TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/L Series

TMP93CS44/S45

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = $(\overline{\text{NMI}}, \text{INT0})$, which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of fFPH) with IDLE1 or STOP mode (RUN and IDLE2 are not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

Low Voltage/Low Power

CMOS 16-bit Microcontrollers TMP93CS44F/TMP93CS45F

Outline and Device Characteristics

The TMP93CS44/TMP93CS45 are high-speed, advanced 16-bit microcontrollers developed for controlling medium to large-scale equipment. The TMP93CS45 does not have a ROM, the TMP93CS44 has a built-in ROM. Otherwise, the devices function in the same way.

The TMP93CS44F/TMP93CS45F are housed in 80-pin flat package (P-LQFP80-1212-0.50E).

The device characteristics are as follows:

- (1) Original 16-bit CPU (900/L CPU)
 - TLCS-90 instruction mnemonic upward compatible
 - 16-Mbyte linear address space
 - General-purpose registers and register bank system
 - 16-bit multiplication/division and bit transfer/arithmetic instructions
 - Micro DMA: 4 channels (1.6 µs per 2 bytes at 20 MHz)
- (2) Minimum instruction execution time: 200 ns at 20 MHz
- (3) Internal RAM: 2 Kbytes

 Internal ROM:
 TMP93CS44
 64-Kbyte ROM

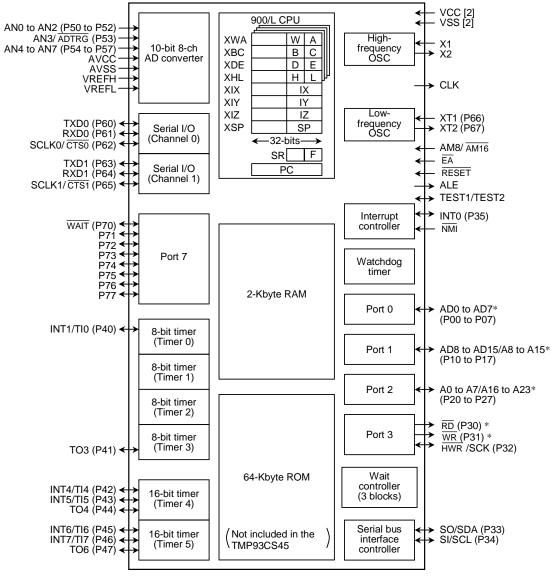
 TMP93CS45
 None

- (4) External memory expansion
 - Can be expanded up to 16 Mbytes (for both programs and data)
 - AM8/ AM16 pin (Select the external data bus width)
 - Can mix 8- and 16-bit external data buses (Dynamic bus sizing)
- (5) 8-bit timer: 4 channels
- (6) 16-bit timer: 2 channels

030619EBP1

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
 can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer,
 when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid
 situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to
 property.
- In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.


93CS44-1 2004-02-10

- (7) Serial interface: 2 channels
- (8) Serial bus interface: 1 channel
 - I2C bus mode
 - Clocked-synchronous 8-bit serial interface mode
- (9) 10-bit AD converter: 8 channels
- (10) High current output: 8 ports
- (11) Watchdog timer
- (12) Bus width/wait controller: 3 blocks
- (13) Interrupt functions: 33
 - 9 CPU interrupts
 - 17 internal interrupts
 7 external interrupts
 7-level priority can be set (except NMI and INTWD)
- (14) I/O ports

TMP93CS44	62 pins
TMP93CS45	44 pins

- (15) Standby function: 4 HALT modes (RUN, IDLE2, IDLE1, STOP)
- (16) Clock gear function
 - Dual clock operation
 - High-frequency clock can be changed from fc to fc/16
- (17) Wide range of operating voltage
 - $V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$
- (18) Package

Type Number	Package
TMP93CS44F TMP93CS45F	P-LQFP80-1212-0.50E

Note: The pin state after reset.

Product	AM8/ AM16	Pin Function after Reset
TMP93CS44	"H" level	Item in parentheses () are the initial setting after reset.
	"H" level	Except for "*" pins, item in parentheses () are the initial setting after reset.
TMP93CS45 "L" level		Except for "*" pins, item in parentheses () are the initial setting after reset. However, port 1 is initialized item of out parentheses.

Figure 1.1 TMP93CS44/TMP93CS45 Block Diagram

2. Pin Assignment and Functions

The assignment of input and output pins for the TMP93CS44/TMP93CS45, their names and functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of the TMP93CS44F/TMP93CS45F.

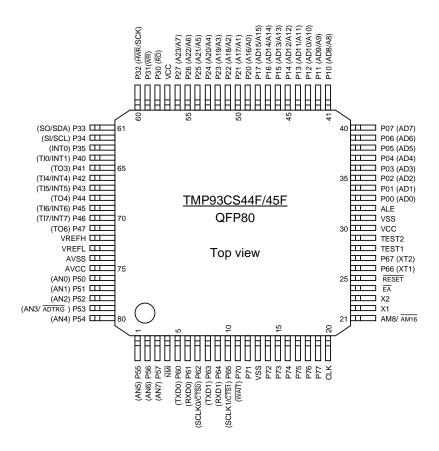


Figure 2.1.1 Pin Assignment (P-LQFP80-1212-0.50E)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below. Table 2.2.1 to Table 2.2.3 show "Pin Names and Functions".

Table 2.2.1 Pin Names and Functions (1/3)

Pin Names	Number of Pins	I/O	Functions	
P00 to P07	8	I/O	Port 0: I/O port that allows selection of I/O on a bit basis	
AD0 to AD7		3 states	Address/data (Lower): Bits 0 to 7 for address/data bus	
P10 to P17	8	I/O	Port 1: I/O port that allows selection of I/O on a bit basis	
AD8 to AD15		3 states	Address/data (Upper): Bits 8 to 15 for address/data bus	
A8 to A15		Output	Address: Bits 8 to 15 for address bus	
P20 to P27	8	I/O	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-up resistor)	
A0 to A7		Output	Address: Bits 0 to 7 for address bus	
A16 to A23		Output	Address: Bits 16 to 23 for address bus	
P30	1	Output	Port 30: Output port	
RD		Output	Read: Strobe signal for reading external memory	
P31	1	Output	Port 31: Output port	
\overline{WR}		Output	Write: Strobe signal for writing data on pins AD0 to AD7	
P32	1	I/O	Port 32: I/O port (with pull-up resistor)	
HWR		Output	High write: Strobe signal for writing data on pins AD8 to AD15	
SCK		I/O	Mode clock SBI SIO mode clock	
P33	1	I/O	Port 33: I/O port	
SO		Output	Serial send data	
SDA		I/O	SBI I ² C bus mode channel data	
P34	1	I/O	Port 34: I/O port	
SI		Input	Serial receive data	
SCL		I/O	SBI I ² C bus mode clock	
P35	1	I/O	Port 35: I/O port	
INT0		Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge	
P40	1	I/O	Port 40: I/O port	
TI0		Input	Timer input 0: Timer 0 input	
INT1		Input	Interrupt request pin 1: Interrupt request pin with rising edge	
P41	1	I/O		
TO3		Output	Timer output 3: 8-bit timer 3 output	
P42	1	I/O	Port 42: I/O port	
TI4		Input	Timer input 4: Timer 4 input	
INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge	

Table 2.2.2 Pin Names and Functions (2/3)

