32-bit Microcontroller

CMOS

FR60 MB91314A Series

MB91314A/MB91F314

■ DESCRIPTION

The FR family* is a line of single-chip microcontrollers based on the 32-bit high-performance RISC CPU while integrating a variety of I/O resources for embedded control applications which require high-performance, highspeed CPU processing.
The FR family contains multiple channels of data slicer and communication macros, best suited for embedded applications such as TV control.
*: FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

■ FEATURES

1. FR CPU

- 32-bit RISC, load/store architecture with a five-stage pipeline
- Operating frequency 33 MHz [PLL used : Oscillation frequency 16.5 MHz : Doubled]
- 16-bit fixed length instructions (basic instructions), 1 instruction per cycle
- Instruction set optimized for embedded applications : Memory-to-memory transfer, bit manipulation, barrel shift instructions etc.
- Instructions adapted for high-level languages : Function entry/exit instructions, multiple-register load/store instructions
- Register interlock functions : Facilitating coding in assemblers
- On-chip multiplier supported at the instruction level Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]
MB91314A Series

- Interrupt (PC, PS save) : 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously
- Instruction prefetch feature added by a 4-word queue in the CPU
- Instruction set compatible with FR family

2. Simple External Bus interface

Capable of functioning 8-bit or 16-bit multiplex bus by setting with program

- Operating frequency : Max 16.5 MHz
- 8/16-bit data/address multiplex I/O
- Capable of chip-select signal output for completely independent four areas settable in 64 Kbytes minimum
- Basic bus cycle : 2 cycles
- Programmable automatic wait cycle generator capable of inserting wait cycles for each area

3. Internal Memory

MB91314A : 256 Kbytes Mask ROM, RAM 32 Kbytes
MB91F314 : 512 Kbytes Flash, RAM 32 Kbytes

4. DMAC (DMA Controller)

- 5 channels
- Two forwarding factors (internal peripheral/software)
- Addressing mode 20/24-bit address selection (increment/decrement/fixed)
- Transfer modes (burst transfer/step transfer/block transfer)
- Selectable transfer data size : 8, 16, or 32 bits

5. Bit Search Module (for REALOS)

Search for the position of the bit 1/0-changed first in one word from the MSB
6. Reload Timer (Including 1 Channel for REALOS)

- 16-bit timer ch. 6
- The internal clock is optional from 2/8/32 division

7. Multi function Serial Interface

- 11 channels
- Full duplex double buffer
- Capable of selecting communication mode : asynchronous (Start-Stop synchronous) communication, clock synchronous communication (8.25 Mbps Max), $\mathrm{I}^{2} \mathrm{C}^{*}$ standard mode (100 kbps Max), high-speed mode (400 kbps Max)
- Parity on/off selectable
- Baud rate generator per channel
- Abundant error detection functions are provided (parity, frame, and overrun)
- External clock can be used as transfer clock
- Ch. 0 to ch. 2 correspond to DMA transfer.
- Ch. 0 to ch. 2 have a pair of 16 bytes FIFO buffers for transmission and reception.
- $I^{2} \mathrm{C}$ bridge feature (among channels 0,1 , and 2)
- SPI mode

MB91314A Series

8. Interrupt Controller

- A total of 24 external interrupt lines (external interrupt pins INT23 to INT0)
- Interrupt from internal peripheral
- Programmable 16 priority levels
- Available for wakeup from STOP mode

9. A / D converter

- 10-bit resolution, 10 channels
- Successive approximation type : conversion time : About $8.0 \mu \mathrm{~s}$
- Conversion mode (Single-shot conversion mode, scan conversion mode)
- Startup sources (software/external trigger)

10. PPG

- 4 channels
- 16-bit down counter, 16 -bit data register with cycle setting buffer
- The internal clock is optional from 1/4/16/64 division
- Support for automatic cycle setting by DMA transfer
- Function for supporting remote control transmission

11. PWC

- 1 channel (1 input)
- 16-bit up counter
- Simple digital lowpass filter

12. Multi-function timer

- 4 channels
- Lowpass filter eliminating noise below a pre-set clock frequency
- Capable of pulse width measurement using seven types of clock signals
- Pin input event count function
- Interval timer function using seven types of clock signals and external input clock
- Internal HSYNC counter mode

13. Closed caption decoder feature

- 1 channel
- CC decoder function
- ID-1 (480i/480p) decoder function

14. Other interval timers

- Watch timer (32 kHz , Count up to 2 seconds)
- Watchdog timer

15. I/O port

Max 78 ports

MB91314A Series

(Continued)
16. Other features

- Internal oscillator circuit as a clock source
- $\overline{\text { INIT }}$ is prepared as a reset terminal
- Watchdog timer reset and software reset are available
- Stop and sleep modes supported as low-power consumption modes
- Gear function
- Built-in time base timer
- 5 V tolerant I/O (some pins)
- Package LQFP-120, 0.50 mm pitch, $16.0 \mathrm{~mm} \times 16.0 \mathrm{~mm}$
- CMOS technology ($0.18 \mu \mathrm{~m}$)
- Power supply voltage $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$ dual-power
* : Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB91314A Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-120P-M21)

MB91314A Series

PIN DESCRIPTION

Pin no.	Pin name	I/O circuit type*	Description
1	VSS	-	GND pin
2	VDDI	-	1.8 V power supply
3	P23	D	General-purpose I/O port
	SIN1		Multi function serial 1 serial data input pin
4	P24	L	General-purpose I/O port
	SOT1/SDA1 (${ }^{2} \mathrm{C}$ bridge)		Multi function serial 1 serial data output pin ${ }^{2}{ }^{2} \mathrm{C}$ data I / O pin
5	P25	L	General-purpose I/O port
	SCK1/SCL1 (${ }^{2} \mathrm{C}$ bridge)		Multi function serial 1 serial communication clock I/O pin ${ }^{12} \mathrm{C}$ clock I/O pin
6	P26	D	General-purpose I/O port
	SIN2		Multi function serial 2 serial data input pin
7	P27	L	General-purpose I/O port
	SOT2/SDA2 (${ }^{2} \mathrm{C}$ bridge)		Multi function serial 2 serial data output pin $1^{2} \mathrm{C}$ data I/O pin
8	P30	L	General-purpose I/O port
	SCK2/SCL2 (${ }^{2} \mathrm{C}$ bridge)		Multi function serial 2 serial communication clock I/O pin ${ }^{12} \mathrm{C}$ clock I/O pin
9	P31	D	General-purpose I/O port
	TOTO		Output pin for reload timer
10	P32	D	General-purpose I/O port
	TOT1		Output pin for reload timer
11	P33	D	General-purpose I/O port
	TOT2		Output pin for reload timer
12	P34	D	General-purpose I/O port
	TIN0		Event input pin for reload timer
13	P35	D	General-purpose I/O port
	TIN1		Event input pin for reload timer
14	P36	D	General-purpose I/O port
	TIN2		Event input pin for reload timer
15	P37	D	General-purpose I/O port
	RIN		PWC input pin
16	P40	B	General-purpose I/O port
	TMO0		Multifunction timer output
	INT16		External interrupt request input pin
17	P41	B	General-purpose I/O port
	TMO1		Multifunction timer output
	INT17		External interrupt request input pin

(Continued)

MB91314A Series

Pin no.	Pin name	I/O circuit type*	Description
18	P42	B	General-purpose I/O port
	TMO2		Multifunction timer output
	INT18		External interrupt request input pin
19	P43	B	General-purpose I/O port
	TMO3		Multifunction timer output
	INT19		External interrupt request input pin
20	P44	B	General-purpose I/O port
	TMIO		Multifunction timer input
	INT20		External interrupt request input pin
21	P45	B	General-purpose I/O port
	TMI1		Multifunction timer input
	INT21		External interrupt request input pin
	SIN10		Multi function serial 10 serial data input pin
22	P46	B	General-purpose I/O port
	TMI2		Multifunction timer input
	INT22		External interrupt request input pin
	SOT10/SDA10		Multi function serial 10 serial data output pin ${ }^{2}{ }^{2} \mathrm{C}$ data I / O pin
23	P47	B	General-purpose I/O port
	TMI3		Multifunction timer input
	INT23		External interrupt request input pin
	SCK10/SCL10		Multi function serial 10 serial communication clock I/O pin ${ }^{2} \mathrm{C}$ clock I/O pin
24	P60	C	General-purpose I/O port
	TOT3		Output pin for reload timer
	TRG2		PPG trigger input
25	P61	C	General-purpose I/O port
	TOT4		Output pin for reload timer
	TRG3		PPG trigger input
26	P62	C	General-purpose I/O port
	TOT5		Output pin for reload timer
	RDY		External ready input pin
27	P63	C	General-purpose I/O port
	TIN3		Event input pin for reload timer
	CLK		External clock output pin
28	P64	C	General-purpose I/O port
	TIN4		Event input pin for reload timer

(Continued)

MB91314A Series

Pin no.	Pin name	I/O circuit type*	Description
29	P65	C	General-purpose I/O port
	TIN5		Event input pin for reload timer
30	VDDE	-	3.3 V power supply
31	VSS	-	GND pin
32	VDDC	-	Data slicer power supply
33	VSSC	-	Data slicer ground
34	VIN	N	Data slicer input
35	VCI	N	VCO control voltage input
36	CPO	N	Charge pump output
37	VDDP	-	Dot clock PLL power supply
38	VSSP	-	Dot clock PLL ground
39	HSYNC	M	Horizontal synchronous input
40	VDDE	-	3.3 V power supply
41	VSS	-	Ground pin
42	AVSS	-	Analog ground pin for A/D converter
43	AVRH	-	Analog reference power voltage input pin for A/D converter
44	AVCC	-	Analog power supply input pin for A/D converter
45	PDO	L	General-purpose I/O port
	AN0		A/D converter analog input pin
46	PD1	L	General-purpose I/O port
	AN1		A/D converter analog input pin
47	PD2	L	General-purpose I/O port
	AN2		A/D converter analog input pin
48	PD3	L	General-purpose I/O port
	AN3		A/D converter analog input pin
49	PD4	L	General-purpose I/O port
	AN4		A/D converter analog input pin
50	PD5	L	General-purpose I/O port
	AN5		A/D converter analog input pin
51	PD6	L	General-purpose I/O port
	AN6		A/D converter analog input pin
52	PD7	L	General-purpose I/O port
	AN7		A/D converter analog input pin
53	PE0	L	General-purpose I/O port
	AN8		A/D converter analog input pin
	INTO		External interrupt request input pin

(Continued)

