycle Output Jit-	RMS			25			25			25	ps
	ter ^[1]	Peak-to-Peak			200			200			200	


TABLE 9: SWITCHING CHARACTERISTICS OVER OPERATING RANGE

NOTES:

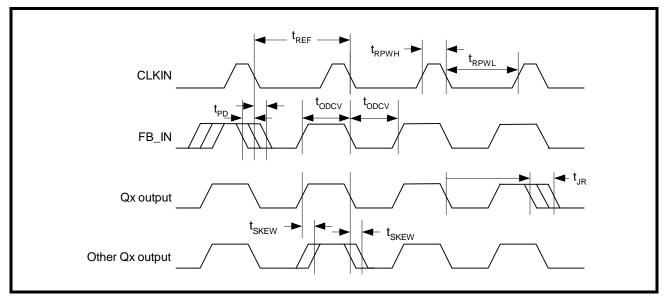

- 1. All timing and jitter tolerances apply for FNOM > 25MHz.
- 2. Skew is the time between the earliest and the latest output transition among all outputs with the specified load.
- 3. tSKEW is the skew between all outputs. See AC TEST LOADS.
- 4. For XRK39910-2 tskew is measured with CL = 0pF; for CL = 20pF, tskew = 0.35ns Max.
- 5. tDEV is the output-to-output skew between any two devices operating under the same conditions.
- 6. tLOCK is the time that is required before synchronization is achieved. This specification is valid only after VDD is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at CLKIN or FB_IN until tPD is within specified limits.
- 7. tPD is measured with CLKIN input rise and fall times (from 0.8V to 2V) of 1ns.

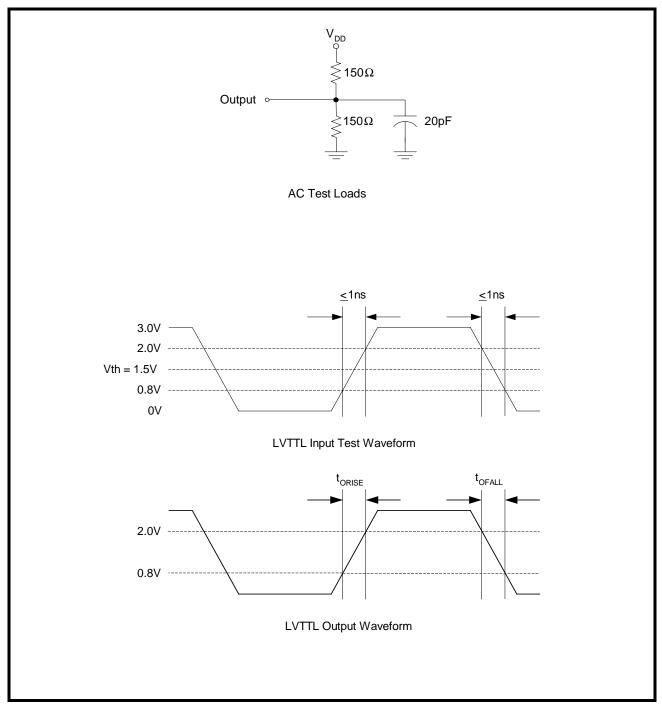
FIGURE 3. AC TIMING DIAGRAM (PE= HIGH TIMING)

FIGURE 4. AC TIMING DIAGRAM (PE= LOW TIMING)

NOTE:

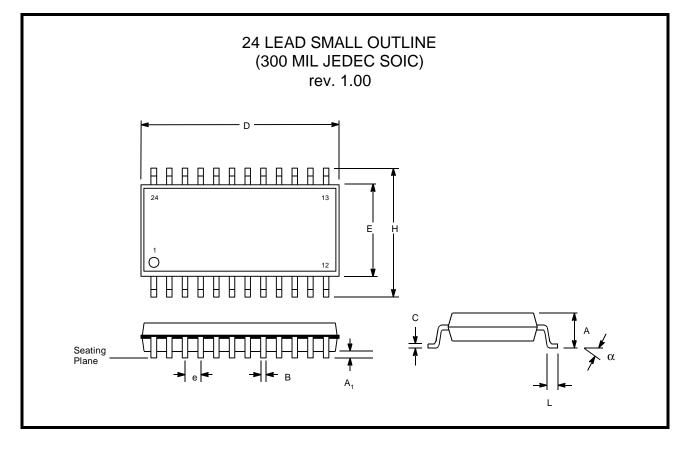
Skew: The time between the earliest and the latest output transition among all outputs when all are loaded with 20pF and terminated with 75 Ω to VDD/2.

tDEV: The output-to-output skew between any two devices operating under the same conditions (VDD, ambient temperature, air flow, etc.).


topcv: The deviation of the output from a 50% duty cycle.

torise and toFALL are measured between 0.8V and 2V.

tLOCK: The time that is required before synchronization is achieved. This specification is valid only after VDD is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at CLKIN or FB_IN until tPD is within specified limits.



XRK39910

3.3V LOW SKEW PLL CLOCK DRIVER

PACKAGE DIMENSIONS

Note: The control dimension is the millimeter column

	INCHES		MILLIMETERS	
SYMBOL	MIN	МАХ	MIN	MAX
А	0.093	0.104	2.35	2.65
A ₁	0.004	0.012	0.10	0.30
В	0.013	0.020	0.33	0.51
С	0.009	0.013	0.23	0.32
D	0.598	0.614	15.20	15.60
E	0.291	0.299	7.40	7.60
е	0.050 BSC		1.27 BSC	
Н	0.394	0.419	10.00	10.65
L	0.016	0.050	0.40	1.27
α	0°	8°	0°	8°

REVISION HISTORY

REVISION #	DATE	DESCRIPTION
1.0.0	July 18, 2006	Initial release.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2006 EXAR Corporation

Datasheet July 2006.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.