Pin Names	Number of Pins	I/O	Functions			
P43	1	I/O	Port 43: I/O port			
TI5		Input	Timer input 5: Timer 4 input			
INT5		Input	Interrupt request pin 5: Interrupt request pin with rising edge			
P44	1	I/O	Port 44: I/O port			
TO4		Output	Timer output 4: Timer 4 output pin			
P45	1	I/O	Port 45: I/O port			
TI6		Input	Timer input 6: Timer 5 input			
INT6		Input	Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge			
P46	1	I/O	Port 46: I/O port			
TI7		Input	Timer input 7: Timer 5 input			
INT7	İ	Input	Interrupt request pin 7: Interrupt request pin with rising edge			
P47	1	I/O	Port 47: I/O port			
TO6		Output	Timer output 6: Timer 5 output pin			
P50 to P52, P54 to P57	7	Input	Port 50 to Port 52, Port 54 to Port 57: Input port			
AN0 to AN2, AN4 to AN7		Input	Analog input: Analog signal input for AD converter			
P53	1	Input	Port53: Input port			
AN3		Input	Analog input: Analog signal input for AD converter			
ADTRG		Input	AD converter external start trigger input			
P60	1	I/O	Port 60: I/O port (with pull-up resistor)			
TXD0		Output	Serial send data 0			
P61	1	I/O	Port 61: I/O port (with pull-up resistor)			
RXD0		Input	Serial receive data 0			
P62	1	I/O	Port 62: I/O port (with pull-up resistor)			
SCLK0		I/O	Serial clock I/O 0			
CTS0		Input	Serial data send enable 0 (Clear to send)			
P63	1	I/O	Port 63: I/O port (with pull-up resistor)			
TXD1		Output	Serial send data 1			
P64	1	I/O	Port 64: I/O port (with pull-up resistor)			
RXD1		Input	Serial receive data 1			
P65	1	I/O	Port 65: I/O port (with pull-up resistor)			
SCLK1	İ	I/O	Serial clock I/O 1			
CTS1		Input	Serial data send enable 1 (Clear to send)			
P66	1	I/O	Port 66: I/O port (Open-drain output)			
XT1		Input	Low-frequency oscillator connecting pin			
P67	1	I/O	Port 67: I/O port (Open-drain output)			
XT2		Output	Low-frequency oscillator connecting pin			

Table 2.2.3 Pin Names and Functions (3/3)

Pin Names	Number of Pins	I/O	Functions			
P70	1	I/O	Port 70: I/O port (High current output available)			
WAIT		Input	WAIT: Pin used to request CPU bus wait (It is active in (1 + N) WAIT mode. Set by the bus-width/wait control register)			
P71 to P77	7	I/O	Port 71 to Port 77: I/O port (High current output available)			
AVCC	1	Input	Power supply pin for AD converter			
AVSS	1	Input	GND pin for AD converter (0 V)			
VREFH	1	Input	Pin for high-level reference voltage input to AD converter			
VREFL	1	Input	Pin for low-level reference voltage input to AD converter			
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at falling and rising edges by program.			
X1	1	Input	High-frequency oscillator connecting pin			
X2	1	Output	High-frequency oscillator connecting pin			
RESET	1	Input	Reset: Initializes TMP93CS44/S45. (with pull-up resistor)			
ALE	1	Output	Address latch enable. Can be disabled for reducing noise.			
CLK	1	Output	Clock output: Outputs "f _{SYS} ÷ 2" clock.			
			Pulled-up during reset.			
			Can be disabled for reducing noise.			
ĒĀ	1	Input	External access:			
			"0" should be inputted with TMP93CS45.			
			"1" should be inputted with TMP93CS44.			
AM8/ AM16	1	Input	Address mode: Selects external data bus width.			
			(The case of TMP93CS44)			
			"1" should be inputted. The data bus width for external access is set by chip select/WAIT control register, port 1 control register.			
			(The case of TMP93CS45) "0" should be inputted with fixed 16-bit bus width or 16-bit bus interlarded with 8-bit			
			bus. "1" should be inputted with fixed 8-bit bus width.			
VCC	2	Input	Power supply pin (All VCC pins should be connected with GND (0 V).)			
VSS	2	Input	GND pin (0 V) (All VSS pins should be connected with GND (0 V).)			
TEST1/TEST2	2	Output/Input	TEST1 should be connected with TEST2 pin. Do not connect to any other pins.			

Note: Built-in pull-up resistors can be released from the pins other than the $\overline{\text{RESET}}$ pin by software.

3. Operation

This section describes the functions and basic operational blocks of TMP93CS44/S45 devices. See the 7. "Points of Note and Restriction" for the using notice and restrictions for each block.

3.1 CPU

TMP93CS44/S45 devices have a built-in high-performance 16-bit CPU (900/L CPU). (For CPU operation, see TLCS-900/L CPU in the previous section.)

This section describes CPU functions unique to the TMP93CS44/S45 that are not described in the previous section.

3.1.1 Reset

When resetting the TMP93CS44/S45 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then set the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks (16 μ s at 20 MHz). Thus, when turn on the switch, be set to the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks.

Clock gear is initialized 1/16 mode by reset operation. It means that the system clock mode fsys is set to fc/32 (= fc/16 \times 1/2).

When reset is accepted, the CPU sets as follows:

Program counter (PC) according to reset vector that is stored FFFF00H to FFFF02H.

PC<7:0> ← Stored data in location FFFF00H PC<15:8> ← Stored data in location FFFF01H PC<23:16> ← Stored data in location FFFF02H

- Stack pointer (XSP) for system mode to 100H.
- Bits IFF2 to IFF0 of status register to 111. (Sets mask register to interrupt level 7.)
- MAX bit of status register to 1. (Sets to maximum mode.)
- Bits RFP2 to RFP0 of status register to 000. (Sets register banks to 0.)

When reset is released, instruction execution starts from PC (Reset vector). CPU internal registers other than the above are not changed.

When reset is accepted, processing for built-in I/Os, ports, and other pins is as follows.

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to general-purpose input/output port mode.
- Pulls up the CLK pin to "H" level.
- Sets the ALE pin to "L" level (the case of TMP93CS45), to High-impedance (High-Z) (the case of TMP93CS44).

Note 1: By resetting, register in the CPU except program counter (PC), status register (SR) and stack pointer (XSP) and the data in internal RAM are not changed.

Note 2: The CLK pin is pulled up to "H" level during reset. When the voltage is put down externally, there is possible to cause malfunctions.

Figure 3.1.1 and Figure 3.1.2 show the reset timing chart of TMP93CS44 and TMP93CS45.

93CS44-8 2004-02-10

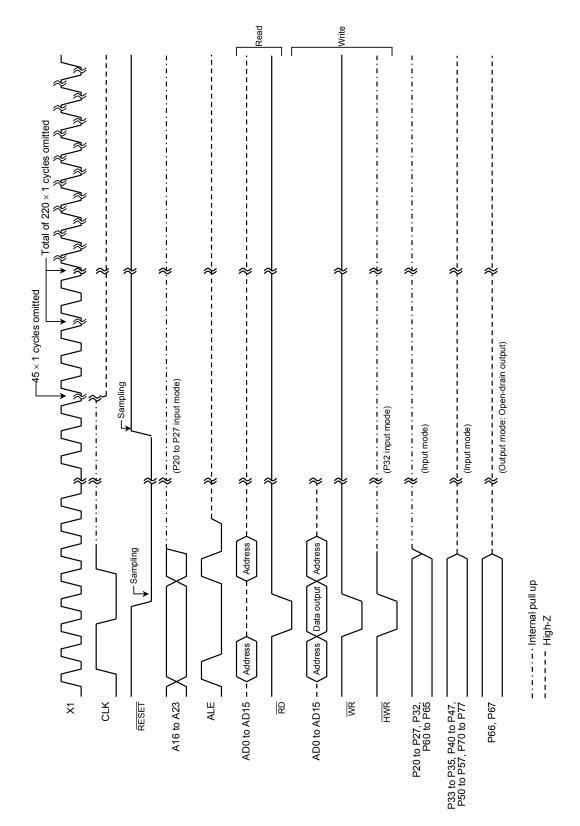


Figure 3.1.1 TMP93CS44 Reset Timing Chart

93CS44-9 2004-02-10

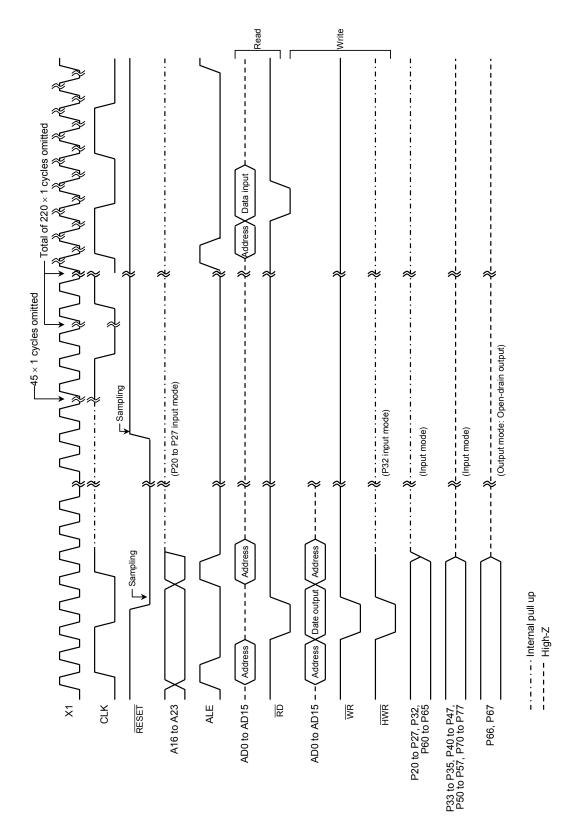


Figure 3.1.2 TMP93CS45 Reset Timing Chart

3.1.2 AM8/ AM16 pin

(1) TMP93CS44

Set this pin to "H". After reset, the CPU accesses the internal ROM with 16-bit bus width. The bus width when the CPU accesses an external area is set by bus width/wait control registers and the registers of port 1, which are described in section 3.6.3. (The value of this pin is ignored and the value set by register is active.)

