TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

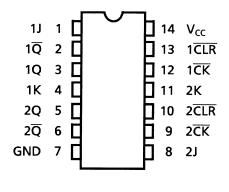
TC74HC107AP,TC74HC107AF,TC74HC107AFN

Dual J-K Flip Flop with Clear

The TC74HC107A is a high speed CMOS DUAL J-K FLIP FLOP fabricated with silicon gate C^2MOS technology.

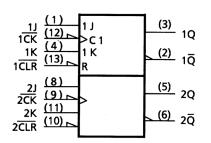
It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

In accordance with the logic levels applied to the J and K inputs, the outputs change state on the negative going transition of the clock pulse.

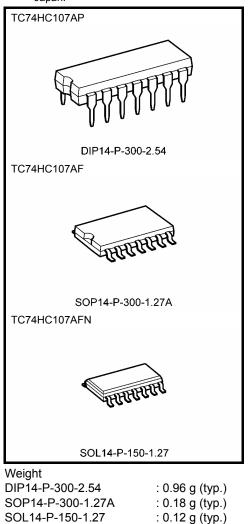

 $\overline{\text{CLR}}$ is independent of the clock and is accomplished by a low logic level on the input.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features


- High speed: $f_{max} = 75 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 2 \ \mu A \ (max)$ at $Ta = 25^{\circ}C$
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Output drive capability: 10 LSTTL loads
- Symmetrical output impedance: |IOH| = IOL = 4 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2~6 V
- Pin and function compatible with 74LS107

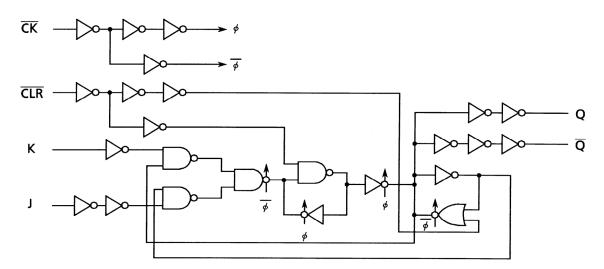
Pin Assignment



IEC Logic Symbol

Note: xxxFN (JEDEC SOP) is not available in Japan.

1


<u>TOSHIBA</u>

Truth Table

	Inputs				puts	Function	
CLR	J	К	СК	Q	IQ	Function	
L	Х	Х	Х	L	Н	Clear	
Н	L	L		Qn	\overline{Q}_{n}	No Change	
Н	L	Н		L	Н	—	
Н	Н	L		Н	L	—	
Н	Н	Н		\overline{Q}_{n}	Qn	Toggle	
Н	Х	Х		Qn	\overline{Q}_{n}	No Change	

X: Don't care

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7	V
DC input voltage	VIN	$-0.5 \sim V_{CC} + 0.5$	V
DC output voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input diode current	IIК	±20	mA
Output diode current	IOK	±20	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±50	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65~150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of $Ta = -40^{\circ}C \sim 65^{\circ}C$. From $Ta = 65^{\circ}C$ to $85^{\circ}C$ a derating factor of $-10 \text{ mW/}^{\circ}C$ shall be applied until 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	e V _{CC} 2~6		V
Input voltage	V _{IN}	0~V _{CC}	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
		0~1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0~500 (V _{CC} = 4.5 V)	ns
		0~400 (V _{CC} = 6.0 V)	

