&~

SILICON LABODORATORIES

AN123

USING THE DAC AS A FUNCTION GENERATOR

Relevant Devices

This application note applies to the following devices:

C8051F020, C8051F021, C8051F022, and
C8051F023.

Introduction

This document describes how to implement an
interrupt driven multifunction generator on C8051
devices using the on-chip digital-to-analog con-
verter (DAC).

Features

* Four different waveforms expandable to any
periodic function defined in a table.

Sine Wave (Table Defined)

Square Wave (Calculated)

Triangle Wave (Calculated)
Saw Tooth Wave (Calculated)

» Allows selection of the frequency and ampli-
tude of waveform at run time.

* An interactive interface with a PC using the
serial communications port and HyperTerminal
or an equivalent program.

Key Points

* Output waveforms have 16-bit frequency reso-
lution using the phase accumulator approach.

* The on-chip DAC’s can support waveform gen-
eration up to 50 kHz.

* By using a 16-bit lookup table with a 12-bit
DAUC, error in the amplitude is virtually elimi-
nated.

Implementation

The main routine of this program is a command
interpreter that sets parameters for the Timer 4
interrupt service routine (ISR) which manages the
DAC updates. The Timer 4 interrupts occur at a
predetermined rate set at compile time. In the
included software example, this value is stored in
the constant <SAMPLE RATE DAC>. The
Timer 4 ISR updates the DAC and calculates or
looks up the next output value based on the wave-
form settings.

Setting up the DAC

Any free DAC, referred to as DACn, may be used
to generate waveforms. In this example DACn is
used in left-justified mode with output scheduling
based on Timer 4 overflows. Refer to the data sheet
for specific information on how to set the DAC-
nCN register to specify DACn modes.

When the DAC is configured to left-justified mode,
16-bit data can be written to the 12-bit data register
with no shifting required. In this case, the 4 least
significant bits are ignored.

In this example, DACn updates occur on Timer 4
overflows, meaning writes to DACnH and DACnL
have no immediate effect on the DAC output, but
instead are held until the next Timer 4 overflow.

Another important note is that the internal voltage
reference must be enabled by setting the appropri-
ate bits in the REFnCN register before the DAC
can be used.

Sampling Rate

The sampling rate is configured by initializing the
Timer 4 reload value with the number of SYSCLK

Rev. 1.1 12/03

Copyright © 2003 by Silicon Laboratories

AN123-DS11

AN123

cycles between interrupts. This number is negative
because C8051 timers are up-counters and can be
calculated using the following formula:

(-SYSCLK)
SAMPLE_RATE_DAC

Timer 4 Reload =

The maximum sampling rate allowed by the DAC
is approximately 100 kHz, given by the 10 us out-
put settling time. However, use caution when
selecting the DAC sampling rate because all
instructions in the longest path of the ISR must be
executed before the next Timer 4 interrupt, or the
output frequency will be affected. For example,
using a SYSCLK of 22.1 MHz and a DAC update
rate of 80 kHz allows 276 SYSCLK cycles for the
ISR to finish execution. The main trade-off is
between the sampling rate and the execution time
of the Timer 4 ISR. One way execution time of the
ISR can be reduced to achieve a higher sampling
rate is by removing the gain adjustment stage. Also
note that the maximum output frequency is limited
to no more than one half the sampling rate (Nyquist
theorem).

Waveform Generation

Waveform generation occurs entirely in the
Timer 4 ISR and is implemented in three stages.

The 2D playing field, shown in Figure 1, is used to
define one period of any periodic function. It has
two 16-bit axes, a horizontal phase axis ranging

32767

64 128

from 0 to 65535, and a vertical 2’s complement
amplitude axis ranging from -32768 to 32767.