(2) TMP93CS45

With fixed 16-bit data bus external 16-bit data bus or 8-bit data bus is selectable
 Set this pm to "L". Port 1, AD8 to AD15 and A8 to A15 pins are fixed to AD8 to
 AD15 functions. The values set in port 1 control register and port 1 function
 register are invalid.

The external data bus width is set by the bus width/wait control register which is described in section 3.6.3.

It is necessary to set the program memory to be accessed to 16-bit data bus after reset.

2. With fixed external 8-bit data bus

Set this pin to "H". Port l, AD8 to AD15 and A8 to A15 pins are fixed to A8 to A15 functions. The values set in port 1 control register and port 1 function register are invalid.

The values of bit4 <B0BUS>, <B1BUS> and <B2BUS> in the bus width/wait control register described in section 3.6.3 are invalid. The external 8-bit data bus is fixed.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP93CS44/S45.

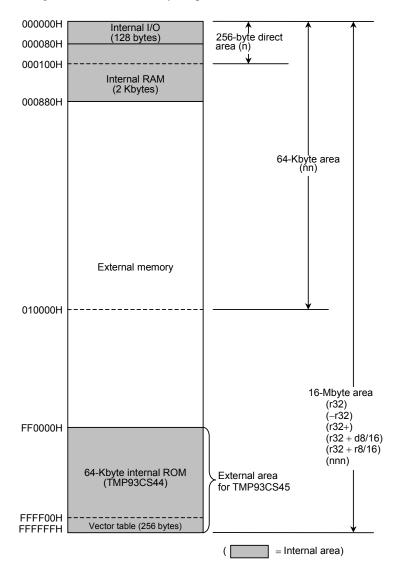


Figure 3.2.1 Memory Map

3.3 Dual Clock, Standby Function

Dual clock, standby control circuits consist of (1) System clock controller, (2) Prescaler clock controller and (3) Standby controller.

The oscillator operating mode is classified to (a) Single clock mode (Only X1 and X2 pin), and (b) Dual clock mode (X1, X2, XT1 and XT2 pin).

Figure 3.3.1 shows a transition figure. Figure 3.3.2 shows the block diagram. Figure 3.3.3 shows I/O registers. Table 3.3.1 shows the internal operation and system clock.

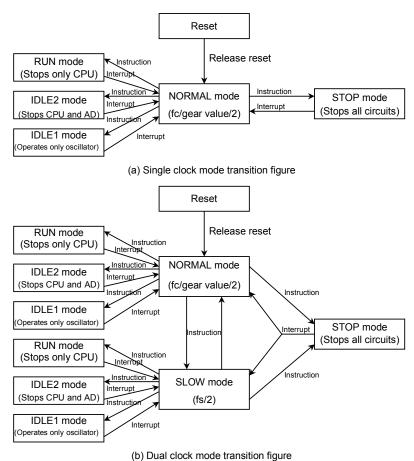


Figure 3.3.1 Transition Figure

The clock frequency input from X1, X2 pin is called fc and the clock frequency input from XT1, XT2 pin is called fs. The clock frequency selected by SYSCR1<SYSCK> is called system clock f_{FPH} . The devided clock of f_{FPH} is called system clock f_{SYS} , and the 1 cycle of f_{SYS} , is called 1 state.

Table 3.3.1 Internal Operation and System Clock

		Osci	llator			System Clock	
Operating Mode		High Frequency (fc)	ency Low Frequency (fs)		Internal I/O	f _{SYS}	
	RESET			Reset	Reset	fc/32	
	NORMAL			Operate	Operate		
Single	RUN	Oscillation	Stop		Operate	Programmable (fc/2, fc/4, fc/8,	
clock	IDLE2		Stop	Stop	Stop only AD	fc/16, fc/32)	
	IDLE1			Stop	Stop		
	STOP	Stop			Stop	Stop	
	RESET	0 "" "	Stop	Reset	Reset	fc/32	
	NORMAL	Oscillation	Programmable	Operate		Programmable (fc/2, fc/4, fc/8, fc/16, fc/32)	
Dual	SLOW	Programmable	Oscillation	- portion	Operate	fs/2	
clock	RUN	Oscillator being used as system				Programmable	
	IDLE2	clock: Oscillation	, i	Stop	Stop only AD	(fc/2, fc/4, fc/8,	
	IDLE1	Other oscillator: Programmable		Stop	Stop	fc/16, fc/32, fs/2)	
	STOP	St	ор		Stop	Stop	

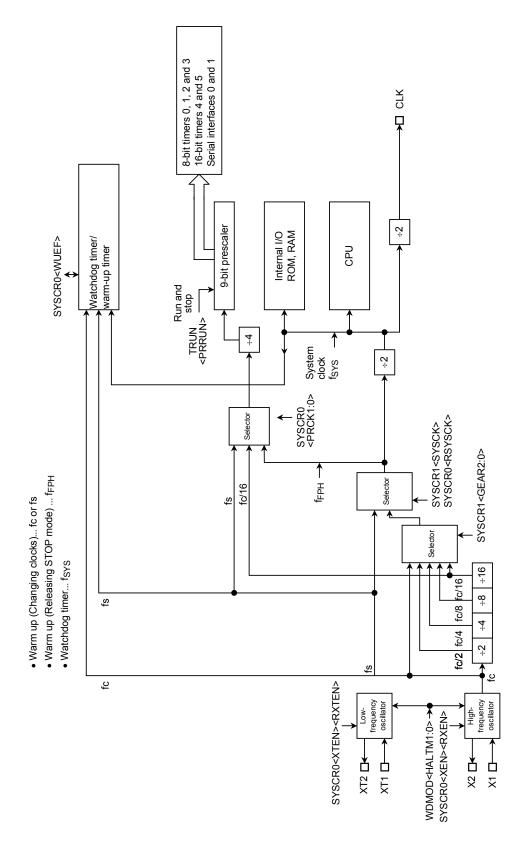


Figure 3.3.2 Block Diagram of Dual Clock, Standby Circuits

System Clock Control Register 0

SYSCR0 (006EH)

	7	6	5	4	3	2	1	0
Bit symbol	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
Read/Write				R/	W			
After reset	1	0	1	0	0	0	0	0
Function	High- frequency oscillator (fc) 0: Stop 1: Oscillation	Low- frequency oscillator (fs) 0: Stop 1: Oscillation	High- frequency oscillator (fc) after released STOP mode 0: Stop 1: Oscillation	Low- frequency oscillator (fs) after released STOP mode 0: Stop 1: Oscillation	Select clock after released STOP mode 0: fc 1: fs	Warm-up timer (Write) 0: Don't care 1: Start timer (Read) 0: End warm up 1: Not end warm up	Select presca 00: fFPH 01: fs 10: fc/16 11: (Reserved	

System Clock Control Register 1

SYSCR1 (006FH)

	7	6	5	4	3	2	1	0
Bit symbol					SYSCK	GEAR2	GEAR1	GEAR0
Read/Write						R/	W	
After reset					0	1	0	0
Function					Select system clock 0: fc 1: fs	Select gear v 000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: (Reserv 110: (Reserv 111: (Reserv	red)	equency (fc)

Clock Output Control Register

CKOCR (006DH)

	7	6	5	4	3	2	1	0
Bit symbol	_	-					ALEEN	CLKEN
Read/Write	R/	W						W
After reset	0	0					0/1 (Note 2)	0/1 (Note 2)
Function	Always write t	o "0".					ALE pin output control 0: High-Z output 1: ALE output	CLK pin output control 0: High-Z output 1: CLK output

Watchdog Timer Mode Control Register

WDMOD (005CH)