MB91314A Series

Pin no.	Pin name	I/O circuit type*	Description
54	PE1	L	General-purpose I/O port
	AN9		A/D converter analog input pin
	PPG0		Output pin for PPG
	INT1		External interrupt request input pin
55	PE2	B	General-purpose I/O port
	PPG1		Output pin for PPG
	INT2		External interrupt request input pin
	ATRG		Trigger input pin for A/D converter
56	PE3	B	General-purpose I/O port
	PPG2		Output pin for PPG
	INT3		External interrupt request input pin
57	VDDE	-	3.3 V power supply
58	$\overline{\text { INIT }}$	G	Initial reset pin
59	X0A	A	Sub clock input
60	X1A	A	Sub clock I/O
61	VSS	-	Ground pin
62	X1	A	Main clock I/O
63	X0	A	Main clock input
64	VDDI	-	1.8 V power supply
65	MD0	F	
66	MD1	F	Input pins for specifying the operating mode
67	MD2	F	
68	PE4	B	General-purpose I/O port
	PPG3		Output pin for PPG
	INT4		External interrupt request input pin
69	PE5	B	General-purpose I/O port
	SIN8		Multi function serial 8 serial data input pin
	INT5		External interrupt request input pin
70	PE6	B	General-purpose I/O port
	SOT8/SDA8		Multi function serial 8 serial data output pin ${ }^{2} \mathrm{C}$ data I / O pin
	INT6		External interrupt request input pin
71	PE7	B	General-purpose I/O port
	SCK8/SCL8		Multi function serial 8 serial communication clock I/O pin $I^{2} \mathrm{C}$ clock I/O pin
	INT7		External interrupt request input pin
72	PC0	B	General-purpose I/O port
	SIN9		Multi function serial 9 serial data input pin

(Continued)

MB91314A Series

Pin no.	Pin name	I/O circuit type*	Description
73	PC1	B	General-purpose I/O port
	SOT9/SDA9		Multi function serial 9 serial data output pin ${ }^{2}{ }^{2} \mathrm{C}$ data I / O pin
74	PC2	B	General-purpose I/O port
	SCK9/SCL9		Multi function serial 9 serial communication clock I/O pin $\mathrm{I}^{2} \mathrm{C}$ clock I/O pin
75	PC3	B	General-purpose I/O port
76	PC4	B	General-purpose I/O port
	PPGA		Output pin for PPG
77	PC5	B	General-purpose I/O port
	PPGB		Output pin for PPG
78	PC6	B	General-purpose I/O port
	TRGO		PPG trigger input
79	PC7	B	General-purpose I/O port
	TRG1		PPG trigger input
80	TRST	G	Reset pin for development tool
81	ICD0	K	Data pin for development tool
82	ICD1	K	
83	ICD2	K	
84	ICD3	K	
85	ICSO	H	Status pin for development tool
86	ICS1	H	
87	ICS2	H	
88	ICLK	H	Clock pin for development tool
89	IBREAK	I	Break pin for development tool
90	VDDE	-	3.3 V power supply
91	VSS	-	GND pin
92	VDDI	-	1.8 V power supply
93	P00	C	General-purpose I/O port
	D00		External address/ data bus I/O pin
	SIN3		Multi function serial 3 serial data input pin
	INT8		External interrupt request input pin
94	P01	C	General-purpose I/O port
	D01		External address/ data bus I/O pin
	SOT3/SDA3		Multi function serial 3 serial data output pin $I^{2} \mathrm{C}$ data $1 / O$ pin
	INT9		External interrupt request input pin

(Continued)

MB91314A Series

Pin no.	Pin name	I/O circuit type*	Description
95	P02	C	General-purpose I/O port
	D02		External address/ data bus I/O pin
	SCK3/SCL3		Multi function serial 3 serial communication clock I/O pin ${ }^{12} \mathrm{C}$ clock I/O pin
	INT10		External interrupt request input pin
96	P03	C	General-purpose I/O port
	D03		External address/ data bus I/O pin
	SIN4		Multi function serial 4 serial data input pin
	INT11		External interrupt request input pin
97	P04	C	General-purpose I/O port
	D04		External address/ data bus I/O pin
	SOT4/SDA4		Multi function serial 4 serial data output pin ${ }^{2} \mathrm{C}$ data I / O pin
	INT12		External interrupt request input pin
98	P05	C	General-purpose I/O port
	D05		External address/ data bus I/O pin
	SCK4/SCL4		Multi function serial 4 serial communication clock I/O pin ${ }^{12} \mathrm{C}$ clock I/O pin
	INT13		External interrupt request input pin
99	P06	C	General-purpose I/O port
	D06		External address/ data bus I/O pin
	SIN5		Multi function serial 5 serial data input pin
	INT14		External interrupt request input pin
100	P07	C	General-purpose I/O port
	D07		External address/ data bus I/O pin
	SOT5/SDA5		Multi function serial 5 serial data output pin ${ }^{2}{ }^{2} \mathrm{C}$ data I / O pin
	INT15		External interrupt request input pin
101	P10	C	General-purpose I/O port
	D08		External address/ data bus I/O pin
	SCK5/SCL5		Multi function serial 5 serial communication clock I/O pin ${ }^{12} \mathrm{C}$ clock I/O pin
102	P11	C	General-purpose I/O port
	D09		External address/ data bus I/O pin
	SIN6		Multi function serial 6 serial data input pin
103	P12	C	General-purpose I/O port
	D10		External address/ data bus I/O pin
	SOT6/SDA6		Multi function serial 6 serial data output pin ${ }^{1} \mathrm{C}$ data $1 / \mathrm{O}$ pin

(Continued)

MB91314A Series

Pin no.	Pin name	I/O circuit type*	Description
104	P13	C	General-purpose I/O port
	D11		External address/ data bus I/O pin
	SCK6/SCL6		Multi function serial 6 serial communication clock I/O pin ${ }^{2} \mathrm{C}$ clock I/O pin
105	P14	C	General-purpose I/O port
	D12		External address/ data bus I/O pin
	SIN7		Multi function serial 7 serial data input pin
106	P15	C	General-purpose I/O port
	D13		External address/ data bus I/O pin
	SOT7/SDA7		Multi function serial 7 serial data output pin ${ }^{2} \mathrm{C}$ data I/O pin
107	P16	C	General-purpose I/O port
	D14		External address/ data bus I/O pin
	SCK7/SCL7		Multi function serial 7 serial communication clock I/O pin ${ }^{2} \mathrm{C}$ clock I/O pin
108	P17	C	General-purpose I/O port
	D15		External address/ data bus I/O pin
109	P50	C	General-purpose I/O port
	CSO		External chip select
	PPG0		Output pin for PPG
110	P51	C	General-purpose I/O port
	CS1		External chip select
	PPG1		Output pin for PPG
111	P52	C	General-purpose I/O port
	$\overline{\mathrm{CS} 2}$		External chip select
	PPG2		Output pin for PPG
112	P53	C	General-purpose I/O port
	$\overline{\text { CS3 }}$		External chip select
	PPG3		Output pin for PPG
113	P54	C	General-purpose I/O port
	$\overline{\text { AS }}$		External address strobe output pin
114	P55	C	General-purpose I/O port
	$\overline{\mathrm{RD}}$		External read strobe output pin
115	P56	C	General-purpose I/O port
	WRO		External data bus write strobe output pin
116	P57	C	General-purpose I/O port
	$\overline{\text { WR1 }}$		External data bus write strobe output pin

(Continued)

MB91314A Series

(Continued)

Pin no.	Pin name	I/O circuit type*	Description
117	P20	D	General-purpose I/O port
	SINO		Multi function serial 0 serial data input pin
118	P21	D	General-purpose I/O port
	SOTO/SDAO (${ }^{2} \mathrm{C}$ bridge)		Multi function serial 0 serial data output pin ${ }^{2} \mathrm{C}$ data I / O pin
119	P22	D	General-purpose I/O port
	SCK0/SCLO (${ }^{2} \mathrm{C}$ bridge)		Multi function serial 0 serial communication clock I/O pin ${ }^{12} \mathrm{C}$ clock I/O pin
120	VDDE	-	3.3 V power supply

*: For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

MB91314A Series

I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A		- Oscillation circuit - Built-in feedback resistance X0 pin - X1 pin : $1 \mathrm{M} \Omega$ X0A pin - X1A pin: No
B		- CMOS level output $\mathrm{I}_{\mathrm{ot}}=4 \mathrm{~mA}$ - CMOS level hysteresis input $V_{\mathrm{IH}}=0.7 \times \mathrm{V}_{\mathrm{DDE}}$ - With standby control - 5 V tolerant
C	Standby control	- CMOS level output $\text { Іон }=4 \mathrm{~mA}$ - CMOS level hysteresis input $\mathrm{V}_{\mathrm{IH}}=0.8 \times \mathrm{V}_{\mathrm{DDE}}$ - With standby control - With pull-up resistor (33 k Ω)

(Continued)

Type	Circuit type	Remarks
D		- CMOS level output $\mathrm{l}_{\mathrm{OH}}=4 \mathrm{~mA}$ - CMOS level hysteresis input $\mathrm{V}_{\mathrm{H}}=0.8 \times \mathrm{V}_{\mathrm{DDE}}$ - With standby control - Without pull-up resistor
F		- CMOS level input - Without standby control
G		- CMOS hysteresis input - With pull-up resistor
H		CMOS level output

(Continued)

MB91314A Series

Type	Circuit type	Remarks
1		- CMOS hysteresis input - With pull-down resistor - Without standby control
K		- CMOS level output - CMOS level input - Without standby control - With pull-down resistor
L		- CMOS level output CMOS level hysteresis input - With standby control - Analog input with switch

(Continued)

MB91314A Series

(Continued)

Type	Circuit type	Remarks	
			•CMOS level hysteresis input •Without standby control
N			

MB91314A Series

- HANDLING DEVICES

- Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage greater than Vdde or Vddi, or less than Vss is applied to input and output pins or if an above-rating voltage is applied between VDDE or VDDI pins and VSS pin. A latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating.

- Treatment of Unused Input Pins

Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example, using a pullup or pull-down resistor.

- About power supply pins

If more than one VDDE or VDDI or VSS pin exists, those that must be kept at the same potential are designed to be connected to one other inside the device to prevent malfunctions such as latch-up. Be sure to connect the pins to a power supply and ground external to the device to minimize undesired electromagnetic radiation, prevent strobe signal malfunctions due to an increase in ground level, and conform to the total output current rating. Given consideration to connecting the current supply source to VDDE or VDDI and VSS pin of the device at the lowest impedance possible.
It is also recommended that a ceramic capacitor of around $0.1 \mu \mathrm{~F}$ be connected between VDDE or VDDI and VSS pin at circuit points close to the device as a bypass capacitor.

- About Crystal oscillator circuit

Noise near the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X0A}$ and $\mathrm{X1A}$ pins may cause the device to malfunction. Design the printed circuit board so that X0, X1, X0A and X1A pins the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended to design the PC board artwork with the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins surrounded by ground plane because stable operation can be expected with such a layout.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

- About Mode pins (MD0 to MD2)

These pins should be connected directly to VDDE or VSS pins. To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and VDDE or VSS pins is as short as possible and the connection impedance is low.

- Operation at start-up

Always use the $\overline{\mathrm{INIT}}$ pin to perform a setting initialization reset (INIT) after turning on the power.
Immediately after the power supply is turned on, hold the Low level input to the INIT pin for the stabilization wait time required for the oscillator circuit to take the oscillation stabilization wait time for the oscillator circuit (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value).

- Source oscillation input at power on

When turning on the power, always input the clock for the duration of the oscillation stabilization delay time.