All waveforms generated use a 16-bit phase accu-
mulator which keeps track of where the output
waveform is on the horizontal axis. This phase
accumulator provides a frequency resolution of
1.2 Hz, given a DAC update rate of 80 kHz. Based
on waveform settings, the first stage of Timer 4
ISR either calculates or looks up the next DAC out-
put level corresponding to the phase accumulator.
The phase accumulator is incremented by the vari-
able <phase add> every time the Timer 4 ISR is
called. The magnitude of <phase add> is deter-
mined by the desired output frequency based on
this formula:

PHASE_PRECISION
SAMPLE_RATE_DAC

phase_add = frequency x

where PHASE_PRECISION = 65536

The entries in the lookup table and the results of the
initial calculations are full-scale values. The second
stage of the Timer 4 ISR scales the output level
according to the <amplitude> parameter specified
at the command prompt.

The final processing stage converts the scaled
2’s complement value to an unsigned unipolar
value prior to delivery to the DAC. This is accom-
plished by adding 32768 to the 2’s complement

255
| |

8-bit table index

3276

-32768

65535 16-bit phase axis

Figure 1. One Period of a Table Defined Sine Wave

2 Rev. 1.1

SILICON LABORATORIES

AN123

value. An efficient way to implement this operation
is to XOR the 2’s complement value with 0x8000.

Table Defined Waveforms

As mentioned above, waveform generation consists
of three stages before samples are written to the
DAC. The output of the first stage, which
determines the full scale output value, can either
result from a calculation or a table lookup. A
lookup table can be used if the output is not quickly
or easily calculated. The main trade-off is sampling
speed vs. code size.

Phase Error

Figure 1 shows one period of a sine wave. A
lookup table containing 256 samples of this
waveform is used to approximate a true sine wave.
Keep in mind that the lookup table can
approximate any other periodic waveform. If the
output is set to “sine wave” at the command
prompt, the Timer 4 ISR performs a lookup to
obtain the output, using the eight most significant
bits of the phase accumulator as the table index.
The truncation to 8-bits introduces an error which
can be interpreted as an instantaneous phase error
or a slight error in the waveform amplitude. The
frequency resolution, which is determined by the
16-bit accumulator, is not affected by the truncation
because the error is not accumulated across
multiple samples.

Amplitude Error

Amplitude error can be introduced from two
sources, a low resolution amplitude or phase axis.
Since the DAC has a 12-bit output resolution, error
resulting from the amplitude axis can be eliminated
by storing 16-bit values in the lookup table. Ampli-
tude error that results from the phase axis can only
be corrected by increasing the number of entries in
the lookup table. Increasing the number of table
entries will stabilize the instantaneous frequency
by reducing the phase error, at the expense of
increased code size.

Calculated Waveforms

Stage one of the Timer 4 ISR calculates the full
scale output value of the waveform corresponding
to the 16-bit phase accumulator. Since using the
full 16-bit precision of the phase accumulator in the
calculation does not require many clock cycles,
both the amplitude and phase error are less than in
table-defined waveforms.

Square Wave

The algorithm used to calculate the output value of
the square wave is quite simple. As shown in
Figure 2, if the phase accumulator is in the first half
of the cycle, then the output is set to the maximum
value of +32767. Otherwise, the output is set to the
minimum value (-32768). The most significant bit
of the phase accumulator contains enough informa-
tion to determine the output value of the square
wave.

Triangle Wave
The calculation of a triangle wave involves the
equation of 2 lines with opposite slope. From
Figure 3, the slope is +2 in the first half and -2 in
the second half.

Saw Tooth Wave

SILICON LABORATORIES

Rev. 1.1 3

AN123

The equation of a saw tooth wave is a straight line

32767
with a slope of 1. Figure 4 shows one period of a
full scale saw tooth wave.
1]
0 | | |
32767 6384 32767 49152\ 65535
-32768

[l [l |
0 . .
! ! ! Figure 3. One period of a calculated
16384 32767 49152 65535 triangle wave

-32768

Figure 2. One period of a calculated

square wave
32767

| | | |
0]] |

16384 32767 49152 65535

-32768

Figure 4. One period of a calculated
saw tooth wave

®
4 Rev. 1.1 @

SILICON LABORATORIES

AN123

Software Example

// AUTH: BW,FB
// DATE: 2 OCT 01

// Target: C8051F02x
// Tool chain: KEIL C51

//

// Description:

// Example source code which outputs waveforms on DACl. DACl’s output is
// scheduled to update at a rate determined by the constant

// <SAMPLE RATE DAC>, managed and timed by Timer4.