			<u> </u>					
	7	6	5	4	3	2	1	0
Bit symbol	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE
Read/Write				R/	W			
After reset	1	0	0	0	0	0	0	0
Function	WDT control 0: Disable 1: Enable	WDT detection 00: 2 ¹⁵ /fSYS 01: 2 ¹⁷ /fSYS 10: 2 ¹⁹ /fSYS 11: 2 ²¹ /fSYS	time	Warm-up timer 0: 2 ¹⁴ / frequency inputted 1: 2 ¹⁶ / frequency inputted	HALT mode 00: RUN mode 01: STOP mod 10: IDLE1 mod 11: IDLE2 mod	e le	0: Don't care 1: Connects WDT output to RESET pin internally.	Pin state control in STOP mode 0: I/O off 1: Remains the state before halt

- Note 1: SYSCR1
bit7:4> and CKOCR
bit5:2> are read as "1".
- Note 2: In the TMP93CS44, resetting sets <ALEEN>, <CLKEN> bit to "0" (High-impedance ALE and CLK). In the TMP93CS45, resetting sets <ALEEN>, <CLKEN> bit to "1" (output ALE and CLK). The CLK pin is internally pulled up during reset regardless of the product types.
- Note 3: Writing "0" to SYSCR1<SYSCK> enables the high-frequency oscillator regardless of the value of SYSCR0<XEN>. Additionally, writing "1" to <SYSCK> register enables the low-frequency oscillator regardless of th value of SYSCR0<XTEN>.

Figure 3.3.3 I/O Registers about Dual Clock, Standby

3.3.1 System Clock Controller

The system clock controller generates system clock (fsys) for CPU core and internal I/O. It contains two oscillation circuits and clock gear circuit for high frequency (fc). The register SYSCR1<SYSCK> changes system clock to either fc or fs, SYSCR0<XEN>, <XTEN> controls enable/disable each oscillator, SYSCR1<GEAR2:0> changes high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16), and these functions can reduce the power consumption of the equipment in which the device is installed.

The system clock (fsys) is set to fc/32 (fc/16 \times 1/2) because of $\langle XEN \rangle = "1"$, $\langle XTEN \rangle = "0"$, $\langle SYSCK \rangle = "0"$, $\langle GEAR2:0 \rangle = "100"$ by resetting. For example, fsys is set to 0.625 MHz by resetting the case of 20 MHz oscillator is connected to X1, X2 pins.

The high-frequency (fc) and low-frequency (fs) clocks can be easily obtained by connecting a resonator to the X1/X2, XT1/XT2 pins, respectively. Clock input from an external oscillator is also possible.

The XT1, XT2 pins have also port 66, 67 function. Therefore the case of single clock mode, the XT1, XT2 pins can be used as I/O port pins.

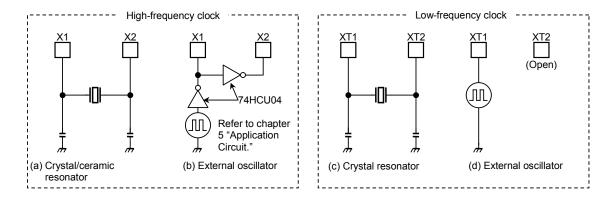


Figure 3.3.4 Examples of Resonator Connection

Note 1: Note on using the low-frequency oscillation circuit.

In connecting the low-frequency resonator to ports 66 and 67, it is necessary to make the following settings to reduce the power consumption.

(Connecting with resonators)

P6CR<P66C:67C> = "11", P6<P66:67> = "00"

(Connecting with oscillators)

P6CR<P66C:67C> = "11", P6<P66:67> = "10"

Note 2: Accurate adjustment of the oscillation frequency.

The CLK pin outputs at 1/2 the system clock frequency ($f_{SYS}/2$) is used to monitor the oscillation clock. With a system requiring adjustment of the oscillation frequency, an adjusting program must be written.

(1) Switching from NORMAL to SLOW mode

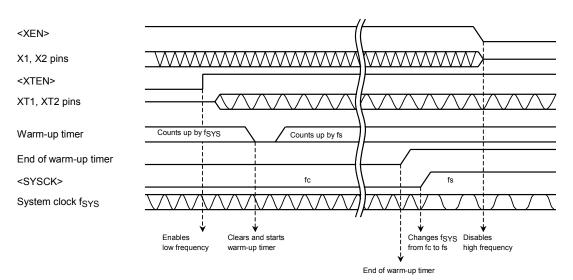
When the resonator is connected to X1, X2, or XT1, XT2 pin, the warm-up timer is used to change the operation frequency after getting stabilized oscillation.

The warm-up time can be selected by WDMOD<WARM>.

This starting and ending of warm-up timer are performed like the following example 1, 2 by program.

- Note 1: The warm-up timer is also used as a watchdog timer. So, when it is used as a warm-up timer, the watchdog timer must be disabled.
- Note 2: The case of using oscillator (Not resonator) with stabilized oscillation, a warm-up timer is not need.
- Note 3: The warm-up timer is operated by a oscillation clock. Therefore, warm-up time has an error.

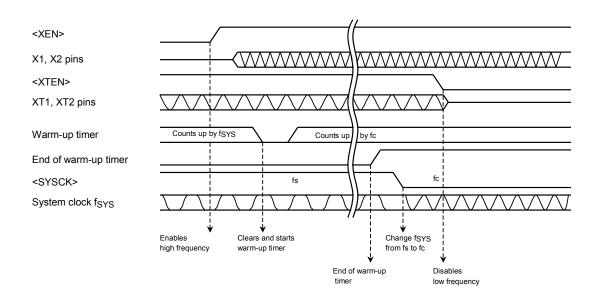
Table 3.3.2 Warm-up Time


Warm-up Time WDMOD <warm></warm>	Change to NORMAL	Change to SLOW
0 (2 ¹⁴ /frequency)	0.8192 (ms)	500 (ms)
1 (2 ¹⁶ /frequency)	3.2768 (ms)	2000 (ms)

at fc = 20 MHz, fs = 32.768 kHz

Clock setting example 1:

Changing from the high frequency (fc) to the low frequency (fs).


SYSCR0	EQU	006EH	
SYSCR1	EQU	006FH	
WDCR	EQU	005DH	
WDMOD	EQU	005CH	
	RES	7, (WDMOD)	; Disables watchder times
	LD	(WDCR), B1H	; Disables watchdog timer.
	SET	4, (WDMOD)	; Sets warm-up time to 2 ¹⁶ /fs.
	SET	6, (SYSCR0)	; Enables low-frequency oscillation
	SET	2, (SYSCR0)	; Clears and starts warm-up timer.
WUP:	BIT	2, (SYSCR0)	; Detects and of warm up timer
	JR	NZ, WUP) Detects end of warm-up timer.
	SET	3, (SYSCR1)	; Changes f _{SYS} from fc to fs.
	RES	7, (SYSCR0)	; Disables high-frequency oscillation.
	SET	7, (WDMOD)	; Enables watchdog timer.

Clock setting example 2:

Changing from the low frequency (fs) to the high frequency (fc).

SYSCR0	EQU	006EH	
SYSCR1	EQU	006FH	
WDCR	EQU	005DH	
WDMOD	EQU	005CH	
	RES	7, (WDMOD)	;
	LD	(WDCR), B1H	; Disables watchdog timer.
	SET	4, (WDMOD)	; Sets warm-up time to 2 ¹⁴ /fc.
	SET	7, (SYSCR0)	; Enables high-frequency (fc).
	SET	2, (SYSCR0)	; Clears and starts warm-up timer.
WUP:	BIT	2, (SYSCR0)	; Detects end of warm-up timer.
	JR	NZ, WUP	; Detects end of warm-up timer.
	SET	3, (SYSCR1)	; Changes f _{SYS} from fs to fc.
	RES	6, (SYSCR0)	; Disables low-frequency oscillation.
	SET	7, (WDMOD)	; Enable watchdog timer.

(2) Clock gear controller

When the high-frequency clock fc is selected at SYSCR1<SYSCK> = "0", the clock gear select register SYSCR1<GEAR2:0> sets fFPH to either fc, fc/2, fc/4, fc/8, fc/16. Switching fFPH with the clock gear reduces the power consumption.

Clock setting example 3:

Changing gear value of the high-frequency clock

SYSCR1 EQU 006FH

LD (SYSCR1), XXXX0000B ; Changes f_{SYS} to fc/2. LD (SYSCR1), XXXX0100B ; Changes f_{SYS} to fc/32.