MB91314A Series

- Notes on the turning on/off VDDI pin (1.8 V internal power supply) and VDDE pin (3.3 V external pin power supply)

Do not apply only VDDE pin (external) voltage continuously (more than one minute) with VDDI pin (internal) disconnected as it adversely affects the reliability of the LSI.
When VDDE pin (external) returns from the OFF state to the ON state, the circuit may fail to hold its internal state, for example, due to power supply noise.

$$
\begin{array}{ll}
\hline \hline \text { Power on } & \text { VDD pin } \text { (internal) } \rightarrow \text { Analog } \rightarrow \text { VDDE pin (external) } \rightarrow \text { signal } \\
\text { Power off } & \text { Signal } \rightarrow \text { VDDE pin (external) } \rightarrow \text { Analog } \rightarrow \text { VDDI pin (internal) } \\
\hline
\end{array}
$$

When the power is turned on, the output pin may remain unstable until the internal power supply becomes stable.

- About the attention when the external clock is used

To use an external clock, in principle, supply the $\mathrm{X} 1(\mathrm{X} 1 \mathrm{~A})$ pin with a clock signal inverted in phase from the $\mathrm{X0}$ (XOA) pin at the same time. However, in this case the stop mode (oscillator stop mode) must not be used. (This is because the X 1 (X 1 A) pin stops at " H " output in STOP mode.) At 12.5 MHz or less, the device can be used only with the XO (XOA) pin supplied with clock signals.

Using an External Clock (Normal Method)

The STOP mode (oscillation stop mode) cannot be used.

Using an External Clock (available at 12.5 MHz or less)

Note : With respect to the $\mathrm{XO}(\mathrm{XOA})$ signal, design X 1 such that the delay is within 15 ns at 10 MHz .

MB91314A Series

- AVCC pin

The device has an internal A/D converter. A capacitor of approximately $0.1 \mu \mathrm{~F}$ must be connected between the AVCC pin and AVSS pin.

- Notes when the emulator is not used

To operate the evaluation MCU on the user system without connecting the emulator, treat each input pin on the evaluation MCU connected to the emulator interface on the user system as shown below.
Emulator Interface Pin Treatment

Evaluation MCU pin name	Pin operation
$\overline{\text { TRST }}$	Connected to the reset output circuit on the user system.
$\overline{\text { INIT }}$	Connected to the reset output circuit on the user system.
Others	Open

- Note on operation with the PLL clock selected

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

MB91314A Series

RESTRICTIONS

1) Clock control block

Take the oscillation stabilization wait time during "L" level input to the INIT pin.
2) Bit Search Module

The bit search data register for 0-detection (BSDO), and bit search data register for 1-detection (BSD1), and bit search data register for change point detection (BSDC) are only word-accessible.
3) I / O port

Ports are accessed only in bytes.
4) Low Power Consumption Mode

- To place the device in standby mode, use the synchronous standby mode (set with bit 8 (SYNCS bit) of the timebase counter control register, TBCR) and be sure to use the following sequence:
(Idi \#value_of_standby, rO)
(Idi \#_STCR, r12)
stb r0, @r12 // set STOP/SLEEP bit
Idub @r12, r0 // Must read STCR
Idub @r12, r0 // after reading, go into standby mode
nop // Must insert NOP *5
nop
nop
nop
nop
- Please do not do the following when the monitor debugger is used.
- Setting of the break point to the above-mentioned instruction row.
- Execution of the step for the above-mentioned instruction row.

MB91314A Series

5) Notes on the PS register

Since some instructions write the information to PS register early time, the following exception operations may cause a break to occur in an interrupt processing routine when using the debugger or the updating of the PS flag. In either case, the processing is conducted properly again after return from an EIT, the operations before and after the EIT are designed to perform as specified.

- The following operations may be performed when the instruction immediately followed by a DIVOU/DIV0S instruction results in (a) acceptance of a user interrupt, (b) single-stepping, or (c) a break in response to a data event or emulator menu:
(1) D0 and D1 flags are updated in advance.
(2) An EIT handling routine (user interrupt, NMI, or emulator) is executed.
(3) Upon returning from the EIT, the DIVOU/DIV0S instructions are executed and the D0/D1 flags are updated back to the original value held before step (1).
- When a user interrupt source exists, executing either of the OR CCR, ST LIM and MOV Ri and PS instructions to enable the interrupt results in the following operations:
(1) The PS register is updated in advance.
(2) An EIT handling routine (user interrupt) is executed.
(3) Upon returning from the EIT, the above instructions are executed and the PS registers are updated back to the original value held before step (1).

6) Watchdog timer

The watchdog timer integrated in this model monitors the program to check that it delays a reset within a certain period of time and, if the program runs out of control and fails to delay the reset, resets the CPU in place. Once the watchdog timer is enabled, it keeps running until reset. As an exception, the watchdog timer delays the reset automatically when a condition which stops program execution by the CPU develops. For those conditions which correspond to this exception, refer to the function description of the watchdog timer in "HARDWARE MAN UAL". A watchdog reset may not be generated in the above situation caused by the system running out of control. In that case, please reset (INIT) by external INIT terminal.
7) Notes on using the A / D converter

Although this series contains an A/D converter, do not apply a higher voltage to AVCC pin than to VDDE pin.
8) Software reset in synchronous mode

When using the software reset in synchronous mode, the following two conditions should be satisfied before setting " 0 " to the SRST bit in STCR (standby control register) .

- Set the interrupt enable flag (I-Flag) to the interrupt disable (I-Flag=0) .
- Do not use NMI.

MB91314A Series

BLOCK DIAGRAM

MB91314A Series

- CPU AND CONTROL UNIT

Internal architecture

The FR family of CPUs is a line of high-performance cores providing advanced instructions for embedded applications based on the RISC architecture.

1. Features

- RISC architecture adopted. Basic instructions : Executed at one instruction per cycle
- 32-bit architecture

General purpose registers : 32 bits $\times 16$

- Four Gbytes of linear memory space
- Multiplier integrated 32-bit $\times 32$-bit multiplication : 5 cycles 16-bit $\times 16$-bit multiplication : 3 cycles
- Enhanced interrupt servicing

High-speed response (6 cycles)
Multi-level interrupt support
Level mask feature (16 levels)

- Enhanced I/O manipulation instructions

Memory-to-memory transfer instructions
Bit manipulation instructions

- High code efficiency

Basic instruction word length : 16 bits

- Lower-power consumption

Sleep mode/stop mode
Gear function

MB91314A Series

2. Internal architecture

The FR family of CPUs has a Harvard architecture in which the instruction bus and data bus are separated.
The 32 -bit $\leftrightarrow 16$-bit bus converter is connected to the 32 -bit bus (F-bus) to provide an interface between the CPU and peripheral resources.
The Harvard \leftrightarrow Princeton bus converter is connected to both of the I-bus and D-bus, providing an interface between the CPU and the bus controller.

MB91314A Series

3. Programming model

- Programming model

MB91314A Series

4. Register

- General purpose registers

32 bits		
R0		[Initial Value]
		XXXX XXXXH..
R1		
	\ldots	...
\ldots	\ldots	...
R12		\ldots
R13	AC	...
R14	FP	XXXX XXXXH
R15	SP	0000 0000H

Registers R0 to R15 are general purpose registers. The registers are used as the accumulator and memory access pointers for CPU operations.
Of these 16 registers, the registers listed below are intended for special applications, for which some instructions are enhanced.

- R13 : Virtual accumulator (AC)
- R14 : Frame pointer (FP)
- R15 : Stack pointer (SP)

The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000 H (SSP value).

- PS (Program Status)

This register holds the program status and is divided into the ILM, SCR, and CCR.
All of undefined bits are reserved bits. Reading these bits always returns 0 . Writing to them has no effect.

MB91314A Series

- CCR (Condition Code Register)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	[Initial Value]
-	-	S	1	N	Z	V	C	--00XXXXв

S:Stack flag

- Cleared to 0 at a reset.
- Set the flag to 0 for execution of the RETI instruction.

I : Interrupt Enable flag
Cleared to 0 at a reset.
N : Negative flag
Initial state by reset is irregular.
Z : Zero flag
Initial state by reset is irregular.
V : Overflow flag
Initial state by reset is irregular.
C: Carrying flag
Initial state by reset is irregular.

- SCR (System Condition code Register)

bit 10	bit 9	bit 8	[Initial Value] XX0B
	D0	T	

D1, D0 : Flag for step division
Stores intermediate data for stepwise division operations.

T: Step trace trap flag
A flag specifying whether the step trace trap function is enabled or not.

- The emulator uses the step trace trap function. The function cannot be used by the user program when using the emulator.
- ILM (Interrupt Level Mask Register)

bit 20	bit 19	bit 18	bit 17	bit 16	[Initial Value]
ILM4	ILM3	ILM2	ILM1	ILM0	01111B

This register stores the interrupt level mask value. The value in the ILM register is used as the level mask. Initialized to $15(01111 \mathrm{~B})$ by a reset.

MB91314A Series

- PC (Program Counter)

bit 31	bit 0	[Initial Value]
		XXXXXXXXH

The program counter contains the address of the instruction currently being executed.
The initial value after a reset is indeterminate.

- TBR (Table Base Register)

bit 31	bit 0	[Initial Value] $000 F F C 00 H$

The table base register contains the start address of the vector table used for servicing EIT events.
The initial value after a reset is 000FFCOOн.

- RP (Return Pointer)

The return pointer contains the address to which to return from a subroutine.
When the CALL instruction is executed, the value in the PC is transferred to the RP.
When the RET instruction is executed, the value in the RP is transferred to the PC.
The initial value after a reset is indeterminate.

- SSP (System Stack Pointer)

The SSP is the system stack pointer.
The SSP functions as R15 when the S flag is " 0 ".
The SSP can be explicitly specified.
The SSP is also used as the stack pointer that specifies the stack for saving the PS and PC when an EIT event occurs.
The initial value after a reset is 00000000 H .

MB91314A Series

- USP (User Stack Pointer)

bit31	bit0	[Initial Value]
		XXXXXXXXH

The USP is the user stack pointer.
The USP functions as R15 when the S flag is " 1 ".
The USP can be explicitly specified.
The initial value after a reset is indeterminate.
This pointer cannot be used by the RETI instruction.

- MDH, MDL (Multiply \& Divide result register)
\square
These registers hold the results of a multiplication or division. Each of them is 32-bit long.
The initial value after a reset is indeterminate.

MB91314A Series

MODE SETTINGS

The FR family sets the operation mode using mode pins (MD2, MD1, and MDO) and a mode register (MODR).

1. Mode Pins

The MD2, MD1, and MD0 pins specify how the mode vector fetch is performed.

Mode Pins			Mode name	Reset vector access area
MD2	MD1	MD0		
0	0	0	Internal ROM mode vector	

Note: Values other than those listed in the table are prohibited.