//

// Implements a 256-entry full-cycle sine table of 16-bit precision. Other
// waveforms supported are square, triangle, and saw tooth.

//

// The output frequency is determined by a 16-bit phase adder.

// At each DAC update cycle, the phase adder value is added to a running
// phase accumulator, <phase accumulator>, the upper bits of which are used
// to access the sine lookup table.

//

// The program is controlled through UART using HyperTerminal running on a
// PC. All commands are two characters in length and have optional

// frequency and amplitude arguments. Note that the amplitude parameter

// cannot be specified unless the frequency is also specified.

//

// Command Format:

//

// XX [frequency] [amplitude]

//

// where XX denotes the command

//

// Command List:

//

// SQ - Square Wave

// SI - Sine Wave

// TR - Triangle Wave

// SA - Saw Tooth Wave

// OF - Output OFF

// ?? - Help
et
// Includes

/==
#include <c8051f020.h> // SFR declarations

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>

Rev. 1.1

SILICON LABORATORIES

AN123

sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer2

sfr16 RCAP4 = Oxed; // Timer4 capture/reload

sfrloc T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

/e
// Function PROTOTYPES
e

void main (void);

void SYSCLK_Init (void) ;
void PORT Init (void);
void UARTO Init (void);

void Timer4 Init (int counts);
void Timer4 ISR (void);
long pow(int x, int y);
void Print Command List (void);

void Sine (void) ;
void Square (void) ;
void Triangle (void) ;
void Saw (void) ;

void Off (void) ;

void Help (void);
void Error (void);

/=T oo

// Global CONSTANTS

[m e oo

#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 9600 // Baud rate of UART in bps

#define SAMPLE RATE DAC 80000L // DAC sampling rate in Hz

#define PHASE PRECISION 65536 // range of phase accumulator

#define command length 2 // command length is 2 characters

#define command size 3 // command size is 3 bytes

typedef struct Command Table Type { // when a command is entered, it is
char command[command sizel; // compared to the command field of
void (*function ptr) (void); // of the table. If there is a match

}Command Table Type; // then the the function located at

// function ptr will be executed
typedef enum Waveform { // the different possible output

SQUARE, // waveforms

6 Rev. 1.1

SILICON LABORATORIES

AN123

SINE,

TRIANGLE,

SAW,

OFF
}Waveform;

typedef union 1lng {

long Long;
int Int[2];
} lng;

// Global Variables

unsigned long frequency = 1000;
unsigned

unsigned int amplitude = 100 * 655;
Waveform output waveform = OFF;

nww o,
’

char input str([l6]=

#define num commands 6

Command Table Type code function table[num commands + 1]

{“SQ",
{“SI”,
{\\TRN,
{\\SAN,
{\\OFN,
{\\??"’

Square},
Sine},
Triangle},
Saw},
Off},
Help},
Error}

(e,

b

// a full cycle, 1l6-bit,
int code SINE TABLE[256] = {

0x0000,
0x18£8,
0x30fb,
0x471c,
0x5a82,
0x6a6d,
0x7641,
0x7d8a,
0x7fff,
0x7d8a,
0x7641,
Ox6ao6d,
0x5a82,
0x471c,
0x30fb,

0x0324,
0x1cOb,
0x33de,
0x49b4,
0x5cb4,
0Ox6c24,
0x776c¢c,
0x7eld,
0x7ffo,
O0x7ce3,
0x7504,
0x68a6,
0x5842,
0x447a,
0x2ell,

0x0647,
0x1f19,
0x36ba,
Ox4c3f,
0x5ed7,
Oxb6dca,
0x7884,
0x7e9d,
0x7fds,
0x7c29,
0x73b5,
0Ox66ct,
0x55f5,
Ox41lce,
0x2blf,

0x096a,
0x2223,
0x398c,
Ox4ebf,
Ox60ec,
Ox6f5f,
0x798a,
0x7f09,
0x7fa’,
0x7b5d,
0x7255,
Ox64e8,
0x539Db,
0x3f17,
0x2826,