X: Don't care

(High-frequency clock gear changing)

To change the frequency of the clock gear, write the value to SYSCR1<GEAR2:0> register. It is necessary to continue the warm-up time until changing after writing the register value.

There is a possibility that the instruction next to the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction next to the clock gear changing instruction by the clock gear after changing, input the dummy instruction (Instruction to execute the write cycle) as follows.

Example: SYSCR1 EQU 006FH

LD (SYSCR1), XXXX0001B ; Changes f_{SYS} to fc/4.
LD (DUMMY), 00H ; Dummy instruction.

Instruction to be executed by the clock gear after changing

X: Don't care

3.3.2 Prescaler Clock Controller

The 9-bit prescaler provides a clock to 8-bit timer 0, 1, 2, 3, 16-bit timer 4, 5, and serial interface 0, 1.

The clock input to the 9-bit prescaler is selected either fFPH, fc/16, or fs by SYSCR0<PRCK1:0> register.

<PRCK1:0> register is initialized to "00" by resetting.

When the IDLE 1 mode (Operates only oscillator) is used, set TRUN<PRRUN> to "0" to stop 9 bit prescaler before "HALT" instruction is executed.

3.3.3 Internal Clock Pin Output Function

CLK pin outputs fsys divided by 2 internal clock.

Outputs are specified by the clock output control register CKOCR<CLKEN>. Writing "1" sets clock output, and writing "0" sets high impedance.

After reset, CKOCR<CLKEN> is depended on each product types. It is necessary to set for each usage. Table 3.3.3 shows the value and operation after reset.

During reset, CLK pin is internally pulled up regardless of the value of <CLKEN> register. See "TMP93CS44/S45 Reset Timing Chart" in Figure 3.1.1 and Figure 3.1.2.

Table 3.3.3 < CLKEN> and CLK Pin Operation after Reset

Type Number	CKOCR <clken></clken>	CLK Pin Operation
TMP93CS44	0	High impedance
TMP93CS45	1	f _{SYS} /2 clock output

Note: To set <CLKEN> = "0" and set CLK pin to high impedance, pull up externally to prevent through current which follows to the input buffer of CLK pin.

3.3.4 Standby Controller

(1) HALT mode

When the HALT instruction is executed, the operating mode changes RUN, IDLE2, IDLE1 or STOP mode depending on the contents of the HALT mode setting register WDMOD<HALTM1:0>. Figure 3.3.5 shows the alternative states of watchdog timer mode registers.

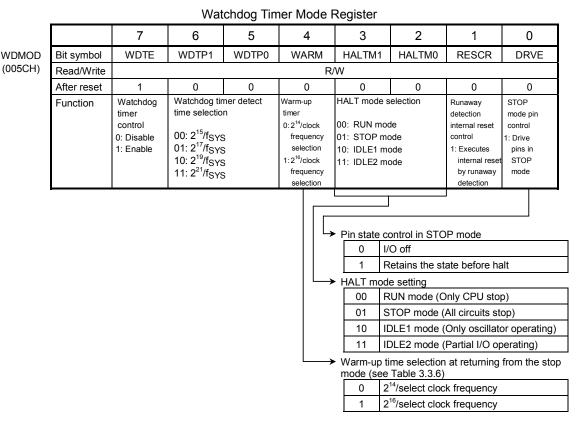


Figure 3.3.5 Watchdog Timer Mode Register

The futures of RUN, IDLE2, IDLE1 and STOP modes are as follows.

- 1. RUN: Only the CPU halts; power consumption remains unchanged.
- IDLE2: The built-in oscillator and the specified I/O operates.
 The power consumption is reduced to 1/2 than that during NORMAL operation.
- 3. IDLE1: Only the built-in oscillator operates, while all other built-in circuits stop.

 Consumption is reduced to 1/5 or less than that during NORMAL operation.
- 4. STOP: All internal circuits including the built-in oscillator stop.

 This greatly reduces power consumption.

HALT mode RUN IDLE2 IDLE1 STOP WDMOD<HALTM1:0> 00 11 10 01 CPU I/O Port See Table 3.3.7 Keep the state when the "HALT" instruction was executed. 8-bit timer 16-bit timer **BLOCK** Serial channel Serial bus interface Operate Stop AD converter Watchdog timer

The operations in the halt state is described in Table 3.3.4.

Table 3.3.4 I/O Operation during HALT Mode

(2) How to release the HALT mode

Interrupt controller

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combinations between the states of interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.5.

Released by requesting an interrupt

The operating released from the HALT mode depends on the interrupt enabled status. When the interrupt request level set before executing the HALT instruction exceeds the value of the interrupt mask register, the interrupt due to the source is processed after releasing the HALT mode, and CPU starts executing an instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT mode is not executed (in non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.)

However only for INTO interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT mode is executed. In this case, interrupt processing is not processed, and CPU starts executing the instruction next to the HALT instruction, but the interrupt request flag is held at "1".

Note: Usually, interrupts can release all halts status. However, the interrupts = (NMI) INT0) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of f_{EPH}) with IDLE1 or STOP mode (RUN and IDLE2 are not applicable to this case). (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with

Release by resetting

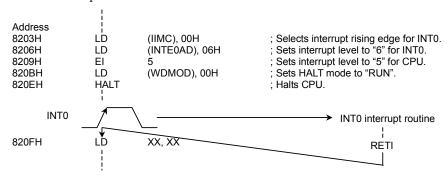
Releasing all halt status is executed by resetting.

When the STOP mode is released by RESET, it is necessary enough resetting time (3 ms or more) to set the operation of the oscillator to be stable.

higher priority is handled first followed by the other interrupt.

When releasing the HALT mode by resetting, the internal RAM data keeps the state before the "HALT" instruction is executed. However the other setting contents are initialized. (Releasing due to interrupts keep the state before the "HALT" instruction is executed.)

Interrupt Receiving Status		Interrupt Enable (Interrupt level) ≥ (Interrupt mask)			Interrupt Disable (Interrupt level) < (Interrupt mask)					
	HALT mode			· · · · · ·	· · · · ·					
			RUN	IDLE2	IDLE1	STOP	RUN	IDLE2	IDLE1	STOP
		NMI	•	•	•	♦ *1	-	-	-	-
		INTWDT	•	×	×	×	_	_	_	_
		INT0	•	•	•	♦ *1	0	0	0	0*1
		INT1, INT4 to INT7	•	•	×	×	×	×	×	×
		INTT0 to INTT3	•	•	×	×	×	×	×	×
Halt releasing	Interrupt	INTTR4 to INTTR7	•	•	×	×	×	×	×	×
source		INTTO4, INTTO5	•	•	×	×	×	×	×	×
		INTRX0, INTTX0	•	•	×	×	×	×	×	×
		INTRX1, INTTX1	•	•	×	×	×	×	×	×
		INTS2	•	•	×	×	×	×	×	×
		INTAD	•	×	×	×	×	×	×	×
	RESET		•	•	•	•	*	•	•	*


Table 3.3.5 Halt Releasing Source and Halt Releasing Operation

- ♦: After releasing the HALT mode, CPU starts interrupt processing. (RESET initializes LSI.)
- o: After releasing the HALT mode, CPU starts executing an instruction that follows the HALT instruction
- x: It can not be used to release the HALT mode.
- -: This combination type does not exist because the priority level (Interrupt request level) of non-maskable interrupts is fixed to highest priority level "7".
- *1: Releasing the HALT mode is executed after passing the warm-up time.

Note: When releasing the HALT mode is executed by INT0 interrupt of the level mode in the interrupt enabled status, hold level "H" until starting interrupt processing. If level "L" is set before holding level "L", interrupt processing is correctly started.

(Example releasing "RUN" mode)

INTO interrupt releases halt state when the RUN mode is on.

When halt is released by reset, the states (Including those of the internal RAM) before halt state was entered can be maintained. However, if the HALT instruction is executed within the internal RAM, the contents of the RAM may not be maintained. In this case, we recommend releasing the halt state using INTO.

(3) Operation

1. RUN mode

In the RUN mode, the system clock continues to operate even after a HALT instruction is executed.

Only the CPU stops executing the instruction. In the halt state, an interrupt request is sampled with the falling edge of the "CLK" signal.

Releasing the RUN mode is executed by the external/internal interrupts. (See Table 3.3.5 "Halt Releasing Source and Halt Releasing Operation".)

Figure 3.3.6 shows the interrupt timing for releasing the halt state by interrupts in the RUN/IDLE2 mode.

