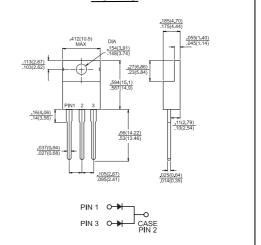


SR1620 THRU SR1660

16.0 AMPS. Schottky Barrier Rectifiers

Voltage Range 20 to 60 Volts Current 16.0 Amperes


TO-220

Features

- ♦ High current capability
- ♦ High reliability
- High surge current capability

Mechanical Data

- ♦ Cases: TO-220 molded plastic
- ♦ Epoxy: UL 94V-O rate flame retardant
- → Terminals: Leads solderable per MIL-STD-202, Method 208 guaranteed
- ♦ Polarity: As marked
- High temperature soldering guaranteed: 260°C/10 seconds.25",(6.35mm) from case.
- ♦ Weight: 2.24 grams

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.


For capacitive load, derate current by 20%

To capacitive lead, derate earrent by 2070						
Symbol	SR 1620	SR 1630	SR 1640	SR 1650	SR 1660	Units
V_{RRM}	20	30	40	50	60	V
V_{RMS}	14	21	28	35	42	V
V_{DC}	20	30	40	50	60	V
I _(AV)	16.0					А
I _{FSM}	200				А	
V _F	0.55		0.70		V	
I _R	0.5 50				mA mA	
$R\theta_{JC}$	2.5				C/W	
Cj	440			3	20	pF
TJ	-65 to +125		-65 to	+150	C	
T _{STG}	-65 to +150				C	
	$\begin{tabular}{c} Symbol \\ \hline V_{RRM} \\ \hline V_{RMS} \\ \hline V_{DC} \\ \hline I_{(AV)} \\ \hline I_{FSM} \\ \hline V_{F} \\ \hline I_{R} \\ \hline R\theta_{JC} \\ \hline Cj \\ \hline T_{J} \\ \hline \end{tabular}$	Symbol SR 1620 V _{RRM} 20 V _{RMS} 14 V _{DC} 20 I _(AV) I _{FSM} V _F I _R R θ _{JC} Cj T _J -6	Symbol SR 1620 SR 1630 VRRM 20 30 VRMS 14 21 VDC 20 30 I(AV) IFSM 0.55 IR R θJC 440 Cj 440 -65 to +12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes: 1. Mounted on Heatsink Size of 2 in x 3 in x 0.25 in Al-Plate

2. Measured at 1MHz and Applied Reverse Voltage of 4.0V D.C.

