TOSHIBA Photocoupler GaAlAs IRed & Photo IC

TLP558

Isolated Bus Driver
High Speed Line Receiver
Microprocessor System Interfaces
MOS FET Gate Driver
Transistor Inverter

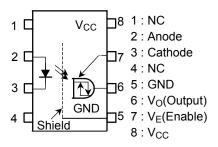
The TOSHIBA TLP558 consists of a GaAlAs light emitting diode and integrated high gain, high speed photodetector.

This unit is 8-lead DIP package.

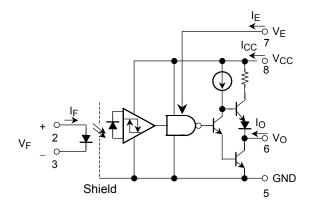
The detector has a three state output stage that provides source drive and sink drive, and built—in schmitt trigger. The detector IC has an internal shield that provides a guaranteed common mode transient immunity of 1000V / μs . TLP558 is inverter logic type. For buffer logic type, TLP555 is in line—up.

- Input current: IF=1.6mA(max.)
- Power supply voltage: V_{CC}=4.5~20V
- Switching speed: t_{pHL}, t_{pLH}=400ns(max.)
- Common mode transient immunity: ±1000V / μs(min.)
- Guaranteed performance over temperature: -25~85°C
- Isolation voltage: 2500V_{rms}(min.)
- UL recognized: UL1577, file No. E67349

Truth Table (positive logic)


Input	Enable	Output
Н	Н	L
L	Н	Н
Н	Ĺ	Z
L	L	Z

A $0.1\mu F$ bypass capacitor must be connected between pins 8 and 5 (see Note 9).



Weight: 0.54 g

Pin Configuration(top view)

Schematic

Absolute Maximum Ratings

(no derating required up to 85°C unless otherwise noted)

	Charactersitic	Symbol	Rating	Unit	
	Forward current	l _F	10	mA	
LED	Peak transient forward current	(Note 1)	I _{FPT}	1	Α
	Reverse voltage		V _R	5	V
	Output current		ΙO	40 / –25	mA
	Peak output current	(Note 2)	I _{OP}	80 / –50	mA
ō	Output voltage		Vo	-0.5~20	V
Detector	Supply voltage		V _{CC}	-0.5~20	V
ă	Three state enabel voltage Output power dissipation		VE	-0.5~20	V
			Po	100	mW
	Total package power dissipation	(Note 4)	PT	200	mW
Оре	erating temperature range		T _{opr}	−40~85	°C
Sto	rage temperature range	T _{stg}	-55~125	°C	
Lea	d solder temperature(10s)**	T _{sol}	260	°C	
Isol	ation voltage(AC, 1min., R.H.≤ 60%, Ta=25°C)	BVS	2500	Vrms	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

- (Note 1) Pulse width $\leq 1 \mu s$, 300pps.
- (Note 2) Pulse width $\leq 5\mu s$, duty ratio ≤ 0.025 .
- (Note 3) Derate 1.8mW / °C above 70°C ambient temperature.
- (Note 4) Derate 3.6mW / °C above 70°C ambient temperature.
- (Note 5) Device considered a two terminal device: Pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Input current, on	I _{F(ON)}	2*	_	5	mA
Input voltage, off	V _{F(OFF)}	0	_	0.8	V
Supply voltage	V _{CC}	4.5	_	20	٧
Enable voltage high	V _{EH}	2.0	_	20	٧
Enable voltage low	V _{EL}	0	_	0.8	٧
Fan out(TTL load)	N	_	_	4	_
Operating temperature	T _{opr}	-25	_	85	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

2

* 2mA condition permits at least 20% CTR degradation guardband. Initial switching threshold is 1.6mA or less.

^{**1.6}mm below seating plane.