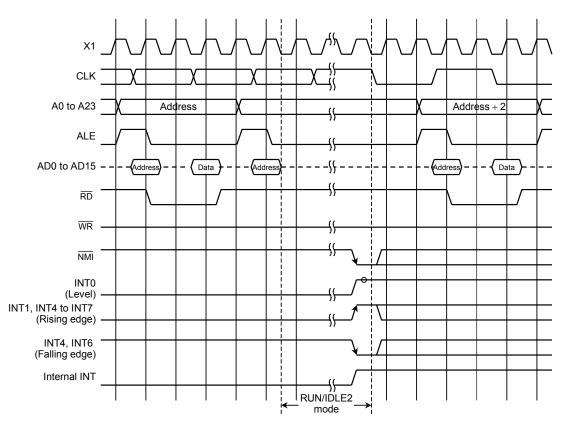


Figure 3.3.6 Timing Chart for Releasing the Halt State by Interrupt in RUN/IDLE2 Modes

2. IDLE2 mode

In the IDLE2 mode, the system clock is supplied to only specific internal I/O devices, and the CPU stops executing the current instruction.

In the IDLE2 mode, the halt state is released by an interrupt with the same timing as in the RUN mode. The IDLE2 mode is released by external/internal interrupt, except INTWDT/INTAD interrupts. (See Table 3.3.5 "Halt Releasing Source and Halt Releasing Operation".)

In the IDLE2 mode, the watchdog timer should be disabled before entering the halt status to prevent the watchdog timer interrupt occurring just after releasing the HALT mode.

3. IDLE1 mode

In the IDLE1 mode, only the internal oscillator operates. The system clock in the MCU stops, the CLK pin is fixed at the level "H" in the output enable (CKOCR<CLKEN>="1").

In the halt state, and interrupt request is sampled asynchronously with the system clock, however the halt release (Restart of operation) is performed synchronously with it.

IDLE1 mode is released by external interrupts (NMI, INT0). (See Table 3.3.5 "Halt Releasing Source and Halt Releasing Operation".)

When the IDLE1 mode is used, setting TRUN<PRRUN> to "0" to stop 9-bit prescaler before "HALT" instruction reduces the power consumption.

Figure 3.3.7 illustrates the timing for releasing the halt state by interrupts in the IDLE1 mode.

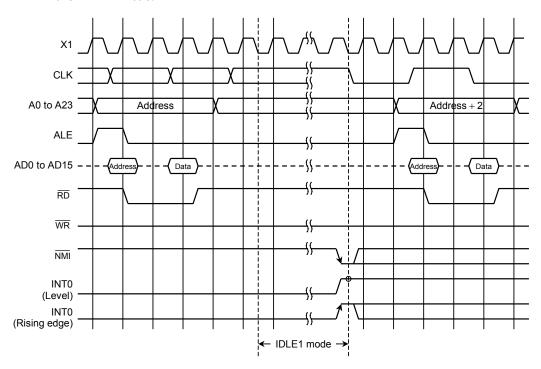


Figure 3.3.7 Timing Chart of Halt Released by Interrupts in IDLE1 Mode

4. STOP mode

The STOP mode is selected to stop all internal circuits including the internal oscillator. The pin status in the STOP mode depends on setting of a bit in the watchdog timer mode register WDMOD<DRVE>. (See Figure 3.3.5 for setting of WDMOD<DRVE>.) Table 3.3.7 summarizes the state of these pins in the STOP mode.

The STOP mode is released by external interrupts (NMI, INTO). When the STOP mode is released, the system clock output starts after warm-up time required to attain stable oscillation. The warm-up time can be set using WDMOD<WARM>. See the example of warm-up time (Table 3.3.6).

In a system which supplies stable clock generated by an external oscillator, the warm-up time can be reduced by using the setting of T45CR<QCU>.

Figure 3.3.8 illustrates the timing for releasing the halt state by interrupts during the STOP mode.

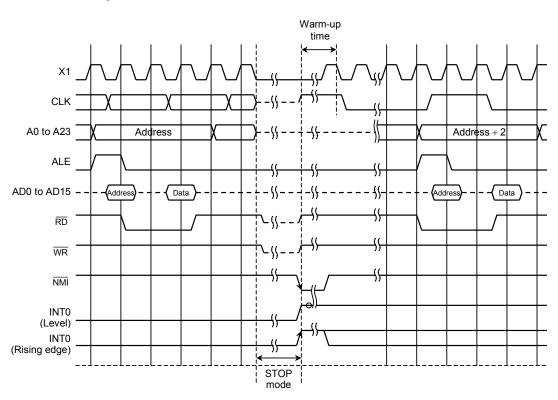
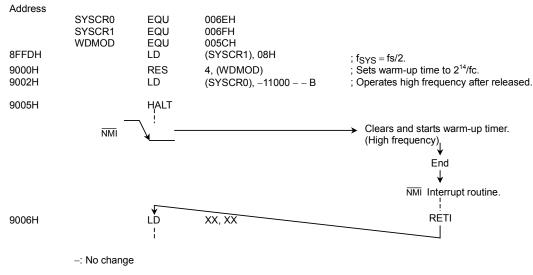


Figure 3.3.8 Timing Chart of Halt State Release by Interrupts in STOP Mode

Clock Operation Frequency	Warm-up	Clock Frequency		
after the STOP Mode	WDMOD <warm> = 0</warm>	WDMOD <warm> = 1</warm>	Glook i requestoy	
fc	0.8192	3.2768		
fc/2	1.6384	6.5536		
fc/4	3.2768	13.1072	fc = 20 MHz	
fc/8	6.5536	26.2144		
fc/16	13.1072	52.4288		
fs	500	2000	fs = 32.768 kHz	


Table 3.3.6 The Example of Warm-up Time after Releasing the STOP Mode

How to calculate the warm-up time

WDMOD<WARM> = 0: Clock operation frequency after the 2^{14} /STOP mode. WDMOD<WARM> = 1: Clock operation frequency after the 2^{16} /STOP mode.

The NORMAL/SLOW mode selection is possible after released STOP mode. This is selected by SYSCR0<RSYSCK>. Therefore, Setting to <RSYSCK>, <RXEN>, <RXTEN> is necessary before "HALT" instruction is executed.

Setting example: The STOP mode is entered when the low-frequency (fs) operates, and after that high-frequency operates after releasing by $\overline{\text{NMI}}$.

Note: When different modes are used before and after STOP mode as the above mentioned, there is possible to release the HALT mode without changing the operation mode by acceptance of the halt release interrupt request during execution of "HALT" instruction (during 8 states). In the system which accepts the interrupts during execution "HALT" instruction, set the same operation mode before and after the STOP mode.

Table 3.3.7 Pin States in STOP Mode

Din Name	1/0	TMP9	3CS44	TMP93CS45		
Pin Name	I/O	<drve> = 0</drve>	<drve> = 1</drve>	<drve> = 0</drve>	<drve> = 1</drve>	
P00 to P07	Input mode	A	A	×	×	
	Output mode	High-Z	Output	×	×	
	AD0 to AD7	High-Z	High-Z	High-Z	High-Z	
P10 to P17	Input mode	A	A	×	×	
	Output mode/A8 to A15	High-Z	Output	×	×	
	AD8 to AD15	High-Z	High-Z	High-Z	High-Z	
P20 to P27	Input mode	A	A	A	A	
	Output mode A0 to A7/A16 to A23	A	Output	A	Output	
P30 (RD), P31 (WR)	Output	High-Z	Output	High-Z	"H" level output	
P32 (HWR/SCK)	Input mode	PU*	PU			
	Output mode	PU*	Output			
P33 to P35	Input mode	Invalid	Invalid			
	Output mode	High-Z	Output			
P40 to P47	Input mode	Invalid Invalid				
	Output mode	High-Z	Output	The same as for		
P50 to P57	Input	A	A			
P60 to P65	Input mode	PU*	PU		3CS44	
	Output mode	PU*	Output	TIVII 9	30344	
P70 to P77	Input mode	Invalid	Invalid			
	Output mode	High-Z	Output			
NMI	Input	Input	Input			
ALE	Output (<aleen> = 1)</aleen>	"L" level output	"L" level output			
CLK	Output (<clken> = 1)</clken>	High-Z	"H" level output			
RESET	Input	Input	Input			
ĒĀ	Input	"H" level fix	"H" level fix	"L" level fix	"L" level fix	
AM8/ AM16	Input	"H" level fix	"H" level fix	Input	Input	
X1	Input	Invalid	Invalid			
X2	Output	"H" level output	"H" level output			
P66	Input mode	Invalid Invalid		7		
	Output mode	High-Z	Output*	The same as for		
	XT1	•	•	TMP9	3CS44	
P67	Input mode	Invalid	Invalid			
	Output mode	High-Z	Output*			
	XT2	•	•			

Input: Input gate in operation. Fix input voltage to 0 or 1 so that the input pin stays constant.