0x0c8b,
0x2528,
0x3c56,
0x5133,
0x62f2,
0x70e2,
Ox7a7d,
0x7f62,
0x7f62,
0x7a7d,
0x70e2,
0x62f2,
0x5133,
0x3c56,
0x2528,

// access a long variable as two
// 16-bit integer values

// frequency of output in Hz,
// defaults to 1000 Hz

int phase add = 1000 * PHASE PRECISION / SAMPLE RATE DAC;

// 655 is a scaling factor
// see the Timer 4 ISR

0x0fab,
0x2826,
0x3f17,
0x539Db,
Ox64e8,
0x7255,
0x7b5d,
0x7fa’7,
0x7f09,
0x798a,
0x6£5fF,
0x60ec,
Ox4ebf,
0x398c,
0x2223,

0x12cs8,
0x2blf,
Ox41ce,
0x55f5,
Ox66ct,
0x73b5,
0x7c29,
0x7fds,
0x7e9d,
0x7884,
Ox6dca,
Ox5ed7,
Ox4c3f,
0x36ba,
0x1f19,

2's complement sine wave lookup table

Ox15e2,
0x2ell,
0x447a,
0x5842,
0x68a6,
0x7504,
Ox7ce3,
0x7ffeo,
0x7eld,
0x776c,
0x6c24,
0x5cb4,
0x49b4,
0x33de,
0x1c0b,

SILICON LABORATORIES

Rev. 1.1

AN123

0x18f8,
0x0000,
0xe708,
Oxcf05,
Oxb8e4d,
Oxa57e,
0x9593,
0x89bf,
0x8276,
0x8000,
0x8276,
0x89bf,
0x9593,
Oxa57e,
Oxb8e4,
Oxcf05,
0xe708,

0x12c8,
0xf9b9,
Oxele7,
0xc94o0,
Oxb3cl,
0xal29,
0x9236,
0x877¢c,
0x8163,
0x8028,
0x83d7,
0x8c4db,
0x9931,
Oxaalb,
Oxbe32,
Oxddel,
Oxed38,

0x0fab,
0xf696,
0xdddd,
Oxco674,
Oxbl41,
0x9f14,
0x90al,
0x8676,
0x80f7,
0x8059,
0x84a3,
0x8dab,
0x9b18,
Oxac65,
Oxc0e9,
0xd7da,
0xf055,

0x15e2,
Oxfcdc,
0xe3f5,
Oxcc22,
Oxb64c,
Oxa34c,
0x93dc,
0x8894,
0x81le3,
0x800a,
0x831d,
O0x8afc,
0x975a,
Oxa7be,
0xbb86,
Oxdlef,
Oxeale,

b

code char stringO[]
code char stringll[]

void main (void) {

//
//

char 1;
char* arg ptrl;
char* arg ptr2;

//
//

long temp frequency;
int temp amplitude;
100;

int printed amplitude //

//
void (*f) (void); //

//
WDTCN = Oxde; //
WDTCN = Oxad;

SYSCLK_Init ()
PORT Init ();

0x0c8b,
0xf375,
Oxdads,
Oxc3aa,
Oxaecd,
0x9d0e,
0x8fle,
0x8583,
0x809e,
0x809e,
0x8583,
Ox8fle,
0x9d0e,
Oxaecd,
Oxc3aa,
Oxdads,
0xf375,

0x096a,
0xf055,
0xd7da,
Oxc0e?9,
Oxac65,
0x9b18,
0Ox8dab,
0x84a3,
0x8059,
0x80f7,
0x8676,
0x90al,
0x9f14,
Oxbl41,
Oxc674,
0xdddd,
0xf696,

0x0647,
0xed38,
Oxddel,
0Oxbe32,
Oxaalb,
0x9931,
0x8c4db,
0x83d7,
0x8028,
0x8163,
0x877c,
0x9236,
0xal29,
Oxb3cl,
0xc94o6,
Oxele7,
0xf909,

0x0324,
Oxeale,
Oxdlef,
0xbb86,
Oxa7be,
0x975a,
Ox8afc,
0x831d,
0x800a,
0x81e3,
0x8894,
0x93dc,
Oxa34c,
Oxbodc,
Oxcc22,
0xe3f5,
Oxfcdc,

