

SANYO Semiconductors DATA SHEET

LA1654C — Monolithic Linear IC Time Code Reception IC

Overview

The LA1654C time code reception IC receives long-wave time standard broadcasts (such as the Japanese JJY and German DCF77 standards) and detects and outputs the time code superposed on the long-wave signal. Applications can automatically correct their clock's time setting by using the time code received by the LA1654C. Note that the LA1654C is a bare chip product that is not packaged.

Functions

• RF amplifier, rectifier, detector, time code output, and standby circuit.

Features

 \bullet Low-voltage operation (operating V_{CC} as low as 1.5V).

 \bullet Standby mode current drain less than or equal to 0.05 $\mu A.$

Japan : JJY 40/60kHz Germany : DCF77 77.5kHz

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		5.0	V
Allowable power dissipation	Pd max	Ta ≤ 70°C	10	mW
Operating temperature	Topr		-20 to +70	°C
Storage temperature	Tstg		-40 to +125	°C

Operating Conditions at $Ta = 25^{\circ}C$

Doromotor	Completed	Constituione	Ratings			11-4
Parameter	Symbol	Conditions	min	typ	max	Unit
Recommended supply voltage	V _{CC}		1.5		3.0	V
Operating supply voltage range	V _{CC} op		1.1		3.6	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Operating Characteristics at Ta = 25°C, $V_{CC} = 3.0$ V

*: Packaged in a VSON16 package and measured using the SON11T016-001-MF socket (Yamaichi Electronics Co., Ltd.)

Overall Characteristics

Doromotor	Symbol	Conditions	Ratings			11.9
Parameter		Conditions		typ	max	Unit
Quiescent current	Icco	No input, PAD15 = 0V, PAD10 = 3V	30	37	50	μΑ
Standby mode current drain	I _{STB}	PAD15 = 3.0V			0.05	μΑ

AGC Amplifier Input Characteristics

D	Complete al	Conditions	Ratings			11.2
Parameter	Symbol		min	typ	max	Unit
Input impedance	Z _I	PAD1		800		kΩ
Input frequency range	F _{IN}	PAD1	37.5		80.0	kHz
Minimum input voltage	V _{MIN}	PAD1 input level			1	μVrms
Maximum input voltage	V _{MAX}	PAD1 input level	100			mVrms

TCO Output Characteristics - Input signal = PAD1, fin = 40kHz, PAD10 = 3V, PAD15 = 0V

Parameter	Cumbal	Conditions	Ratings			11-4
Parameter	Symbol	Conditions		typ	max	Unit
High-level output voltage	V _{OH}	PAD11 output level 2.9 3.0		3.0	V	
Low-level output voltage	V _{OL}	PAD11 output level	0		0.1	V
Output pulse width	T500	V _{IN} = 0 to 100dBμV, AM modulation	N = 0 to $100 dB\mu V$, AM modulation 400 520 600		600	ms
(500 ms input)		(1Hz square wave, duty = 50%, 10:1 modulation)				
Output pulse width	T800	V_{IN} = 0 to 100dB μ V, AM modulation	600	730	800	ms
(800 ms input)		(1Hz square wave, duty = 80%, 10:1 modulation)				
Output pulse width	T200	V _{IN} = 0 to 100dBμV, AM modulation 200 300 400		ms		
(200 ms input)		(1Hz square wave, duty = 20%, 10:1 modulation)				

STB Control Characteristics

Parameter	Cumbal	Conditions	Ratings			Unit
Parameter	Symbol Conditions		min	typ	max	Offic
Standby on voltage	V _{SH}	PAD15 DC voltage	2.9		3.0	V
Standby off voltage	V _{SL}	PAD15 DC voltage	0		0.1	V
High-level pin input current	I _{SH}	PAD15 = 3V			0.1	μΑ
Low-level pin input current	I _{SL}	PAD15 = 0V			0.3	μΑ