Output: Output state.

Output*: Open-drain output state. Input gate in operation. Set output to "L" or attach pull up on pin so that the input gate stays

constant.

Invalid: Input is not accepted.

High-Z: PU: Output is at high impedance.

Programmable pull-up pin in input gate in operation. Fix the pin to avoid through current since the input gate operates when a pull-up pin resistor is not set.

PU*: Programmable pull-up pin in input gate disable state. No through current even if the pin is set to high impedance. When a HALT instruction is executed and the CPU stops at the address of the port register, an input gate operates. ▲:

Fix the pin to avoid through current, and change the program.

Cannot set. ×:

To connect a low-frequency resonator to port 66 and port 67, it is necessary to set the following procedures to reduce

the consumption power supply. (Connecting to a resonater)

Set P6CR<P66C:67C> = "11", P6<P66:67> = "00"

(Connecting to an oscillator) Set P6CR<P66C:67C> = "11", P6<P66:67> = "10"

Note: Port registers are used for controlling programmable pull up. If a pin is also used for an output function (e.g., TO3) and the output function is specified, whether pull up is selected depends on the output function data. If a pin is also used for an input function, whether pull up is selected depends on the port register setting value only.

3.4 Interrupts

TLCS-900 interrupts are controlled by the CPU interrupt mask flip-flop <IFF2:0> and the built-in interrupt controller.

Altogether the TMP93CS44/S45 have the following 33 interrupt sources:

- Software interrupts: 8
- Illegal instruction execution: 1
- Interrupts from built-in I/Os: 17

External interrupts 7

• External pins (NMI, INT0, INT1, INT4, to INT7)

A fixed individual interrupt vector number is assigned to each interrupt source; six levels of priority can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority of 7.

When an interrupt is generated, the interrupt controller sends the value of the priority of the interrupt source to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the value of the highest priority (7 for non-maskable interrupts is the highest) to the CPU.

The CPU compares the value of the priority sent with the value in the CPU interrupt mask register <IFF2:0>. If the value is greater than that the CPU interrupt mask register, the interrupt is accepted. The value in the CPU interrupt mask register <IFF2:0> can be changed using the EI instruction (Executing EI n changes the contents of <IFF2:0> to n). For example, programming EI 3 enables acceptance of maskable interrupts with a priority of 3 or greater, and non-maskable interrupts which are set in the interrupt controller. The DI instruction (<IFF2:0> = 7) operates in the same way as the EI 7 instruction. Since the priority values for maskable interrupts are 0 to 6, the DI instruction is used to disable acceptance of maskable interrupts. The EI instruction becomes effective immediately after execution (with the TLCS-90, the EI instruction becomes effective after execution of the subsequent instruction).

In addition to the general-purpose interrupt processing mode described above, there is also a micro DMA processing mode. Micro DMA is a mode used by the CPU to automatically transfer byte or word data. It enables the CPU to process interrupts such as data saves to built-in I/Os at high speed.

Figure 3.4.1 is a flowchart showing overall interrupt processing.

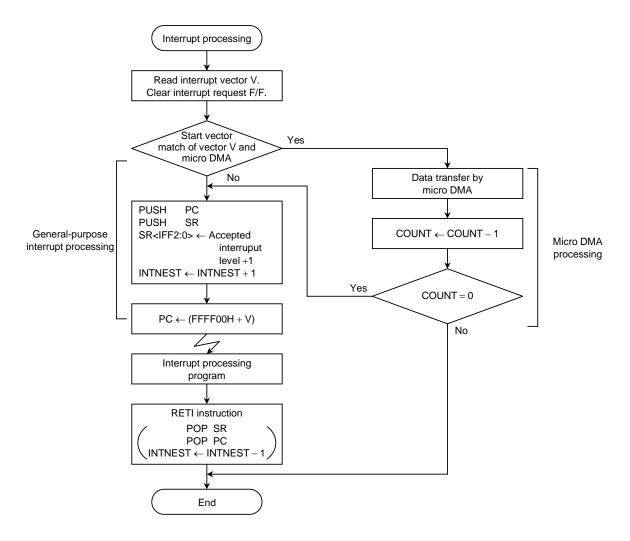


Figure 3.4.1 Interrupt Processing Flowchart

3.4.1 General-purpose Interrupt Processing

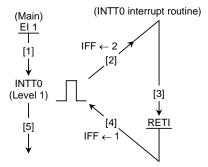
When accepting an interrupt, the CPU operates as follows. In the cases of software interrupts or interrupts generated by the CPU because of attempts to execute illegal instructions, the following steps (1) and (3) are not executed.

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated simultaneously, the interrupt controller generates interrupt vectors in accordance with the default priority (which is fixed as follows: The smaller the vector value, the higher the priority), then clears the interrupt request.
- (2) The CPU pushes the program counter and the status register to the system stack area (Area indicated by the system mode stack pointer (XSP)).
- (3) The CPU sets a value in the CPU interrupt mask register <IFF2:0> that is higher by 1 than the value of the accepted interrupt level. However, if the value is 7, 7 is set without an increment.
- (4) The CPU increments the INTNEST (Interrupt nesting counter).
- (5) The CPU jumps to address stored at FFFF00H + interrupt vector, then starts the interrupt processing routine.

mı e ii ·	1.	1	11	. 1	1			
The following	diagram	shows	яII	the	ahove	nrocessing	state number	
I II C I CII C W III S	aragram	DIIOWD	an	ULIC	above	processing	budge mamber.	

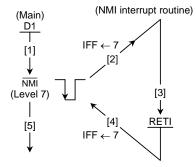
Bus Width of Stack Area	Bus Width of Interrupt Vector Area	Interrupt Processing State Number		
8 bits	8 bits	35		
o bits	16 bits	31		
16 bits	8 bits	29		
TO DIES	16 bits	25		

To return to the main routine after completion of the interrupt processing, the RETI instruction is usually used. Executing this instruction restores the contents of the program counter and the status registers and decrements INTNEST (Interrupt nesting counter).

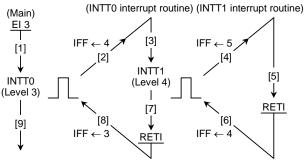

Though acceptance of non-maskable interrupts cannot be disabled by program, acceptance of maskable interrupts can. A priority can be set for each source of maskable interrupts. The CPU accepts an interrupt request with a priority higher than the value in the CPU mask register <IFF2:0>. The CPU mask register <IFF2:0> is set to a value higher by 1 than the priority of the accepted interrupt. Thus, if an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest.

The interrupt request with a priority higher than the accepted now interrupt during the CPU is processing above (1) to (5) is accepted before the 1'st instruction in the interrupt processing routine, causing interrupt processing to nest. (This is the same case of over lapped each non-maskable interrupt (level 7).) The CPU does not accept an interrupt request of the same level as that of the interrupt being processed.

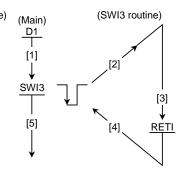
Resetting initializes the CPU mask registers <IFF2:0> to 7; therefore, maskable interrupts are disabled.


The following (1) to (5) show a flowchart of interrupt processing.

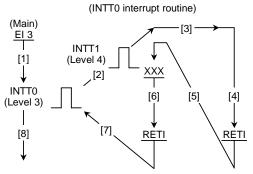
(1) Maskable interrupt


During execution of the main program, the CPU accepts an interrupt request. The CPU increments the IFF so that the interrupts of level 1 are not accepted during processing the interrupt routine.

(2) Non-maskable interrupt


DI instruction is executed in the main program, so that the interrupts of only level 7 are accepted. The CPU does not increment the IFF even if the CPU accepts an interrupt request of level 7.

(3) Interrupt nesting


During processing the interrupts of level 3, the IFF is set to 4. When an interrupt with a level higher than level 4 is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest.

(4) Software interrupt

The CPU accepts the software interrupt request during DI status (IFF = 7) because of the level 7. The IFF is not changed by the software interrupts.