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

		Test Condition			-	Ta = 25°C		Ta = -40~85°C		
Characteristics Symbol				V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
				2.0	1.50			1.50		
High-level input voltage	VIH		—	4.5	3.15			3.15	—	V
Ũ					4.20		_	4.20	—	
				2.0			0.50		0.50	
Low-level input voltage	VIL	_		4.5			1.35		1.35	V
Ŭ				6.0			1.80		1.80	
	Vон	V _{IN} = V _{IH} or V _{IL}		2.0	1.9	2.0		1.9	—	
			$I_{OH} = -20 \ \mu A$	4.5	4.4	4.5		4.4	—	
High-level output voltage				6.0	5.9	6.0	—	5.9	—	V
, , , , , , , , , , , , , , , , , , ,			$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	—	4.13	—	
			I _{OH} = -5.2 mA	6.0	5.68	5.80	—	5.63	—	
	V _{OL}	VIN		2.0	_	0.0	0.1	_	0.1	
			$I_{OL} = 20 \ \mu A$	4.5		0.0	0.1		0.1	
Low-level output voltage		= V _{IH} or		6.0		0.0	0.1		0.1	V
Ũ		VIL	$I_{OL} = 4 \text{ mA}$	4.5	_	0.17	0.26	_	0.33	
			I _{OL} = 5.2 mA	6.0		0.18	0.26		0.33	
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0			±0.1	_	±1.0	μA
Quiescent supply current	ICC	V _{IN} = V _C	_C or GND	6.0	_	_	2.0	_	20.0	μΑ

Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = _40 ~85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width	h		2.0	_	75	95	
(\overline{CK})	t _{W (L)}	—	4.5	—	15	19	ns
	t _{W (H)}		6.0	_	13	16	
Minimum pulse width			2.0	_	75	95	
(CLR)	t _{W (L)}	—	4.5	—	15	19	ns
			6.0	_	13	16	
			2.0	—	75	95	
Minimum set-up time	t _s	—	4.5	—	15	19	ns
			6.0	_	13	16	
			2.0	—	0	0	
Minimum hold time	t _h	—	4.5	—	0	0	ns
			6.0	_	0	0	
Minimum removal time			2.0	—	25	30	
(CLR)	t _{rem}	—	4.5	—	5	6	ns
(OLK)			6.0		5	5	
			2.0	—	6	5	
Clock frequency	f	—	4.5	—	31	25	MHz
			6.0	_	37	30	

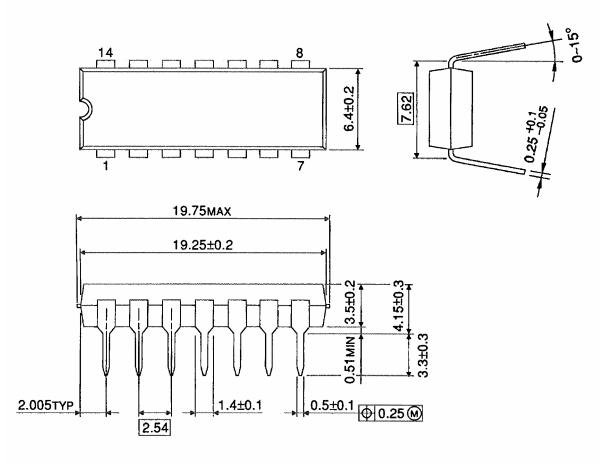
AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

Characteristics	Symbol	mbol Test Condition		Тур.	Max	Unit
Output transition time	t _{TLH} t _{THL}	_	_	4	8	ns
Propagation delay time $(\overline{CK} - Q, \overline{Q})$	t _{pLH} t _{pHL}	—	_	11	21	ns
Propagation delay time $(\overline{\text{CLR}} - \text{Q}, \overline{\text{Q}})$	t _{pLH} t _{pHL}	—	_	12	24	ns
Maximum clock frequency	f _{max}	_	34	75	_	MHz

AC Characteristics ($C_L = 50 \text{ pF}$, input: $t_r = t_f = 6 \text{ ns}$)

