8-Channel High Voltage Analog Switch

Ordering Information

\mathbf{V}_{PP}	\mathbf{V}_{NN}	$\mathbf{V}_{\mathrm{SIG}}$	28-pin Plastic DIP	28-lead Plastic Chip Carrier	Die
			HV1816P	HV1816PJ	HV1816X
+80 V	-80 V				

Features

HVCMOS ${ }^{\circledR}$ technologyUp to 130 V peak to peak output switchingOutput On-resistance typically 40 ohmsLow parasitic capacitancesDC to 10 MHz analog signal frequency
$\square-45 \mathrm{~dB}$ typical output off isolation at 5 MHz
\square CMOS logic circuitry for low power and excellent noise immunity
\square On-chip shift register, latch and clear logic circuitry

General Description

Not recommended for new designs. Please use HV202 instead.

This device is an 8-channel high-voltage integrated circuit (HVIC) intended for use in applications requiring high voltage switching controlled by low voltage signals; e.g., ultrasound imaging and printers. Input data is shifted into an 8-bit shift register which can then be retained in an 8-bit latch. Using HVCMOS technology, this HVIC combines high voltage bilateral DMOS switches and low power CMOS logic to provide efficient control of high voltage analog signals.

Absolute Maximum Ratings*

V_{DD} Logic power supply voltage	-0.5 V to +18 V
$\mathrm{~V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}$ supply voltage	174 V
$\mathrm{~V}_{\mathrm{PP}}$ Positive high voltage supply	-0.5 V to +90 V
$\mathrm{~V}_{\mathrm{NN}}$ Negative high voltage supply	+0.5 V to -90 V
Logic input voltages	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	1.5 A
Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power dissipation	1.2 W

[^0]
Electrical Characteristics

(over operating conditions, $\mathrm{V}_{\mathrm{PP}}=+80 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-80 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$ unless otherwise noted) DC Characteristics

Characteristics	Sym	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Test Conditions
		min	max	min	typ	max	min	max		
Switch (ON) Resistance	$\mathrm{R}_{\text {ONS }}$		50		40	50		60	ohms	$\mathrm{I}_{\text {SW }}=5 \mathrm{~mA}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$
Switch (ON) Resistance	$\mathrm{R}_{\text {ONS }}$		35		25	35		45	ohms	$\mathrm{I}_{\text {SW }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {SIG }}=0 \mathrm{~V}$
Switch (ON) Resistance	$\mathrm{R}_{\text {ONS }}$		55		45	55		65	ohms	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SW}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
Switch (ON) Resistance	$\mathrm{R}_{\text {ONS }}$		40		25	40		50	ohms	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SW}}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
Switch (ON) Resistance Matching	$\Delta \mathrm{R}_{\text {ONS }}$		15			15		15	\%	$\begin{aligned} & \mathrm{V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-50 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{SW}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SIG}}=0 \mathrm{~V} \end{aligned}$
Switch Off Leakage Per Switch	$\mathrm{I}_{\text {SOL }}$		50		0.5	50		150	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SIG}}=\mathrm{V}_{\mathrm{PP}}-10 \mathrm{~V} \text { thru } 10 \mathrm{~K} \Omega \\ & \text { with } 8 \mathrm{SWS} \text { in parallel } \end{aligned}$
DC Offset Switch Off			500		100	500		500	mV	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
DC Offset Switch On			500		100	500		500	mV	$\mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega$
Pole to Pole Switch Capacitance	$\mathrm{C}_{\text {SW }}$		10		4.5	10		10	pF	$\begin{aligned} & \text { DC Bias }=40 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
Logic Input Capacitance	C_{IN}				3.5				pF	
Pos. HV Supply Current	$\mathrm{I}_{\text {PPQ }}$		200		50	200		200	$\mu \mathrm{A}$	ALL SWS OFF
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$		-200		-50	-200		-200	$\mu \mathrm{A}$	
Pos. HV Supply Current	$\mathrm{I}_{\text {PPQ }}$				0.8	1.6			mA	1 SW ON, $\mathrm{I}_{\text {SW }}=5 \mathrm{~mA}$
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$				-0.8	-1.6			mA	$\mathrm{V}_{\text {SIG }}=0 \mathrm{~V}$
Pos. HV Supply Current	$\mathrm{I}_{\text {PPQ }}$				0.6	1.2			mA	$\mathrm{V}_{\mathrm{PP}}=+50 \mathrm{~V}, \mathrm{~V}_{\mathrm{NN}}=-50 \mathrm{~V}$
Neg. HV Supply Current	$\mathrm{I}_{\mathrm{NNQ}}$				-0.6	-1.2			mA	1 SW ON, $\mathrm{I}_{\text {SW }}=5 \mathrm{~mA}$
Switch Output Peak Current					1.5				A	$\begin{aligned} & V_{\text {SIG }} \leq 0.1 \% \text { Duty Cycle, } \\ & f=10 \mathrm{KHz} \end{aligned}$
Logic Supply Average Current	I_{DD}				4	6			mA	$\mathrm{f}_{\text {cLK }}=3 \mathrm{MHz}$
Logic Supply Quiescent Current	$\mathrm{I}_{\mathrm{DDQ}}$				10	500			$\mu \mathrm{A}$	
Data Out Source Current	$\mathrm{I}_{\text {SOR }}$	0.7		0.8	0.9		0.7		mA	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}-0.7 \mathrm{~V}$
Data Out Sink Current	$\mathrm{I}_{\text {SINK }}$	0.7		0.8	0.9		0.7		mA	$\mathrm{V}_{\text {OUT }}=0.7 \mathrm{~V}$