2. Mode Register (MODR)

- Detailed explanation of register

Data written to the mode register by mode vector fetch is referred to as mode data.
When the mode register is set, the operation mode set in this register is used for operation.
The mode register is set when any reset source occurs.
Mode data cannot be written by the user program.
Note : Conventionally, the address (000007FFH) of the mode register for the FR family holds nothing.

The register can be updated in emulator mode. In this case, please use the instruction of the data transfer for the 8 -bit length.
Any $16 / 32$-bit length transfer instruction cannot be used to write data to the mode register.

- Detailed explanation of mode data

[bit 7 to bit 2] Reserved bits
Be sure to set these bits to "000001B".
Setting the bits to any value other than "000001b" may result in an unpredictable operation.

MB91314A Series

[bit 1, bit 0] WTH1, WTH0 (bus width setting bits)
Used to set the bus width to be used in external bus mode.
When the operation mode is the external bus mode, this value is set in bits BW1 and BW0 in AMD0 (CS0 area).

WTH1	WTH0	Function	Remarks
0	0	8-bit bus width	External bus mode
0	1	16-bit bus width	External bus mode
1	0	-	Setting disabled
1	1	Single chip mode	Single chip mode

MB91314A Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) linearly accessible to the CPU.
Direct Addressing Areas
The following address space areas are used as I/O areas.
These areas are called direct addressing areas, in which the address of an operand can be specified directly during an instruction.
The direct area varies depending on the size of data to be accessed as follows:

$$
\begin{aligned}
& \rightarrow \text { Byte data access : 000н to } 0 \mathrm{OFF}_{\mathrm{H}} \\
& \rightarrow \text { Half word data access: } 000 \text { н to } 1 \mathrm{FF}_{\mathrm{H}} \\
& \rightarrow \text { Word data access : 000н to 3FFн }
\end{aligned}
$$

2. Memory Map

MB91314A Series

	Single chip mode	Internal ROM xternal bus mode	
0000 0000H 0000 0400H	I/O	I/O	Direct addressing area Refer to " ${ }^{\text {I } / O M a p " . ~}$
	1/0	I/O	
00010000 H 00038000 H	Access disallowed	Access disallowed	
00040000	Internal RAM 32 Kbytes	Internal RAM 32 Kbytes	
	Access disallowed	Access disallowed	
		External area	
	Mask ROM 256 Kbytes	Mask ROM 256 Kbytes	
0020 0000н		Access disallowed	
	disallowed	External area	
FFFF FFFF		Access disallowed	
(MB91314A)			

MB91314A Series

I/O MAP

The following table shows the correspondence between the memory space area and each register of the peripheral resource.
[How to read the table]

Address	Register				Block
	+0	+1	+2	+3	
000000_{H}	PDR0 [R/W] X*XXXX 4	PDR1 [R/W] XXXXXXXX	PDR2 [R/W] XXXXXXXX	PDR3 [R/W] XXXXXXXX	T-unit Port data register
		ead/Write attr itial value after egister name address $4 n+1$ ocation of leftcolumn 1 is	set -column registe register (When MSB side of th	address 4n; se ng word acces ta.	column r register

Note : The bit values in the register represent the following initial values:

- "1" : initial values"1"
- "0" : initial values"0"
- " X " : initial values" X "
- "-" : No physical register at this location

Access is barred with an undefined data access attribute.

MB91314A Series

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
000058н	TMRLR2 [W] XXXXXXXX XXXXXXXX		TMR2 [R] XXXXXXXX XXXXXXXX		
00005Сн	-		TMCSR2 [R, RW] 0000000000000000		
000060н	$\begin{gathered} \hline \text { SCRO [R, R/W] } \\ 0-00000 \end{gathered}$	SMR0 [W, R/W] 00000000	$\begin{gathered} \hline \text { SSRO }[R, R / W] \\ 0-000011 \end{gathered}$	$\begin{gathered} \hline \text { ESCR0 [R/W] } \\ --000000 \end{gathered}$	Multi function Serial interface 0 FIFOO
000064H	RDRO/TRDO [R/W]-----00000000		$\begin{aligned} & \text { BGR01 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR00 [R/W] } \\ & 00000000 \end{aligned}$	
000068н	$\begin{gathered} \hline \text { ISMKO [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \hline \text { IBSA [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { FCR01 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { FCR00 [R/W] } \\ & 00000000 \end{aligned}$	
00006Сн	$\begin{gathered} \text { FBYTE01 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { FBYTE00 [R/W] } \\ 00000000 \end{gathered}$	-		
000070н	$\begin{gathered} \hline \text { SCR1/IBCR1 } \\ \text { [R, R/W] } \\ 0--00000 \end{gathered}$	SMR1 [W, R/W] 00000000	$\begin{gathered} \text { SSR1 [R, R/W] } \\ 0-000011 \end{gathered}$	ESCR1/IBSR1 $[R / W]$ --000000	Multi function Serial interface 1 FIFO1
000074н	RDR1/TRD1 [R/W]------00000000		$\begin{aligned} & \hline \text { BGR11 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { BGR10 [R/W] } \\ 00000000 \end{gathered}$	
000078н	$\begin{gathered} \hline \text { ISMK1 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \hline \text { IBSA1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { FCR11 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { FCR10 [R/W] } \\ & 00000000 \end{aligned}$	
00007CH	FBYTE11 [R/W] 00000000	$\begin{gathered} \text { FBYTE10 [R/W] } \\ 00000000 \end{gathered}$	-		
000080н	$\begin{gathered} \hline \text { SCR2/IBCR2 } \\ \text { [R, R/W] } \\ 0--00000 \end{gathered}$	SMR2 [W, R/W] 00000000	$\begin{gathered} \text { SSR2 [R, R/W] } \\ 0-000011 \end{gathered}$	ESCR2/IBSR2 $[R / W]$ --000000	Multi function Serial interface 2
000084н	RDR2/TRD2 [R/W]-----000000000		$\begin{aligned} & \text { BGR21 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR20 [R/W] } \\ & 00000000 \end{aligned}$	
000088н	$\begin{gathered} \hline \text { ISMK2 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA2 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { FCR21 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { FCR20 [R/W] } \\ & 00000000 \end{aligned}$	
00008Сн	FBYTE21 [R/W] 00000000	FBYTE20 $[R / W]$ 00000000	-		
000090н	$\begin{gathered} \text { SCR3/IBCR3 } \\ {[R, R / W]} \\ 0--00000 \end{gathered}$	SMR3 [W, R/W] 00000000	$\begin{aligned} & \text { SSR3 [R, R/W] } \\ & 0-000011 \end{aligned}$	ESCR3/IBSR3 $[R / W]$ --000000	Multi function Serial interface 3
000094н	RDR3/TRD3 [R/W]-----00000000		$\begin{aligned} & \hline \text { BGR31 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { BGR30 [R/W] } \\ & 00000000 \end{aligned}$	
000098н	ISMK3 [R/W] 01111110	IBSA3 [R/W] 00000000	-		
00009 CH	-				

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
0000АОн	$\begin{gathered} \hline \text { SCR4/IBCR4 } \\ {[R, R / W]} \\ 0--00000 \end{gathered}$	SMR4 [W, R/W] 00000000	$\begin{gathered} \text { SSR4 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{aligned} & \text { ESCR4/IBSR4 } \\ & {[R / W]} \\ & --000000 \end{aligned}$	Multi function Serial interface 4
0000A4 ${ }_{\text {H }}$	RDR4/TRD4 [R/W] -------0 00000000		$\begin{aligned} & \text { BGR41 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGR40 [R/W] } \\ 00000000 \end{gathered}$	
0000A8н	$\begin{gathered} \text { ISMK4 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA4 [R/W] } \\ & 00000000 \end{aligned}$	-		
0000ACH	- -				
0000B0н	$\begin{aligned} & \text { SCR5/IBCR5 } \\ & \text { [R, R/W] } \\ & 0--00000 \end{aligned}$	SMR5 [W, R/W] 00000000	$\begin{gathered} \text { SSR5 [R, R/W] } \\ 0-000011 \end{gathered}$	ESCR5/IBSR5 $[\mathrm{R} / \mathrm{W}]$ --000000	Multi function Serial interface 5
0000B4 ${ }_{\text {н }}$	$\begin{gathered} \text { RDR5/TRD5 [R/W] } \\ -----000000000 \end{gathered}$		$\begin{gathered} \text { BGR51 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { BGR50 [R/W] } \\ & 00000000 \end{aligned}$	
0000B8 ${ }_{\text {H }}$	$\begin{gathered} \hline \text { ISMK5 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA5 [R/W] } \\ & 00000000 \end{aligned}$	-		
0000BCH	- -				
0000СО	$\begin{gathered} \text { EIRR1[R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ENIR1 [R/W] } \\ 00000000 \end{gathered}$	ELVR1 [R/W]0000000000000000		Ext. INT 8 to INT15
0000C4 ${ }_{\text {H }}$	$\begin{aligned} & \hline \text { EIRR2 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { ENIR2 [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ELVR2 [R/W] } \\ 0000000000000000 \end{gathered}$		Ext. INT 16 to INT23
$\begin{array}{\|c\|} \hline 0000 \mathrm{C} 8 \mathrm{H} \\ \text { to } \\ 0000 \mathrm{CC} \end{array}$	-				Reserved
0000D0н	$\begin{gathered} \hline \text { PWCCL[R/W] } \\ 0000--00 \end{gathered}$	$\begin{gathered} \hline \text { PWCCH[R/W] } \\ 00-00000 \end{gathered}$	-		PWC
0000D4н	$\begin{gathered} \mathrm{PWCD}[\mathrm{R}] \\ \mathrm{XXXXXXXXXXXX} \end{gathered}$		-		
0000D8 ${ }^{\text {H }}$	$\begin{gathered} \hline \text { PWCC2[R/W] } \\ 000----- \end{gathered}$	Reserved	-		
0000DCH	$\begin{gathered} \text { PWCUD[R/W] } \\ \mathrm{XXXXXXXXXXXX} \end{gathered}$		-		
$\begin{array}{\|c\|} \hline 0000 \text { ЕОн } \\ \text { to } \\ 0000 \mathrm{EC} \end{array}$	-				Reserved
0000FOн	$\begin{gathered} \hline \text { TOLPCR [R/W] }---000 \end{gathered}$	$\begin{gathered} \hline \text { TOCCR [R/W] } \\ 0-010000 \end{gathered}$	$\begin{gathered} \text { TOTCR [R/W] } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { TOR [R/W] } \\ ---00000 \end{gathered}$	Multifunction timer
0000F4н	TODRR [R/W] XXXXXXXX XXXXXXXX		TOCRR [R/W] XXXXXXXX XXXXXXXX		

(Continued)