	Test Condition		-	Ta = 25°C)	Ta = -4	Linit	
Symbol		V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
t		2.0	_	30	75		95	
	—	4.5	—	8	15		19	ns
ЧНL		6.0	—	7	13		16	
+		2.0	_	48	125	_	155	
-	—	4.5	—	14	25		31	ns
чрНL		6.0	—	12	21		26	
•		2.0		52	140		175	
-	_	4.5	—	15	28	—	35	ns
tpHL		6.0	—	13	24	_	30	
		2.0	6	23		5		
f _{max}	—	4.5	31	70	—	25	—	MHz
		6.0	37	80	—	30	—	
C _{IN}				5	10		10	pF
C _{PD}	_		_	33	_	_	_	pF
	C _{IN}	Symbol tTLH — tTHL — tpLH — tpLH — tpLH — tpHL — tpHL — fmax — CIN — CPD —	Symbol Vcc (V) tTLH tTHL 2.0 tTLH tTHL 4.5 6.0 2.0 tpLH tpLH - 4.5 tpLH tpHL - 4.5 tpLH tpHL - 4.5 tpLH tpHL - 4.5 tpLH tpHL - 4.5 tpHL - - tpHL - -	Symbol Vcc (V) Min tTLH tTHL 2.0 tTHL 4.5 tpLH tpLH 4.5 tpLH tpHL 4.5 31 fmax 4.5 31 G.0 37 CPD	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol V_{CC} (V) Min Typ. Max t_{TLH} 2.0 30 75 t_{THL} 4.5 8 15 t_{THL} 4.5 8 15 t_{THL} 4.5 48 125 t_{pLH} 4.5 14 25 t_{pHL} 4.5 14 25 t_{pHL} 4.5 14 25 t_{pHL} 4.5 14 25 t_{pHL} 4.5 15 28 t_{pHL} 4.5 31 70 f_{max} 4.5 31 70 f_{max} 5 10 5 10 C_{IN} 53 <td< td=""><td>Symbol V_{CC} (V) Min Typ. Max Min t_{TLH} </td><td>Symbol V_{CC} Min Typ. Max Min Max T_{LH} </td></td<>	Symbol V_{CC} (V) Min Typ. Max Min t_{TLH}	Symbol V_{CC} Min Typ. Max Min Max T_{LH}

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

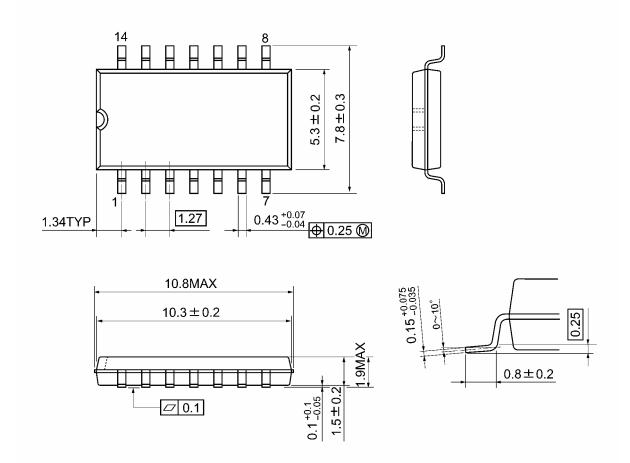

Average operating current can be obtained by the equation:

 $I_{CC} \text{ (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2 \text{ (per F/F)}$

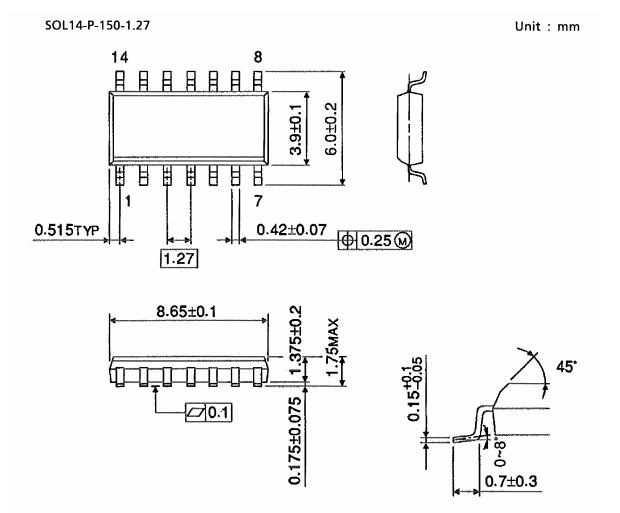
Package Dimensions

DIP14-P-300-2.54

Unit : mm


Weight: 0.96 g (typ.)

Package Dimensions


SOP14-P-300-1.27A

Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.12 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.