Electrical Characteristics (unless otherwise specified, Ta = -25~85°C, V_{CC} = 4.5~20V)

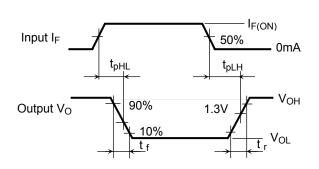
Characteristic	Symbol	Test Condition			Min.	Тур.*	Max.	Unit	
Input forward voltage	V _F	I _F =5mA, Ta=25°C			_	1.55	1.7	V	
Temperature coefficient of forward voltage	ΔV _F / ΔTa	I _F =5mA			_	-2.0	_	mV / °C	
Input reverse current	I _R	V _R =5V, Ta=25°C	;		_	_	10	μA	
Input capacitance	C _T	V _F =0, f=1MHz, T	a=25°C	;	_	45	-	pF	
Output leakage current		V _F =0,	V _O =V	E=5.5V	_	_	100		
$(V_O > V_{CC})$	Іонн	V _{CC} =4.5V	V _O =V	_E =20V	_	0.01	500	μA	
Logic low output voltage	V _{OL}	I _{OL} =6.4mA, I _F =1 V _E =2V	.6mA		_	0.4	0.5	V	
Logic high output voltage	V _{OH}	I _{OH} =-2.6mA, V _F : V _E =2V	=0.8V		2.4	3.3	_	V	
Logic low enable current	I _{EL}	V _E =0.4V			_	-0.13	-0.32	mA	
		V _E =2.7V			_	_	20		
Logic high enable current	I _{EH}	V _E =5.5V			_	_	100	μΑ	
		V _E =20V			_	0.01	250		
Logic low enable voltage	V _{EL}		_			_	0.8	V	
Logic high enable voltage	V _{EH}	_		2.0	_	_	V		
Logio low oupply ourrent	ICCL	1_=5mA	V _{CC} =	V _E =5.5V	_	4.0	6.0	^	
Logic low supply current		I _F =5mA	V _{CC} =	V _E =20V	_	- 4.6 7.		- mA	
Logic high cupply current		\/- - 0\/	V _{CC} =	V _E =5.5V	_	4.2	6.0	m 1	
Logic high supply current	Іссн	V _F =0V	V _{CC} =	V _E =20V	_	4.7	7.5	- mA	
	l _{OZL}	V _F =0V V _E =0.8V		V _O =0.4V	_	_	-20		
High impedance state				V _O =2.4V	_	_	20	μΑ	
output current	lozh	I _F =5mA V _E =0.8V		V _O =5.5V	_	_	100		
		VE-0.0V	-	V _O =20V	_	1	500		
Logic low short circuit		I _F =5mA	V _O =V _{CC} =5.5V		25	55	_		
output current (Note 6	Note 6) I _{OSL}	V _E =2V	V _O =V	CC=20V	40	80	_	- mA	
Logic high short circuit	(Note 6) I _{OSH}	LVF OV, VO OND		V _{CC} =5.5V	-10	-25	_	^	
output current (Note 6				V _{CC} =20V	-25	-60	_	- mA	
Input current logic low output	I _{FL}	V _E =2V, I _O =6.4mA V _O < 0.4V			_	0.4	1.6	mA	
Input voltage logic high output	V _{FH}	V _E =2V, I _O =-2.6mA V _O > 2.4V			0.8	_	_	V	

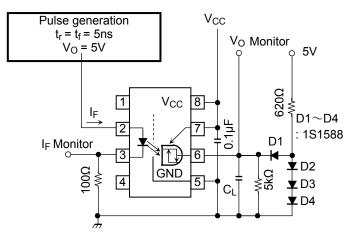
3 2007-10-01

Electrical Characteristics (unless otherwise specified, Ta = -25~85°C, V_{CC} = 4.5~20V)

Characteristic	Symbol	Test Condition	Min.	Typ.*	Max.	Unit
Input current hysteresis	I _{HYS}	V _{CC} =V _E =5V	_	0.05	_	mA
Resistance (input-output)	R _S	V _S =500V, R.H. ≤60% Ta=25°C (Note 5)	5×10 ¹⁰	10 ¹⁴	_	Ω
Capacitance(input-output)	CS	V _S =0, f=1MHz, Ta=25°C (Note 5)	-	1.0	ı	pF

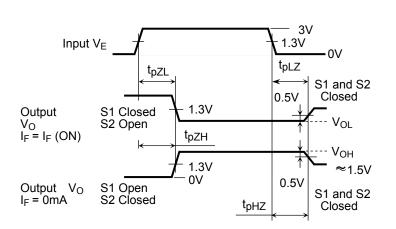
^{*}All typical values are at Ta=25°C, V_{CC} =5V, $I_{F(ON)}$ =3mA unless otherwise specified.