MB91314A Series

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
000150н	$\begin{gathered} \text { TMRLR4 [W] } \\ X X X X X X X X X X X X X \end{gathered}$		TMR4 [R] XXXXXXXX XXXXXXXX		
000154н	-		TMCSR4 [R, RW] 0000000000000000		
000158н	TMRLR5 [W] XXXXXXXX XXXXXXXX		TMR5 [R] XXXXXXXX XXXXXXXX		Reload timer 5
00015CH	-		TMCSR5 [R, RW] 0000000000000000		load timer 5
$\begin{array}{\|c\|} \hline 000160 \text { н } \\ \text { to } \\ 00019 \text { C }_{\text {H }} \end{array}$	-				Reserved
0001A0н	$\begin{aligned} & \text { PLLREGO[R/W] H } \\ & ----00000-00000 \end{aligned}$		PLLREG1[R/W] H---000000000000		PLL of high
0001A4н	$\begin{aligned} & \hline \text { PLLREG2[R/W] H } \\ & \text {------- 0000--0- } \end{aligned}$		$\begin{aligned} & \hline \text { PLLREG3[R/W] H } \\ & \text { 0000--------00-0 } \end{aligned}$		multiplication
	-				Reserved
0001B0н	$\begin{aligned} & \hline \text { SCR6/IBCR6 } \\ & \text { [R, R/W] } \\ & 0--00000 \end{aligned}$	SMR6 [W, R/W] 00000000	$\begin{gathered} \text { SSR6 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{aligned} & \text { ESCR6/IBSR6 } \\ & \text { [R/W] } \\ & --000000 \end{aligned}$	Multi function Serial interface 6
0001B4н	RDR6/TRD6 [R/W]------00000000		$\begin{aligned} & \text { BGR61 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { BGR60 [R/W] } \\ & 00000000 \end{aligned}$	
0001B8н	$\begin{gathered} \hline \text { ISMK6 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \hline \text { IBSA6 [R/W] } \\ & 00000000 \end{aligned}$	-		
0001 BC н	-				
0001СОн	$\begin{aligned} & \hline \text { SCR7/IBCR7 } \\ & {[R, R / W]} \\ & 0--00000 \end{aligned}$	SMR7 [W, R/W] 00000000	$\begin{gathered} \text { SSR7 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{aligned} & \text { ESCR7/IBSR7 } \\ & \text { [R/W] } \\ & --000000 \end{aligned}$	Multi function Serial interface 7
0001C4	RDR7/TRD7 [R/W]------00000000		$\begin{aligned} & \hline \text { BGR71 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGR70 [R/W] } \\ 00000000 \end{gathered}$	
0001C8H	$\begin{gathered} \hline \text { ISMK7 [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSA7 [R/W] } \\ & 00000000 \end{aligned}$	-		
0001СС	-				
0001D0н	$\begin{gathered} \hline \text { SCR8/IBCR8 } \\ {[R, R / W]} \\ 0--00000 \end{gathered}$	SMR9 [W, R/W] 00000000	$\begin{gathered} \text { SSR8 [R, R/W] } \\ 0-000011 \end{gathered}$	$\begin{gathered} \text { ESCR8/IBSR8 } \\ {[R / W]} \\ --000000 \end{gathered}$	Multi function Serial interface 8
0001D4н	RDR8/TRD8 [R/W]-----00000000		$\begin{aligned} & \hline \text { BGR81 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGR80 [R/W] } \\ 00000000 \end{gathered}$	
0001D8	$\begin{gathered} \hline \text { ISMK8 [R/W] } \\ 01111110 \end{gathered}$	IBSA8 [R/W] 00000000	-		
0001DCH	-				

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
0001EOH	$\begin{gathered} \hline \text { SCR9/IBCR9 } \\ {[\text { R, R/W] }} \\ 0--00000 \end{gathered}$	SMR9 [W, R/W]	$\begin{gathered} \text { SSR9 [R, R/W] } \\ 0-000011 \end{gathered}$	ESCR9/IBSR9 [R/W] --000000	Multi function Serial interface 9
0001E4H	RDR9/TRD9 [R/W]------00000000		$\begin{gathered} \text { BGR91 [R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { BGR90 [R/W] } \\ & 00000000 \end{aligned}$	
0001E8H	$\begin{gathered} \text { ISMK9 [R/W] } \\ 01111110 \end{gathered}$	$\begin{gathered} \text { IBSA9 [R/W] } \\ 00000000 \end{gathered}$	-		
0001ECH	- -				
0001F0н	$\begin{gathered} \hline \text { SCRA/IBCRA } \\ {[R, R / W]} \\ 0--00000 \end{gathered}$	SMRA [W, R/W] 00000000	$\begin{gathered} \text { SSRA [R, R/W] } \\ 0-000011 \end{gathered}$	ESCRA/IBSRA $[R / W]$ --000000	Multi function Serial interface 10
0001F4H	RDRA/TRDA [R/W] -------0 00000000		$\begin{aligned} & \text { BGRA1 [R/W] } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { BGRA0 [R/W] } \\ 00000000 \end{gathered}$	
0001F8н	$\begin{gathered} \hline \text { ISMKA [R/W] } \\ 01111110 \end{gathered}$	$\begin{aligned} & \text { IBSAA [R/W] } \\ & 00000000 \end{aligned}$	-		
0001FCH	-				
000200н	DMACAO [R/W]00000000000000000000000000000000				DMAC
000204н	DMACBO [R/W]00000000000000000000000000000000				
000208н	DMACA1 [R/W] 00000000000000000000000000000000				
00020С ${ }_{\text {H }}$	DMACB1 [R/W]00000000000000000000000000000000				
000210н	DMACA2 [R/W] 00000000000000000000000000000000				
000214	DMACB2 [R/W] 00000000000000000000000000000000				
000218 ${ }^{\text {H }}$	DMACA3 [R/W] 00000000000000000000000000000000				
00021 CH	DMACB3 [R/W] 00000000000000000000000000000000				
000220н	DMACA4 [R/W] 00000000000000000000000000000000				
000224	DMACB4 [R/W] 00000000000000000000000000000000				
$\begin{aligned} & \hline 000228 \text { н } \\ & \text { to } \\ & 00023 \text { C }_{H} \end{aligned}$	-				Reserved
000240н	DMACR [R/W] $0 \times X 00000$ XXXXXXXX XXXXXXXX XXXXXXXX				DMAC

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
$\begin{gathered} \hline 000244 \mathrm{H} \\ \text { to } \\ 0003 \mathrm{ECH} \end{gathered}$	-				Reserved
0003F0н					Bit search
0003F4н	BSD1 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003F8H					
0003FCн	BSRR [R]$x x x x x x x x ~ x x x x x x x x ~ x X X x x x x x ~ x x x x x x x x ~$				
000400н	DDR0 [R/W] B, H 00000000	DDR1 [R/W] B, H 00000000	DDR2 [R/W] B, H 00000000	DDR3 [R/W] B, H 00000000	Data direction register
000404н	$\begin{gathered} \hline \text { DDR4 [R/W] B, H } \\ 00000000 \end{gathered}$	DDR5 [R/W] B, H 00000000	$\begin{gathered} \text { DDR6 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ --000000 \end{gathered}$	-	
000408H	-				
00040Сн	DDRC [R/W] B, H 00000000	DDRD [R/W] B, H 00000000	DDRE [R/W] B, H 00000000	-	
000410н	-				
$\begin{gathered} \text { 000414H } \\ \text { to } \\ 00041 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				Reserved
000420н	$\begin{gathered} \hline \text { PFRO }[R / W] B, H \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PFR1 [R/W] B, H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PFR2 }[R / W] B, H \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PFR3 [R/W] B, H } \\ 00000000 \end{gathered}$	Port function register
000424н	PFR4 [R/W] B, H 00000000	PFR5 [R/W] B, H 00000000	$\begin{gathered} \text { PFR6 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ --000000 \end{gathered}$	-	
000428H	-				
00042Сн	$\begin{gathered} \hline \text { PFRC [R/W] B, H } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { PFRD [R/W] B, H } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { PFRE [R/W] B, H } \\ 00000000 \end{gathered}$	-	
000430н	-				
$\begin{gathered} \text { 000434H } \\ \text { to } \\ 00043 C_{H} \end{gathered}$	-				Reserved

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
000440н	$\begin{gathered} \hline \text { ICR00 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR01 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03 [R, R/W] } \\ ---11111 \end{gathered}$	Interrupt control unit
000444н	$\begin{gathered} \hline \text { ICR04 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR05 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR06 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR07 [R, R/W] } \\ ---11111 \end{gathered}$	
000448H	$\begin{gathered} \hline \text { ICR08 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR09 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR10 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR11 [R, R/W] } \\ ---11111 \end{gathered}$	
00044Cн	$\begin{gathered} \text { ICR12 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR13 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR14 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR15 [R, R/W] } \\ ---11111 \end{gathered}$	
000450H	$\begin{gathered} \hline \text { ICR16 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR17 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR18 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR19 [R, R/W] } \\ ---11111 \end{gathered}$	
000454H	$\begin{gathered} \hline \text { ICR20 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR21 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR22 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR23 [R, R/W] } \\ ---11111 \end{gathered}$	
000458H	$\begin{gathered} \hline \text { ICR24 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR25 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR26 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27 [R, R/W] } \\ ---11111 \end{gathered}$	
00045CH	$\begin{gathered} \text { ICR28 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR29 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR30 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR31 [R, R/W] } \\ ---11111 \end{gathered}$	
000460H	$\begin{gathered} \hline \text { ICR32 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR33 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR34 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35 [R, R/W] } \\ ---11111 \end{gathered}$	
000464н	$\begin{gathered} \hline \text { ICR36 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39 [R, R/W] } \\ ---11111 \end{gathered}$	
000468H	$\begin{gathered} \text { ICR40 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ --11111 \end{gathered}$	$\begin{gathered} \text { ICR41 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR42 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR43 [R, R/W] } \\ ---11111 \end{gathered}$	
00046Сн	$\begin{gathered} \hline \text { ICR44 }[\mathrm{R}, \mathrm{R} / \mathrm{W}] \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR45 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46 [R, R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47 [R, R/W] } \\ ---11111 \end{gathered}$	
$\begin{gathered} 000470 \mathrm{H} \\ \text { to } \\ 00047 \mathrm{CH} \end{gathered}$	-				Reserved
000480н	$\begin{gathered} \text { RSRR [R, R/W] } \\ 10000000 \end{gathered}$	STCR [R/W] 00110011	TBCR [R/W] 00XXXX00	CTBR [W] XXXXXXXX	Clock control unit
000484н	CLKR [R/W] 00000000	WPR [W] XXXXXXXX	DIVRO [R/W] 00000011	DIVR1 [R/W] 00000000	
000488H	-		$\begin{aligned} & \text { OSCCR [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	-	
$00048 \mathrm{CH}_{\text {H }}$	$\begin{gathered} \text { WPCR [R/W] B } \\ 00---000 \end{gathered}$		-		Clock Timer
000490н	OSCR [R/W] 00000000	OSCT [R/W] XXXXXXXX	-		Main clock oscillation waits until stable timer
$\begin{gathered} \text { 000494н } \\ \text { to } \\ 0004 \text { FCH } \end{gathered}$	-				Reserved

MB91314A Series

(Continued)