AC Characteristics

Characteristics	Sym	$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+70^{\circ} \mathrm{C}$		Units	Test Conditions
		min	max	min	typ	max	min	max		
Set Up Time Before $\overline{\mathrm{LE}}$ Rises	$t_{\text {SD }}$			260					ns	
Time Width of $\overline{\text { LE }}$	$\mathrm{t}_{\text {WLE }}$			300					ns	
Clock Delay Time to Data Out	t_{DO}				250	330			ns	
Turn On Time	t_{ON}		5.0		2.5	5.0		5.0	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$
Turn Off Time	$\mathrm{t}_{\text {OFF }}$		10		5.0	10		10	$\mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$
Time Width of CL	$\mathrm{t}_{\mathrm{WCL}}$			150					ns	
Off Isolation	KO			-35	-45				dB	Signal Freq. $=5 \mathrm{MHz}$
Max Clock Freq	$\mathrm{f}_{\text {CLK }}$					3.0			MHz	50\% Duty Cycle $\mathrm{f}_{\text {DATA }}=\mathrm{f}_{\mathrm{CLK}} / 2$
Set Up Time Data to Clock	$\mathrm{t}_{\text {Su }}$			0					ns	
Hold Time Data from Clock	$t_{\text {h }}$			35					ns	
Switch Crosstalk	K_{CR}				-45				dB	Signal Freq. $=5 \mathrm{MHz}$

Operating Conditions

Symbol	Parameter	Value
V_{DD}	Logic power supply voltage	+10.0 V to +15.5 V
$\mathrm{~V}_{\mathrm{PP}}$	Positive high voltage supply	+50 V to +80 V
$\mathrm{~V}_{\mathrm{NN}}$	Negative high voltage supply	-50 V to -80 V
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage	$\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$ to V_{DD}
V_{IL}	Low-level input voltage	0 to 2.0 V
$\mathrm{~V}_{\mathrm{SIG}}$	Analog signal voltage peak to peak	$\mathrm{V}_{\mathrm{NN}}+15 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PP}}-15 \mathrm{~V}$
$\mathrm{~T}_{\mathrm{A}}$	Operating free air-temperature	0° to $70^{\circ} \mathrm{C}$

Notes:

1. Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
2. $\mathrm{V}_{\text {SIG }}$ must be $\mathrm{V}_{\mathrm{NN}} \leq \mathrm{V}_{\mathrm{SIG}} \leq \mathrm{V}_{\mathrm{PP}}$ or floating during power up/down transition.

Test Circuits

Switch OFF Leakage

$$
\mathrm{K}_{\mathrm{CR}}=20 \log \frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}
$$

Ton/Toff

OFF Isolation

DC Offset ON/OFF

Logic Timing Waveforms

Logic Diagram

Truth Table

D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	$\overline{\mathrm{LE}}$	CL	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	OFF							
H								L	L	ON							
	L							L	L		OFF						
	H							L	L		ON						
		L						L	L			OFF					
		H						L	L			ON					
			L					L	L				OFF				
			H					L	L				ON				
				L				L	L					OFF			
				H				L	L					ON			
					L			L	L						OFF		
					H			L	L						ON		
						L		L	L							OFF	
						H		L	L							ON	
							L	L	L								OFF
							H	L	L								ON
X	X	X	X	X	X	X	X	X	H	OFF							
X	X	X	X	X	X	X	X	H	L		HOLD	PREV	OUS S	ATE			

Notes:

1. The eight switches operate independently.
2. Serial data is clocked in on the $\mathrm{L} \rightarrow \mathrm{H}$ transition CLK.
3. The clear input over rides all other inputs.
4. The switches go to a state retaining their present condition at the rising edge of $\overline{\mathrm{LE}}$. When $\overline{\mathrm{LE}}$ is low the shift register data flows through the latch.
5. $D_{\text {OUt }}$ is high when switch 7 is on.
6. Shift register clocking has no effect on the switch states if $\overline{\mathrm{LE}}$ is H .

Pin Configurations

$28-P i n$			
Pin	Function	Pin	Function
1	SW3	15	N/C
2	SW3	16	$D_{\text {IN }}$
3	SW2	17	CLK
4	SW2	18	$\overline{\text { LE }}$
5	SW1	19	CL
6	SW1	20	$D_{\text {OUT }}$
7	SW0	21	SW7
8	SW0	22	SW7
9	V $_{\text {PP }}$	23	SW6
10	VNN $_{\text {NN }}$	24	SW6
11	N/C	25	SW5
12	GND	26	SW5
13	V $_{\text {DD }}$	27	SW4
14	N/C	28	SW4

Package Outlines

$28-P i n ~ J-L e a d ~$			
Pin	Function	Pin	Function
1	SW3	15	N/C
2	SW3	16	$D_{\text {IN }}$
3	SW2	17	CLK
4	SW2	18	LE
5	SW1	19	CL
6	SW1	20	$D_{\text {OUT }}$
7	SW0	21	SW7
8	SW0	22	SW7
9	V $_{\text {PP }}$	23	SW6
10	$V_{\text {NN }}$	24	SW6
11	N/C	25	SW5
12	GND	26	SW5
13	VDD 14	N/C	27
		SW4	
	28	SW4	

[^0]: * Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied Continuous operation of the device at the absolute rating level may affect device reliability.