"\n\n*** QUTPUT IS NOW A “;

counting variable
pointers to command line parameters

used to hold the values input from the
keyboard while they are error checked

a separate copy of amplitude because
temp amplitude is written over

function pointer used to call the proper
function from the command table

Disable watchdog timer

// initializations for wave generation

REFOCN = 0x03;
DACICN 0x97;

/7
//

Timer4 Init (SYSCLK/SAMPLE RATE DAC);
//
//
//
//

// initialization for command input

enable internal VREF generator
enable DAC1 in left-justified mode

using Timer4 as update scheduler
initialize T4 to update DAC1
after (SYSCLK cycles) /sample have
passed.

Rev. 1.1

SILICON LABORATORIES

AN123

UARTO Init ();

EA = 1; // Enable global interrupts
Print Command List();
while (1) {

// get user input
printf (“ENTER A COMMAND:>");

gets (input_str,sizeof (input_str)); // wait for input
input str[0] = toupper (input str[0]); // convert the two characters
input str[l] = toupper (input str([1]); // in the command to uppercase

// Parse the command

for (i = 0; i < num commands; i++) {
// strncmp () returns 0 if the first two arguments are the same string
// set <i> for the command that matched
if (0 == strncmp (input str, function table[i].command, command length)) {

arg ptrl = strchr (input str, ' ');
arg ptrl++; // point to the frequency

arg ptr2 = strchr(arg ptrl, ' V);
arg ptr2++; // point to amplitude

temp frequency = atol(arg ptrl);
temp amplitude = atol(arg ptr2);

// check to make sure entered frequency is valid
if (temp frequency) {

frequency = temp frequency;
} else {
printf ("\n** Frequency will not change\n”);
// check to make sure entered amplitude is valid
if ((temp_amplitude > 0) && (temp amplitude <=100)) {
// multiply by 655 to be divided by 65535 (16-bit shift) in the
// ISR; this is an optimization to reduce the number of
// instructions executed in the ISR
amplitude = temp amplitude * 655;
printed amplitude = temp amplitude;

} else {

printf ("\n** Amplitude will not change\n”);

Rev. 1.1 9

SILICON LABORATORIES

AN123

printf ("\\nFREQUENCY: %1d Hz”, frequency);
printf ("\\nAMPLITUDE: %d %% of VREF/2”, printed amplitude);

EA = 0; // Disable Interrupts to avoid
// contention between the ISR
// and the following code.

// set the frequency

phase add = frequency * PHASE PRECISION / SAMPLE RATE DAC;

break;
} // end if
}// end for

// call the associated function

f = (void *) function table[i].function ptr;
£0)7
EA = 1; // re—enable interrupts

} // end while (1)

} // end main

// Init Routines
[

e R R R
// SYSCLK Init

e R R
//

// This routine initializes the system clock to use a 22.1184MHz crystal
// as its clock source.

//
void SYSCLK Init (void)

{

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; 1 < 256; i++) ; // Wait for osc. to start up
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

// Configure the Crossbar and GPIO ports

10 Rev. 1.1

SILICON LABORATORIES

AN123

//
void PORT Init (void)
{
XBRO = 0x04; // Enable UARTO
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-up
POMDOUT |= 0x01; // Set TX0 pin to push-pull
}
[mm e
// Timer4 Init
[mm e e e -

// This routine initializes Timer4 in auto-reload mode to generate interrupts
// at intervals specified in <counts>.

void Timer4 Init (int counts)

{

T4CON = 0; // STOP timer; set to auto-reload mode
CKCON |= 0x40; // T4M = ‘1'’; Timer4 counts SYSCLKs
RCAP4 = -counts; // set reload value
T4 = RCAP4;
EIE2 |= 0x04; // enable Timer4 interrupts
T4CON |= 0x04; // start Timer4
}
et
// UARTO Init
[
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16); // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMODO = 1
TIO =1; // Indicate TX0 ready
}
/e e
// Print Command List
[mm e e
//
// Prints the command list to the standard output.
//

void Print Command List (void)
{
printf (M\n\

SQ - Square Wave\n\

SI - Sine Wave\n\

TR - Triangle Wave\n\

SA - Saw Tooth Wave\n\

OF - Output OFF\n\

?? — Help\n\n”);