MB91314A Series

Address	Register				Block
	0	1	2	3	
00064CH	ASR3 [R/W] XXXXXXXX XXXXXXXX		ACR3 [R/W] XXXXXXXX XXXXXXXX		T-Unit
$\begin{array}{\|c\|} \hline 000650_{\mathrm{H}} \\ \text { to } \\ 00065 \mathrm{CH}_{\mathrm{H}} \end{array}$	-				
000660н	AWRO [R/W] B, H, W 0111111111111111		AWR1 [R/W] B, H, W XXXXXXXX XXXXXXXX		
000664н	AWR2 [R/W] B, H, W XXXXXXXX XXXXXXXX		AWR3 [R/W] B, H, W XXXXXXXX XXXXXXXX		
$\begin{array}{\|c\|} \hline 000668 \text { н } \\ \text { to } \\ 00067 \text { C }_{\text {H }} \end{array}$	-				
000680н	$\begin{gathered} \text { CSER[R/W]B, H, W } \\ 00000001 \end{gathered}$	-			
000684н	-				
$\begin{array}{\|c\|} \hline 000688 \text { н } \\ \text { to } \\ 0007 \mathrm{~F} 8 \text { н } \end{array}$	-				Unused
0007FCH	-	MODR [W] XXXXXXXX	-		-
$\begin{array}{\|c\|} \hline 000800_{\mathrm{H}} \\ \text { to } \\ 000 \mathrm{AFC}_{\mathrm{H}} \end{array}$	-				Unused
000B00 +	$\begin{aligned} & \text { ESTSO [R/W] B } \\ & \text { X00000000 } \end{aligned}$	ESTS1 [R/W] B XXXXXXXX	ESTS2 [R] B 1XXXXXXX	-	DSU
000B04н	$\begin{aligned} & \text { ECTLO [R/W] B } \\ & 0 \times 000000 \end{aligned}$	$\begin{gathered} \text { ECTL1 [R/W] B } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { ECTL2 [W] B } \\ & 000 \times 0000 \end{aligned}$	$\begin{aligned} & \text { ECTL3 [R/W] B } \\ & \text { 00X00X11 } \end{aligned}$	
000B08н	$\begin{aligned} & \text { ECNTO [W] B } \\ & \text { XXXXXXX } \end{aligned}$	ECNT1 [W] B XXXXXXXX	$\begin{aligned} & \text { EUSA [W] B } \\ & \text { XXX00000 } \end{aligned}$	EDTC [W]B 0000XXXX	
000B0С ${ }_{\text {H }}$	EWPT [R] H 0000000000000000		$\begin{gathered} \text { ECTL4[R] }][\mathrm{R} / \mathrm{W}]) \mathrm{B} \\ -0 \times 00000 \end{gathered}$	$\begin{aligned} & \text { ECTL5[R][[R/W])B } \\ & ---000 X \end{aligned}$	
000B10 ${ }^{\text {H }}$	EDTRO [W] H XXXXXXXX XXXXXXXX		EDTR1 [W] H XXXXXXXX XXXXXXXX		

(Continued)

MB91314A Series

(Continued)

MB91314A Series

(Continued)

Address					Block
	0	1	2	3	
000B68н	EODO [W]XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				DSU
000B6CH					
$\begin{gathered} \hline \text { 000B70н } \\ \text { to } \\ 000 \text { FFC } \end{gathered}$	-				Reserved
001000н	DMASAO [R/W]00000000000000000000000000000000				DMAC
001004	DMADAO [R/W]00000000000000000000000000000000				
001008н	DMASA1 [R/W] 00000000000000000000000000000000				
00100C ${ }_{\text {H }}$	DMADA1 [R/W]00000000000000000000000000000000				
001010 ${ }^{\text {H }}$	DMASA2 [R/W] 00000000000000000000000000000000				
001014H	DMADA2 [R/W]00000000000000000000000000000000				
001018 ${ }^{\text {H }}$	DMASA3 [R/W]00000000000000000000000000000000				
00101CH	DMADA3 [R/W]00000000000000000000000000000000				
001020 ${ }^{\text {H }}$	DMASA4 [R/W]00000000000000000000000000000000				
001024н	DMADA4 [R/W] 00000000000000000000000000000000				
$\begin{gathered} \hline 001028 \text { н } \\ \text { to } \\ 006 \text { FFC } \end{gathered}$	-				Reserved
007000 ${ }^{\text {H }}$	$\begin{gathered} \text { FLCR[R/W] } \\ 01101000 \end{gathered}$	-			Flash I/F
007004	$\begin{gathered} \hline \text { FLWC[R/W] } \\ 00110011 \end{gathered}$	-			

MB91314A Series

VECTOR TABLE

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA transfer	$\begin{aligned} & \text { DMAC } \\ & \text { STOP } \\ & \text { factor } \end{aligned}$
	Decimal	Hexadecimal					
Reset	0	00	-	3FCH	000FFFFFCH	-	
Mode vector	1	01	-	3F8н	000FFFF88	-	
System reserved	2	02	-	3F4H	000FFFFF4	-	
System reserved	3	03	-	3F0н	000FFFFF0н	-	
System reserved	4	04	-	3ЕСн	000FFFEECH	-	
System reserved	5	05	-	3Е8н	000FFFEE8	-	
System reserved	6	06	-	3Е4н	000FFFEE4 ${ }_{\text {н }}$	-	
Coprocessor absent trap	7	07	-	3E0н	000FFFEEOн	-	
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-	
INTE instruction	9	09	-	3D8н	000FFFD84	-	
System reserved	10	OA	-	3D4н	000FFFD4н	-	
System reserved	11	OB	-	3D0н	000FFFFD0н	-	
Step trace trap	12	OC	-	ЗССн	000FFFCCH	-	
NMI request (tool)	13	OD	-	3С8н	000FFFC8\%	-	
Undefined instruction exception	14	0E	-	3С4н	000FFFFC4н	-	
System reserved	15	OF	15 (FH) fixed	3С0н	000FFFFCOH	-	
External interrupt 0	16	10	ICR00	3BCH	000FFFBCH	-	
External interrupt 1	17	11	ICR01	3B8\%	000FFFB88	-	
External interrupt 2	18	12	ICR02	3B4н	000FFFB44	-	
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н	-	
External interrupt 4	20	14	ICR04	ЗАСн	000FFFACH	-	
External interrupt 5	21	15	ICR05	3A8н	000FFFA8н	-	
External interrupt 6	22	16	ICR06	3А4н	000FFFA4 ${ }_{\text {н }}$	-	
External interrupt 7	23	17	ICR07	ЗАОн	000FFFA0н	-	
Reload timer 0	24	18	ICR08	39С ${ }_{\text {н }}$	000FFF9Cн	-	
Reload timer 1	25	19	ICR09	398н	000FFF98н	-	
Reload timer 2	26	1A	ICR10	394н	000FFF94н	-	
UARTO RX/I²C states	27	1B	ICR11	390н	000FFF90н	\bigcirc	STOP
UARTO TX	28	1 C	ICR12	38 CH	000FFF8C ${ }_{\text {H }}$	\bigcirc	
UART1 RX/I²C states	29	1D	ICR13	388н	000FFF88н	\bigcirc	STOP
UART1 TX	30	1E	ICR14	384н	000FFF84н	\bigcirc	
UART2 RX/I² ${ }^{\text {C }}$ states	31	1F	ICR15	380н	000FFF80н	\bigcirc	STOP
UART2 TX	32	20	ICR16	37С	000FFF7Cн	\bigcirc	
UART3 RX/TX/I2C states	33	21	ICR17	378	000FFF78н	-	

(Continued)

MB91314A Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	DMA transfer	$\begin{aligned} & \text { DMAC } \\ & \text { STOP } \\ & \text { factor } \end{aligned}$
	Decimal	Hexadecimal					
UART4 RX/TX/12${ }^{2} \mathrm{C}$ states	34	22	ICR18	374н	000FFFF74 ${ }^{\text {H }}$	-	
UART5 RX/TX// $1^{2} \mathrm{C}$ states	35	23	ICR19	370н	000FFFF70н	-	
UART6 RX/TX// ${ }^{2} \mathrm{C}$ states	36	24	ICR20	$36 \mathrm{C}_{\mathrm{H}}$	000FFF6C ${ }_{\text {H }}$	-	
UART7 RX/TX/12C states	37	25	ICR21	368H	000FFF688	-	
UART8 RX/TX/12${ }^{2} \mathrm{C}$ states	38	26	ICR22	364н	000FFF64 ${ }^{\text {H }}$	-	
UART9 RX/TX// ${ }^{2} \mathrm{C}$ states	39	27	ICR23	360н	000FFF60 ${ }_{\text {H }}$	-	
UART10 RX/TX/ $/{ }^{2} \mathrm{C}$ states	40	28	ICR24	$35 \mathrm{CH}_{\mathrm{H}}$	000FFF5CH	-	
A/D converter	41	29	ICR25	358н	000FFF558	-	
PPGO	42	2A	ICR26	354	000FFF554	\bigcirc	
PWC	43	2B	ICR27	350н	000FFF550н	-	
CCD	44	2C	ICR28	34 CH	000FFF4CH	-	
Watch timer	45	2D	ICR29	348н	000FFF484	-	
Main oscillation wait	46	2E	ICR30	344н	000FFF544	-	
Timebase timer	47	2F	ICR31	340н	000FFFF40н	-	
Reload timer 3	48	30	ICR32	33CH	000FFF3C ${ }_{\text {н }}$	-	
Reload timer 4	49	31	ICR33	338 ${ }^{\text {¢ }}$	000FFFF38 ${ }_{\text {н }}$	-	
Reload timer 5	50	32	ICR34	334н	000FFFF34 ${ }_{\text {¢ }}$	-	
PPG1	51	33	ICR35	330н	000FFFF30н	\bigcirc	
PPG2	52	34	ICR36	32 CH	000FFF2CH	\bigcirc	
PPG3	53	35	ICR37	328H	000FFF284	\bigcirc	
DMA0	54	36	ICR38	324н	000FFF24 ${ }^{\text {H }}$	-	
DMA1	55	37	ICR39	320 H	000FFF20н	-	
DMA2	56	38	ICR40	31С ${ }_{\text {H }}$	000FFF1C ${ }_{\text {H }}$	-	
DMA3	57	39	ICR41	318H	000FFF18 ${ }_{\text {H }}$	-	
DMA4	58	3A	ICR42	314н	000FFF14 ${ }^{\text {H }}$	-	
External interrupt 8 to 15	59	3B	ICR43	310н	000FFFF10н	-	
External interrupt 16 to 23	60	3 C	ICR44	30 CH	000FFFOCH	-	
Multi-function timer 0, 1	61	3D	ICR45	308н	000FFFF08н	-	
Multi-function timer 2, 3	62	3E	ICR46	304н	000FFFF04 ${ }_{\text {н }}$	-	
Delay interrupt source bit	63	3F	ICR47	300 H	000FFFF00н	-	
System reserved (Used by REALOS)	64	40	-	2FCH	000FFEFCH	-	
System reserved (Used by REALOS)	65	41	-	2F8н	000FFEF8\%	-	
System reserved	66	42	-	2F4H	000FFEF4 ${ }^{\text {H }}$	-	

(Continued)