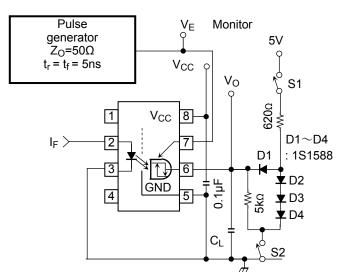

Switching Characteristics(unless otherwise specified, V_{CC} = 4.5~20V, Ta = 25°C)


Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Typ.*	Max.	Unit
Propagation delay time to logic high output (I	(Note 7)	t _{pLH}		I _F =3→ 0mA	_	250	400	ns
Propagation delay time to logic low output (I	(Note 7)	t _{pHL}	1	I _F =0→ 3mA	_	270	400	ns
Output rise time (10-90%)		t _r		$I_F=3\rightarrow 0$ mA, $V_{CC}=5$ V	_	35	75	ns
Output fall time (90-10%)		t _f		$I_F=0 \rightarrow 3mA, V_{CC}=5V$	_	20	75	ns
Output enable time to logic high		^t pZH		V _E =0→ 3V	_	_	_	ns
Output enable time to logic low		t _{pZL}	2	V _E =0→ 3V	_	_	_	ns
Output disable time from logic high		t _{pHZ}		V _E =3→ 0V	_	_	_	ns
Output disable time from logic low		t _{pLZ}		V _E =3→ 0V	_	_	_	ns
Common mode transient immunity at logic high output (I	(Note 8)	Смн	3	I _F =0mA, V _{CM} =50V V _{O(Min.)} =2V	1000	_	_	V / µs
Common mode transient immunity at logic low output (I	(Note 8)	C _{ML}	3	I _F =1.6mA, V _{CM} =50V V _{O(Max.)} =0.8V	-1000	_	_	V / µs

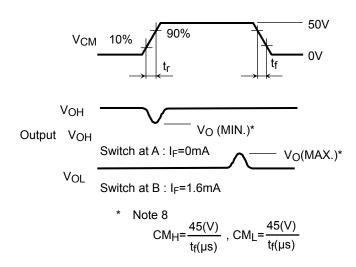
^{*} All typical values are at Ta=25 $^{\circ}$ C, V_{CC}=5V

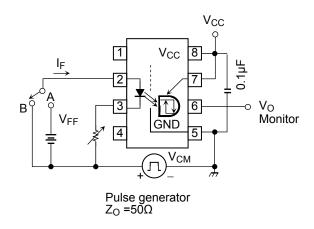
- (Note 6) Duration of output short circuit time should not exceed 10ms.
- (Note 7) The t_{pLH} propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3V point on the leading edge of the output pulse. The t_{pHL} propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3V point on the trailing edge of the output pulse.
- (Note 8) C_{ML} is the maximum rate of fall of the common mode voltage that can be sustained with the output voltage in the logic low state ($V_O > 0.8V$). C_{MH} is the maximum rate of rise of the common mode voltage that can be sustained with the output voltage in the logic state ($V_O > 2.0$).
- (Note 9) A ceramic capacitor (0.1µF) should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1cm.


Test Circuit 1: tpLH, tpHL, tr And tf



 $\ensuremath{\text{C}_{\text{L}}}$ is approximately 15pF which includes probe and stray wiring capacitance.


Test Circuit 2: tpHz, tpZH, tpLZ And tpZL



 $\rm C_L$ is approximately $\rm 15_pF$ which includes probe and stray wiring capacitance.

Test Circuit 3: Common Mode Transient Immunity

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.