Rev. 1.1 11

SILICON LABORATORIES

// Sets output to a sine wave.
//
void Sine (void)
{
output waveform = SINE;
// print this message: *** OUTPUT IS NOW A SINE WAVE
printf (“$sSINE WAVESs”,string0,stringl);
Print Command List () ;

// Sets output to a square wave.

void Square (void)
{
output waveform = SQUARE;
// print this message: *** OUTPUT IS NOW A SQUARE WAVE
printf (“%$sSQUARE WAVES$s”,string0O,stringl);
Print Command List();

// Sets output to a triangle wave.
//
void Triangle (void)
{
output waveform = TRIANGLE;
// print this message: *** QUTPUT IS NOW A TRIANGLE WAVE
printf (“$sTRIANGLE WAVES$s”,string0,stringl);
Print Command List();

// Sets output to a saw tooth wave.
//
void Saw (void)
{
output waveform = SAW;
// print this message: *** OUTPUT IS NOW A SAW TOOTH WAVE
printf (“%$sSAW TOOTH WAVE”,string0, stringl);
Print Command List();

12 Rev. 1.1

SILICON LABORATORIES

AN123

// Sets output to zero volts DC.

//

void Off (void)

{
printf (“\n\n*** OUTPUT OFF”,stringl);
output_waveform = OFF;
Print Command List () ;

//

// Prints the command list.
//

void Help (void)

{

Print Command List () ;

// Indicates that an invalid command was entered at the command prompt.
//

void Error (void)

{
printf (% ***INVALID INPUT = %s\n”, input str);

//*********************************k**

// Interrupt Handlers
//*‘k*‘k*‘k*‘k************‘k***********‘k************‘k*******************************

/e e
// Timer4 ISR -- Wave Generator
/s
//

// This ISR is called on Timer4 overflows. Timer4d is set to auto-reload mode

// and is used to schedule the DAC output sample rate in this example.
// Note that the value that is written to DAC1 during this ISR call is
// actually transferred to DACl at the next Timer4 overflow.

void Timer4 ISR (void) interrupt 16 using 3

{

static unsigned phase acc = 0; // holds phase accumulator

int templ; // the temporary value that passes
// through 3 stages before being written
// to DAC1

Rev. 1.1 13

SILICON LABORATORIES

AN123

int code *table ptr;
Ing temporary long;
T4CON &= ~0x80;

table ptr = SINE TABLE;

phase acc += phase add;

// set the value of <templ> to

// pointer to the lookup table

// holds the result of a 16-bit multiply

// clear T4 overflow flag

// increment phase accumulator

the next output of DACl at full-scale

// amplitude; the rails are +32767, -32768

switch (output waveform) {
case SINE:

// read the table value

templ = *(table ptr + (phase acc >> 8));

break;

case SQUARE:

// if in the first half-period, then high

if ((phase _acc & 0x8000)
templ = 32767;
} else {

templ = -32768;

break;
case TRIANGLE:

// in first half-period,
if ((phase acc & 0x8000)

templ = (phase acc <<

==) A

then y =mx + b
== 0) {

1) - 32768;

// else, in the second half of period

} else {

templ = -(phase acc << 1) + 32767;

break;

case SAW:

templ = phase acc - 32768;

break;

case OFF:

14

Rev. 1.1

SILICON LABORATORIES

AN123

templ = -32768;
break;

default:
while (1) ;

// Adjust the Gain
temporary long.Long = (long) ((long)templ * (long)amplitude) ;

templ = temporary long.Int[0]; // same as temporary long >> 16

// Add a DC bias to make the rails 0 to 65535

// Note: the XOR with 0x8000 translates the bipolar quantity into
// a unipolar quantity.

DAC1 = 0x8000 ~ templ;

Rev. 1.1 15

SILICON LABORATORIES

AN123

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

16 Rev. 1.1

SILICON LABORATORIES