MB91314A Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	$\underset{\text { transfer }}{\text { DMA }}$	$\begin{aligned} & \hline \text { DMAC } \\ & \text { STOP } \\ & \text { factor } \end{aligned}$
	Decimal	Hexadecimal					
System reserved	67	43	-	2FOH	000FFEFFOH	-	
System reserved	68	44	-	2ЕСн	000FFEEC ${ }_{\text {¢ }}$	-	
System reserved	69	45	-	2Е8н	000FFEE8 ${ }_{\text {н }}$	-	
System reserved	70	46	-	2E4H	000FFEE4 ${ }_{\text {н }}$	-	
System reserved	71	47	-	2Е0н	000FFEEEO ${ }_{\text {H }}$	-	
System reserved	72	48	-	2DCH	000FFEDCH	-	
System reserved	73	49	-	2D8н	000FFED8H	-	
System reserved	74	4A	-	2D4	000FFED4	-	
System reserved	75	4B	-	2D0н	000FFEDOH	-	
System reserved	76	4 C	-	2ССн	000FFECC ${ }_{\text {H }}$	-	
System reserved	77	4D	-	2С8н	000FFEC8H	-	
System reserved	78	4E	-	2C4H	000FFEC4 ${ }_{\text {¢ }}$	-	
System reserved	79	4F	-	2 COH	000FFECO ${ }_{\text {н }}$	-	
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{aligned} & 50 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{BC}_{\mathrm{H}} \\ \text { to } \\ 00 \mathrm{O}_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { OOOFFEBCH } \\ & \text { to } \\ & 000 \text { FFC00н } \end{aligned}$	-	

MB91314A Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage	$\mathrm{V}_{\mathrm{DDE}}(3.3 \mathrm{~V})$	$\mathrm{Vss}-0.5$	$\mathrm{Vss}+4.0$	V	
	$\mathrm{~V}_{\mathrm{DDI}}(1.8 \mathrm{~V})$	$\mathrm{Vss}-0.3$	$\mathrm{Vss}+2.5$	V	
Analog power supply voltage	AVCC	$\mathrm{Vss}-0.5$	$\mathrm{Vss}+4.0$	V	
Input voltage	V_{I}	$\mathrm{Vss}-0.5$	$\mathrm{Vcc}+0.5$	V	
		$\mathrm{Vss}+6.0$	V	5 V tolerant pin	
Analog pin input voltage	$\mathrm{V}_{\text {IA }}$	$\mathrm{Vss}-0.5$	$\mathrm{AVcc}+0.5$	V	
Output voltage	V o	$\mathrm{Vss}-0.5$	$\mathrm{Vcc}+0.5$	V	
Storage temperature	Tstg	-40	+125	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit
		Min	Max	
Operating temperature	Ta	-10	+ 70	${ }^{\circ} \mathrm{C}$
Power supply voltage	Vdie (3.3 V)	3.0	3.6	V
	Vdol (1.8 V)	1.65	1.95	
Analog power supply voltage	AV ${ }_{\text {cc }}$	3.0	Vdot	V
5 V tolerant pin input voltage	VI	-	Vss +5.5	V

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91314A Series

3. DC Characteristics
$\left(\mathrm{V}_{\text {DDE }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}\right.$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Current Consumption (upper : 1.8 V lower : 3.3 V)	Icct	-	Clock mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$, $\mathrm{fclk}=32 \mathrm{kHz}$	-	300	700	$\mu \mathrm{A}$
		-		-	700	1000	
	Icc	-	During normal operation $\mathrm{Ta}=+25^{\circ} \mathrm{C}$, fcp $=33 \mathrm{MHz}$, fcpp $=33 \mathrm{MHz}$	-	100	120	mA
		-		-	70	100	
	Iccs	-	Main sleep mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$, fcp $=33 \mathrm{MHz}$, fcpp $=33 \mathrm{MHz}$	-	60	80	mA
		-		-	60	90	
	Iccl	-	$\begin{aligned} & \text { Sub RUN mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{fclk}=32 \mathrm{kHz} \end{aligned}$	-	400	1000	$\mu \mathrm{A}$
		-		-	900	1300	
	Icch	-	$\begin{aligned} & \text { Main Stop mode } \\ & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \text { fclk }=0 \end{aligned}$	-	160	600	$\mu \mathrm{A}$
		-		-	40	80	
		-	$\begin{aligned} & \mathrm{Ta}=+70^{\circ} \mathrm{C}, \\ & \mathrm{fclk}=0 \end{aligned}$	-	900	4000	$\mu \mathrm{A}$
		-		-	240	400	
" H " level input voltage	ViH	P00 to P07, P10 to P17, P 20 to $\mathrm{P} 27, \mathrm{P} 30$ to P 37 , P50 to P57, P60 to P65, PD0 to PD7, PE0, PE1	$V_{\text {die }}=3.3 \mathrm{~V}$	Vdde $\times 0.8$	-	Vdde	V
		PE2 to PE7, PC0 to PC7, P40 to P47		Vdde $\times 0.7$	-	Vdde	V
"L" level input voltage	VIL	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P60 to P65, PD0 to PD7, PE0, PE1, HSYNC	VDDE $=3.3 \mathrm{~V}$	Vss	-	Vdie $\times 0.2$	V
		PE2 to PE7, PC0 to PC7, P40 to P47		Vss	-	Vdde $\times 0.3$	V
"H" level output voltage	Vон	P00 to PE1	$\begin{aligned} & V_{\mathrm{DDE}}=3.3 \mathrm{~V}, \\ & \mathrm{loH}=-4 \mathrm{~mA} \end{aligned}$	Vide - 0.5	-	Vdde	V
"L" level output voltage	Vol	P00 to PE1	$\begin{aligned} & \mathrm{V}_{\mathrm{DDE}}=3.3 \mathrm{~V}, \\ & \mathrm{loL}=4 \mathrm{~mA} \end{aligned}$	Vss	-	0.4	V

(Continued)

MB91314A Series

(Continued)
$\left(\mathrm{Ta}=-10^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}, \mathrm{V}$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{VDDI}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}$ Ss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min	Typ	Max	
Input leak current	IIL	Other than PD0 to PD7, PE0, PE1	-	-5	-	+ 5	$\mu \mathrm{A}$
		PD0 to PD7, PE0, PE1		- 10	-	+ 10	$\mu \mathrm{A}$
${ }^{12} \mathrm{C}$ bus switch connection resistance	Res	Between P21 and P24 Between P22 and P25 Between P24 and P27 Between P25 and P30	-	-	-	130	Ω

MB91314A Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ dil $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	X0, X1	-	10	16.5	33	MHz	PLL clock (self-oscillation 16.5 MHz doubled via PLL: internal operation at 33 MHz max.)
Sub clock frequency	fclk	$\begin{aligned} & \text { XOA, } \\ & \text { X1A } \end{aligned}$	-	-	32.768	-	kHz	
Internal operating clock frequency	fCP	-	-	-	-	33	MHz	CPU
	fcpp			-	-	33	MHz	Peripheral
	fcpt			-	-	16.5	MHz	External bus

(2) Clock Output Timing
$\left(\mathrm{V}_{\mathrm{DDE}}=\mathrm{AV} \mathrm{CC}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}\right.$ DI $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}$ SS $=A \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	CLK	-	60.7	-	ns	*1
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK		1/2 \times torc -3	$1 / 2 \times$ tovc +3	ns	*2
CLK $\downarrow \rightarrow$ CLK \uparrow	tclcl	CLK		$1 / 2 \times$ tcyc -3	$1 / 2 \times$ tovc +3	ns	*3

*1: tcyc is the frequency of one clock cycle after gearing.
*2: The following ratings are for the gear ratio set to $\times 1$.
For the ratings when the gear ratio is set to between $1 / 2,1 / 4$ and $1 / 8$, substitute $1 / 2,1 / 4$ or $1 / 8$ for n in the following equation.
$(1 / 2 \times 1 / n) \times$ tcrc -10
*3: The following rating are for the gear ratio set to $\times 1$.

(3) PLL Oscillation Stabilization Wait Time

$$
\left(\mathrm{VDDE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \text { Ss }=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value		Unit	Remarks	
		Max				
PLL oscillation stabilization wait time	toock	600	-	μs	The length of time to wait for the PLL oscillations to stabilize.	

MB91314A Series

(4) Reset Input

$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DDI $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
$\overline{\text { INIT input time }}$ (at power-on)	tintı	$\overline{\text { INIT }}$	-	Oscillation stabilization delay time of oscillator $+\operatorname{tcp} \times 10$	-	$\mu \mathrm{s}$
$\overline{\text { INIT input time }}$ (other than power-on)				tcp $\times 10$	-	ns
$\overline{\text { INIT input time }}$ (Stop recovery time)				Oscillation stabilization delay time of oscillator $+\operatorname{tcp} \times 10$	-	$\mu \mathrm{s}$

MB91314A Series

(5) Multiplex Bus Access Read/Write Operation

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}$ setup	tcsıch	$\begin{gathered} \frac{\mathrm{CLK}}{\mathrm{CSO} \text { to } \overline{\mathrm{CS3}}} \end{gathered}$		3	-	ns	
D31 to D16 address setup time \rightarrow CLK \uparrow	tasch	$\begin{gathered} \text { CLK } \\ \text { D31 to D16 } \\ \text { (Address) } \end{gathered}$		3	-	ns	
$\begin{array}{\|l\|} \hline \text { CLK } \uparrow \rightarrow \\ \text { D31 to D16 } \\ \text { address hold time } \end{array}$	tchax			3	tcyc / 2 + 6	ns	
D31 to D16 address setup time $\rightarrow \overline{\mathrm{AS}} \uparrow$	tasash	$\begin{gathered} \overline{\mathrm{AS}} \\ \text { D31 to D16 } \\ \text { (Address) } \end{gathered}$		12	-	ns	*1
$\begin{array}{\|l} \hline \overline{\text { AS } \uparrow \rightarrow} \\ \text { D31 to D16 } \\ \text { address hold time } \end{array}$	tashax			tcrc - 3	tcyc +3	ns	*1
WRO, WR1 delay time	tchwL	CLK$\overline{\text { WR0, }} \overline{\text { WR1 }}$($\overline{\text { WR0, }} \overline{\text { WR1 }}$		-	6	ns	
$\overline{\text { WRO, }}$ WR1 delay time	tchwh			-	6	ns	
$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$ minimum pulse width	twwwh			tcyc - 3	-	ns	
Data setup $\rightarrow \overline{\mathrm{WRx}} \uparrow$	toswh	$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$ D15 to D00		tcyc	-	ns	
	twhdx			5	-	ns	
$\overline{\mathrm{RD}}$ delay time	tchrL	$\frac{\mathrm{CLK}}{\mathrm{RD}}$		-	6	ns	
$\overline{\mathrm{RD}}$ delay time	tснRн			-	6	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input time	trLDv	$\begin{gathered} \overline{\mathrm{RD}} \\ \mathrm{D} 15 \text { to D00 } \end{gathered}$		-	tcyc - 15	ns	*2
$\begin{aligned} & \text { Data setup } \\ & \rightarrow \overline{\mathrm{RD} \uparrow \text { Time }} \end{aligned}$	toser			15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhox			0	-	ns	
$\overline{\mathrm{RD}}$ minimum pulse width	trLRH	$\overline{\mathrm{RD}}$		torc - 3	-	ns	
$\overline{\text { AS setup }}$	taslch	$\frac{\mathrm{CLK}}{\mathrm{AS}}$		3	-	ns	
$\overline{\text { AS }}$ hold	tashch			3	-	ns	

*1 $: A t \overline{C S x} \rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WRx}}$ setup extension $=1$
*2 : When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc \times the number of cycles added for the delay) to this rating.

