CY7C192

64K x 4 Static RAM with Separate I/O

Features

- High speed
- 12 ns
- CMOS for optimum speed/power
- Low active power
- $\mathbf{8 6 0} \mathrm{mW}$
- Low standby power
- 55 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- Available in non Pb-free 28 -Lead Molded SOJ package.

Functional Description

The CY7C192 is a high-performance CMOS static RAM organized as 65,536 x 4 bits with separate I/O. Easy memory expansion is provided by active LOW Chip Enable ($\overline{C E}$) and tri-state drivers. It has an automatic power-down feature, reducing the power consumption by 75% when deselected.
Writing to the device is accomplished when the Chip Enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.
Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the Chip Enable (CE) LOW while the Write Enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high-impedance state when Write Enable (WE) is LOW, or Chip Enable (CE) is HIGH.

A die coat is used to insure alpha immunity.

Pin Configurations

Selection Guide

	$\mathbf{- 1 2}$	$\mathbf{- 1 5}$	Unit
Maximum Access Time	12	15	ns
Maximum Operating Current	155	145	mA
Maximum CMOS Standby Current	10	10	mA

DC Input Voltage ${ }^{[1]}$................................... -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage... >900V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature ${ }^{[2]}$	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	-12		-15		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$	2.2	$\mathrm{V}_{\mathrm{Cc}}+0.3 \mathrm{~V}$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{1 \times}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}}$	-5	+5	-5	+5	$\mu \mathrm{A}$
loz	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-5	+5	-5	+5	$\mu \mathrm{A}$
Icc	$V_{\text {Cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		155		145	mA
${ }^{\text {SB1 }}$	Automatic $\overline{\text { CE }}$ Power-Down Current-TTL Inputs	$\begin{aligned} & \operatorname{Max.}^{V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or }} \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$		30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		10		10	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms ${ }^{[4]}$

Equivalent to: THÉVENIN EQUIVALENT
OUTPUTo_

Notes:

1. Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns .
2. T_{A} is the case temperature.
3. Tested initially and after any design or process changes that may affect these parameters.
4. $t_{r}=\leq 3 n s$ for the -12 and -15 speeds. $t_{r}=\leq 5 n s$ for the -20 and slower speeds.

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	-12		-15		Unit
		Min.	Max.	Min.	Max.	
Read Cycle						
t_{RC}	Read Cycle Time	12		15		ns
t_{AA}	Address to Data Valid		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15	ns
t ${ }_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low ${ }^{[6]}$	3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		5		7	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15	ns
Write Cycle ${ }^{[8]}$						
$\mathrm{t}_{\text {wc }}$	Write Cycle Time	12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	9		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		ns
t_{HA}	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8		9		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	8		9		ns
t_{HD}	Data Hold from Write End	0		0		ns
t LzWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		ns
$\mathrm{t}_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		7		7	ns

Notes:

5. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{H Z W E}$ is less than $t_{\text {LZWE }}$ for any given device. These parameters are guaranteed by design and not 100% tested.
7. $t_{\text {HZCE }}$ and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[9,10]}$

Read Cycle No. $2^{[9,11]}$

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8]}$

Notes:
9. WE is HIGH for read cycle.
10. Device is continuously selected, $\mathrm{CE}=\mathrm{V}_{1}$
11. Address valid prior to or coincident with CE transition LOW

CY7C192
Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE Controlled }})^{[8,12]}$

Note:
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT
vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED Icc vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C192-12VC	$51-85031$	28-Lead Molded SOJ	Commercial
15	CY7C192-15VC			

Package Diagram

28-Lead (300-Mil) Molded SOJ (51-85031)

NOTE :

1. JEDEC STD REF MO088
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH

MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE

3. DIMENSIONS IN INCHES MIN.

MAX
DETAIL A
EXTERNAL LEAD DESIGN

OPTION 1

51-85031-*C

All products and company names mentioned in this document may be the trademarks of their respective holders.

CY7C192

Document History Page

Document Title: CY7C192 64K x 4 Static RAM with Separate I/O Document Number: 38-05047											
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	$	$	**	107149	$09 / 10 / 01$	SZV	Change Spec number from: 38-00076 to 38-05047
:---	:---	:---	:---	:---							
*A	359716	See ECN	AJU	Changed Static Discharge Voltage limit in the Maximum Ratings section (page 2) from 2001V to 900V Removed references to CY7C191							
*B	419549	See ECN	AJU	Added Pb-free parts to the Ordering Information table and replaced the Package Name column with Package Diagram							
*C	492500	See ECN	NXR	Removed 20 ns and 25 ns speed bins Changed the Low active power from 220 mW to 55 mW Changed the description of IIX from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed IOS parameter from DC Electrical Characteristics table Removed 28-Lead (300-Mil) PDIP package from product offering Updated Ordering Information table							