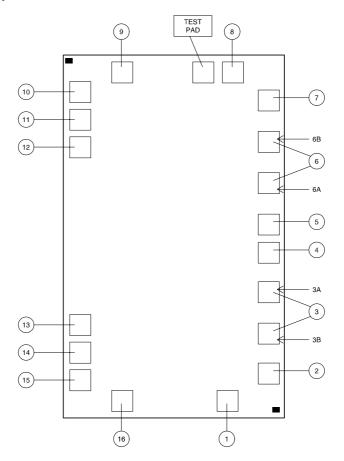
HOLD Control Characteristics - PAD15 = 0V

Parameter	Symbol	Conditions	Ratings			Unit
Parameter			min	typ	max	Offic
Hold on voltage	V_{HL}	PAD10 DC voltage	0		0.1	V
Hold off voltage	V_{HH}	PAD10 DC voltage	2.9		3.0	V
High-level pin input current	Iнн	PAD10 = 3V			0.1	μΑ
Low-level pin input current	I _{HL}	PAD10 = 0V			0.3	μΑ

LA1654C

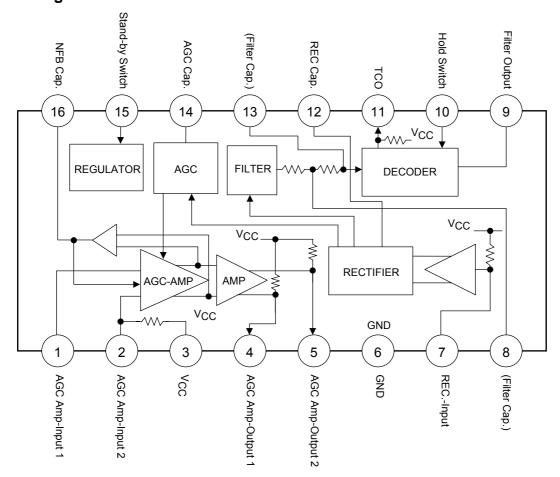
Chip Specifications

Parameter	Conditions	Ratings	Unit
Chip size		1.26×2.00	mm ²
Chip thickness		330(±20)	μm
Pad size		127.5×127.5	μm²
Pad opening		105×105	μm²

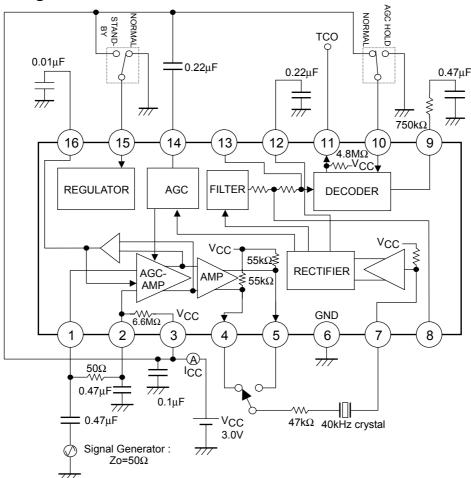

PAD Coordinates

PAD	X-Axis	Y-Axis	PAD	X-Axis	Y-Axis
P1	902	151	TEST PAD	776.5	1849
P2	1109	299.5	P9	368.5	1849
P3A	1109	717.5	P10	151	1747
P3B	1109	508.5	P11	151	1600
P4	1109	926.5	P12	151	1453
P5	1109	1073.5	P13	151	547
P6A	1109	1282.5	P14	151	400
P6B	1109	1491.5	P15	151	253
P7	1109	1700.5	P16	368.5	151
P8	926	1849			

Notes


- 1. The left upper corner of the Pad Layout Diagram on the following page is the origin, the X axis increases to the right and the Y axis increases in the downward direction.
- 2. Units: µm
- 3. The pad coordinates give the coordinate values of the center of the pads.
- 4. Both of each of the pairs P3A/P3B (VCC) and P6A/P6B (ground) must be bonded.
- 5. The test pads must not be connected (NC).

Pad Layout Diagram


PCA00620

Block Diagram

PCA00621

Test Circuit Diagram

PCA00622

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2006. Specifications and information herein are subject to change without notice.