MB91314A Series

- At $\overline{\mathrm{CSx}} \rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WRx}}$ setup extension $=1$

MB91314A Series

- At $\overline{\mathrm{CSx}} \rightarrow \overline{\mathrm{RD}} / \overline{\mathrm{WRx}}$ setup extension $=0$

MB91314A Series

(6) Ready Input Timings

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
RDY setup time \rightarrow CLK \downarrow	trovs	CLK, RDY	-	25	-	ns
CLK $\downarrow \rightarrow$ RDY hold time	trdy	CLK, RDY	-	0	-	ns

MB91314A Series

(7) UART timing
$\left(\mathrm{V}_{\text {DDE }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V}\right.$ SS $=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK0 to SCK10	Internal shift clock operation	4 tcycp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK10 SOT0 to SOT10		-20	+20	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \text { SCK0 to SCK10 } \\ & \text { SIN0 to SIN10 } \end{aligned}$		30	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK10 } \\ & \text { SINO to SIN10 } \end{aligned}$		20	-	ns
Serial clock "H" pulse width	tshsL	SCK0 to SCK10	External shift clock operation	2 tcycp	-	ns
Serial clock "L" pulse width	tsısh	SCK0 to SCK10		2 tcycp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	$\begin{aligned} & \text { SCKO to SCK10 } \\ & \text { SOT0 to SOT10 } \end{aligned}$		-	30	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{aligned} & \text { SCKO to SCK10 } \\ & \text { SINO to SIN10 } \end{aligned}$		20	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	$\begin{aligned} & \text { SCK0 to SCK10 } \\ & \text { SINO to SIN10 } \end{aligned}$		20	-	ns

Notes : - The above standards apply to the CLK synchronous mode.

- tcycp indicates the peripheral clock cycle time.

MB91314A Series

- Internal shift clock mode

- External shift clock mode

MB91314A Series

(8) Reload timer clock, PPG timer input, multi-function timer input timing, interrupt input timing
$\left(\mathrm{V} D \mathrm{DE}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}\right.$ DII $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	tтwn ttiwn	TIN0 to TIN5 TRG0 to TRG3 TMIO to TMI3	-	2 tcycp	-	ns	
		INT0 to INT23	-	3 toycp	-	ns	
				1.0	-	$\mu \mathrm{s}$	At stop

Note : tcycp indicates the peripheral clock cycle time.

(9) Trigger Input Timing

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
A/D activation trigger input time	tatrg	ATRG	-	5 tcycp	-	ns

Note : tcycp indicates the peripheral clock cycle time.

MB91314A Series

(10) External circuit for data slicer
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ dil $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Video signal input level	Vvin	VIN	1.0	-	1.5	Vp-p	
VIN pin coupling capacitor	Cvin	VIN	-	-	0.1	$\mu \mathrm{F}$	Ceramic capacitor with an error of 10% exceeding B-characteristics
Resistance for clamp	RcL	VIN	-	-	1	M Ω	Error 5\%
VIN pin input resistance	Rin	VIN	-	-	0	Ω	Error 5\%
VIN lowpass filter capacitor	C_{1}	-	-	-	82	pF	Ceramic capacitor with an error of 10% exceeding B-characteristics
Power supply bypass capacitor	Cbp	$\begin{array}{\|l} \hline \text { VDDC } \\ \text { VSSC } \end{array}$	-	-	0.1	$\mu \mathrm{F}$	Ceramic condenser
Video signal input buffer resistance	R_{1}	-	-	-	2.2	k Ω	Error 5\%
Video signal level correction resistance	R2	-	-	-	4.7	k Ω	Error 5\%
Video signal level correction resistance	R3	-	-	10	12	k Ω	Error 5\%

MB91314A Series

- Input composite video signals are DC-clamped.

- Input composite video signals are not DC-clamped.

External recommended circuit for data slicer

MB91314A Series

(11) $I^{2} C$ timing

- At master mode operating
$\left(\mathrm{V}\right.$ DDE $=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}$ DI $=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C}$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Typical mode		High-speed		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 4} \end{aligned}$	0	100	0	400	kHz	
"L" period of SCL clock	tow		4.7	-	1.3	-	$\mu \mathrm{s}$	
"H" period of SCL clock	tHIGH		4.0	-	0.6	-	$\mu \mathrm{s}$	
Bus free time between "STOP condition" and "START condition"	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$	
SCL $\downarrow \rightarrow$ SDA output delay time	toldat		-	$5 \times \mathrm{M}^{* 1}$	-	$5 \times \mathrm{M}^{* 1}$	ns	
Repeated START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$	
Repeated START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$	The first clock pulse is generated after this.
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$	
SDA data input hold time (vs. SCL \downarrow)	thdodat		$2 \times \mathrm{M}^{* 1}$	-	$2 \times \mathrm{M}^{* 1}$	-	$\mu \mathrm{s}$	
SDA data input setup time (vs. SCL \uparrow)	tsudat		250	-	100*2	-	ns	

MB91314A Series

- At slave mode operating

$$
\left(\mathrm{V}_{\mathrm{DDE}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} \text { SS }=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Conditions	Typical mode		High-speedmode $^{* 3}$		Unit	Remarks
			Min	Max	Min	Max		
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 4} \end{aligned}$	0	100	0	400	kHz	
"L" period of SCL clock	tıow		4.7	-	1.3	-	$\mu \mathrm{s}$	
"H" period of SCL clock	thigh		4.0	-	0.6	-	$\mu \mathrm{s}$	
SCL $\downarrow \rightarrow$ SDA output delay time	toldat		-	$5 \times \mathrm{M}^{* 1}$	-	$5 \times \mathrm{M}$ * ${ }^{\text {/ }}$	ns	
Bus free time between "STOP condition" and "START condition"	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$	
SDA data input hold time (vs. SCL \downarrow)	thdoat		$2 \times \mathrm{M}^{* 1}$	-	$2 \times \mathrm{M}^{* 1}$	-	$\mu \mathrm{s}$	
SDA data input setup time (vs. SCL \uparrow)	tsudat		250	-	100*2	-	ns	
Repeated START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$	
Repeated START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thosta		4.0	-	0.6	-	$\mu \mathrm{s}$	The first clock pulse is generated after this.
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$	

*1 : M = Resource clock cycle (ns)
*2 : A high-speed mode $I^{2} \mathrm{C}$ bus device can be used for a typical mode $\mathrm{I}^{2} \mathrm{C}$ bus system as long as the device satisfies a requirement of "tsudat $\geq 250 \mathrm{~ns}$ ".
When a certain device does not extend the "L" period of the SCL signal, the next data must be output to the SDA line within 1250 ns (maximum SDA/SCL rise time + tsudat) in which the SCL line is released.
*3: For use at over 100 kHz , set the resource clock to 6 MHz or higher.
*4: R and C represent the pull-up resistor and load capacitor of the SCL and SDA output lines, respectively.

MB91314A Series

5. Electrical Characteristics for the A/D Converter

(1)Electrical Characteristics

$$
\left(\mathrm{V}_{\text {DDE }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDI}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{~V} S=0 \mathrm{~V}, \mathrm{Ta}=-10^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Resolution	-	-	10	bit	
Total error *1	-	-	± 5.5	LSB	$\mathrm{AVcc}=3.3 \mathrm{~V}$, $\mathrm{AVRH}=3.3 \mathrm{~V}$ (CPU sleep)
Nonlinear error *1	-	-	± 3.5	LSB	
Differential linear error *1	-	-	± 2.0	LSB	
Zero transition voltage * 1	-4.0	-	+ 6.0	LSB	
Full transition voltage*1	AVRH - 5.5	-	AVRH + 3.0	LSB	
Conversion time	7.94*2	-	-	$\mu \mathrm{s}$	
Power supply current (analog + digital)	-	-	3	mA	
Reference power supply current (between AVRH and AVRL)	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{AVRH}=3.0 \mathrm{~V} \\ & \mathrm{AVRL}=0.0 \mathrm{~V} \end{aligned}$
Analog input capacitance	-	-	21	pF	
Interchannel disparity	-	-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : Depending on the clock cycle supplied to peripheral resources
AN9 to ANO
Analog input pin

- The relationship between external impedance and minimum sampling time

MB91314A Series

(2) Definition of terms

Resolution
Linearity error
: Analog variation that is recognized by an A/D converter.
: The deviation between the actual conversion characteristics and a straight line connecting the device's zero transition point ("0000000000" $\longleftrightarrow \rightarrow$ "0000000001") and full scale transition point ("1111111110" $\leftarrow \rightarrow$ "1111111111").
Differential linear error: Deviation of input voltage, which is required for changing output code by 1 LSB , from an ideal value.
Total error : This error indicates the difference between actual and ideal values, including the zero transition error/full-scale transition error/linearity error

Linear error in digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB}^{\prime} \times(\mathrm{N}-1)+\mathrm{V}_{\circ T}\right\}}{1 \mathrm{LSB}^{\prime}}[\mathrm{LSB}]$
Differential linear error in digital output $N=\frac{V\left(N_{1}\right) T-V_{N T}}{1 L S B^{\prime}}-1[L S B]$
$1 \mathrm{LSB}=\frac{\mathrm{V}_{\text {FST }}-\mathrm{Vot}_{\text {ot }}}{1022}[\mathrm{~V}]$
N : A/D converter digital output value
Vот : A voltage at which digital output transits from (000) н to (001) н
$V_{\text {Fst }}$: A voltage at which digital output transits from (3FE) н to (3FF) н
V_{Nt} : A voltage at which digital output transitions from $(\mathrm{N}-1)$ н to N_{H}

MB91314A Series

MB91314A Series

6. Flash Memory Write/Erase Characteristics

$$
\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V}\right)
$$

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector erase time	-	0.5	2.0	s	Excludes internal programming prior erasure.
Byte write time	-	6	100	$\mu \mathrm{~s}$	Excludes system-level overhead.
Chip write time	-	1.8	29.5	s	Excludes system-level overhead.
Erase/write cycle	10000	-	-	cycle	

MB91314A Series

■ ORDERING INFORMATION

Part number	Package
MB91314APMC-GE1	120-pin plastic LQFP
MB91F314PMC-GE1	(FPT-120P-M21)

MB91314A Series

PACKAGE DIMENSION

120-pin plastic LQFP	Lead pitch	0.50 mm
	Package width \times package length	$16.0 \times 16.0 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Wounting height (FPT-120P-M21)	Weight

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB91314A Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
 "Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