(5) Interrupt sampling timing

If an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level. The program counter which returns at e is the start address of INTT0 interrupt routine.

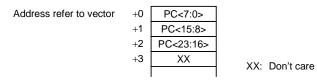
Example: ____ (Underline):Instruction [1], [2], ...: Execution flow

The addresses FFFF00H to FFFFFFH (256 bytes) of the TMP93CS44/S45 are assigned for interrupt vector area.

Table 3.4.1 TMP93CS44/S45 Interrupt Table

Default Priority	Туре	Interrupt Source	Vector Value "V"	Address Refer to Vector	Micro DMA Start Vector
1		Reset or SWI0 instruction	0 0 0 0 H	FFFF00H	_
2		SWI 1 instruction	0 0 0 4 H	FFFF04H	_
3		Illegal instruction, or SWI2	0 0 0 8 H	FFFF08H	_
4		SWI 3 instruction	0 0 0 C H	FFFF0CH	_
5	Non-	SWI 4 instruction	0 0 1 0 H	FFFF10H	_
6	maskable	SWI 5 instruction	0 0 1 4 H	FFFF14H	_
7		SWI 6 instruction	0 0 1 8 H	FFFF18H	_
8		SWI 7 instruction	0 0 1 C H	FFFF1CH	_
9		NMI: NMI pin input	0 0 2 0 H	FFFF20H	08H
10		INTWD: Watchdog timer	0 0 2 4 H	FFFF24H	09H
11		INT0: INT0 pin input	0 0 2 8 H	FFFF28H	0AH
12		INT1: INT1 pin input	0 0 2 C H	FFFF2CH	0BH
13		INT4: INT4 pin input	0 0 3 0 H	FFFF30H	0CH
14		INT5: INT5 pin input	0 0 3 4 H	FFFF34H	0DH
15		INT6: INT6 pin input	0 0 3 8 H	FFFF38H	0EH
16		INT7: INT7 pin input	0 0 3 C H	FFFF3CH	0FH
17		INTT0: 8-bit timer 0	0 0 4 0 H	FFFF40H	10H
18		INTT1: 8-bit timer 1	0 0 4 4 H	FFFF44H	11H
19		INTT2: 8-bit timer 2	0 0 4 8 H	FFFF48H	12H
20		INTT3: 8-bit timer 3	0 0 4 C H	FFFF4CH	13H
21		INTTR4: 16-bit timer 4 (TREG4)	0 0 5 0 H	FFFF50H	14H
22		INTTR5: 16-bit timer 4 (TREG5)	0 0 5 4 H	FFFF54H	15H
23	Maskable	INTTR6: 16-bit timer 5 (TREG6)	0058H	FFFF58H	16H
24		INTTR7: 16-bit timer 5 (TREG7)	0 0 5 C H	FFFF5CH	17H
25		INTTO4: 16-bit timer 4 (Overflow)	0 0 6 0 H	FFFF60H	18H
26		INTTO5: 16-bit timer 5 (Overflow)	0 0 6 4 H	FFFF64H	19H
27		INTRX0: Serial receive (Channel 0)	0 0 6 8 H	FFFF68H	1AH
28		INTTX0: Serial send (Channel 0)	0 0 6 C H	FFFF6CH	1BH
29		INTRX1: Serial receive (Channel 1)	0 0 7 0 H	FFFF70H	1CH
30		INTTX1: Serial send (Channel 1)	0 0 7 4 H	FFFF74H	1DH
31		INTAD: AD conversion completion	0 0 7 8 H	FFFF78H	1EH
32		INTS2: Serial bus send and receive	0 0 7 C H	FFFF7CH	1FH
-		(Reserved)	0 0 8 0 H	FFFF80H	-
to		to	to	to	to
_		(Reserved)	0 0 F C H	FFFFCH	_

Setting to reset/interrupt vector


1. Reset vector

FFFF00H	PC<7:0>
FFFF01H	PC<15:8>
FFFF02H	PC<23:16>
FFFF03H	XX

The vector base addresses are depended on the products.

		b are acpenaed on the products.	
Type Number	Vector Base Address	PC Setting Sequence after Reset	Notes
TMP93CS44 TMP93CS45 TMP93PS44 TMP93CU44 TMP93CW44 TMP93PW44A	FFFF00H	PC<7:0> ← Address FFFF00H PC<15:8> ← Address FFFF01H PC<23:16> ← Address FFFF02H	P27 to P20/A23 to A16 pins input ports with pull-up due to reset. The logic data is "FFH". When port 2 is used as A23 to A16 pins to access the program ROM, set PC<23:16> to "FFH" and the reset vector to "FF0000H to FFFFFH" (for mainly products without ROM).

2. Interrupt vector (except reset vector)

(Setting example)

Sets the reset vector: FF0000H, $\overline{\text{NMI}}$ vector: FF9ABCH, INTAD vector: 123456H.

ORG DL	FFFF00H <u>FF0000</u> H	; Reset = FF0000H.
ORG DL	FFFF20H <u>FF9ABC</u> H	; NMI = FF9ABCH.
ORG DL	FFFF78H <u>123456</u> H	; INTAD = 123456H.
ORG LD	FF0000H A, B	Note: ORG, DL are assembler directives.
ORG LD	FF9ABCH B, C	ORG: Control location counter. DL: Defines long word (32 bits) data.
ORG LD	123456H C, A	

3.4.2 Micro DMA

In addition to the conventional interrupt processing, the TLCS-900 also has a micro DMA function. When an interrupt is accepted, in addition to an interrupt vector, the CPU receives data indicating whether processing is micro DMA mode or general purpose interrupt. If micro DMA mode is requested, the CPU performs micro DMA processing.

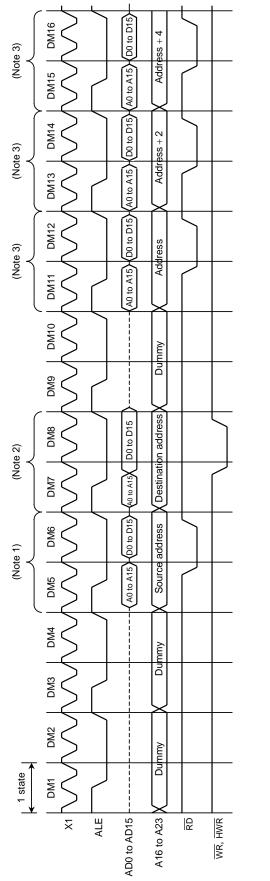
The TLCS-900 can process at very high speed because it has transfer parameters in dedicated registers in the CPU. Since those dedicated registers are assigned as CPU control registers, they can only be accessed by the LDC instruction.

(1) Micro DMA operation

Micro DMA operation starts when the accepted interrupt vector value matches the micro DMA start vector value. The micro DMA has four channels so that it can be set for up to four types of interrupt source.

When a micro DMA interrupt is accepted, data is automatically transferred from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented. If the value in the counter after decrementing is other than 0, micro DMA processing is completed; if the value in the counter after decrementing is 0, general-purpose interrupt processing is performed.

32-bit control registers are used for setting transfer source/destination addresses. However, the TLCS-900 has only 24 address pins for output. A 16-Mbyte space is available for the micro DMA.


There are two data transfer modes: one-byte mode and one-word mode. Incrementing, decrementing, and fixing the transfer source/destination address after transfer can be done in both modes. Therefore data can easily be transferred between I/O and memory and between I/Os. For details of transfer modes, see the description of transfer mode registers.

The transfer counter has 16 bits, so up to 65536 transfers (the maximum when the initial value of the transfer counter is 0000H) can be performed for one interrupt source by micro DMA processing.

When the transfer counter is decremented to "0" after data is transferred with micro DMA, general-purpose interrupt processing is performed. After processing the general-purpose interrupt, starting the interrupts of the same channel restarts the transfer counter from 65536. If necessary, reset the transfer counter.

Interrupt sources processed by micro DMA processing are those with the micro DMA start vectors listed in Table 3.4.1.

The following timing chart is a micro DMA cycle of the transfer address INC (Increment) mode (Condition: MAX mode, 16-bit bus width for 16 MBytes, 0 waits).

These 2 states are added in the case that the bus width of the destination address area is 8 bits or the address starts from an odd number. Note 1: These 2 states are added in the case that the bus width of the source address area is 8 bits or the address starts from an odd number. Note 2:

This may be a dummy cycle with an instruction queue buffer.

Note 3:

Figure 3.4.2 Micro DMA Cycle (COUNT \neq 0)

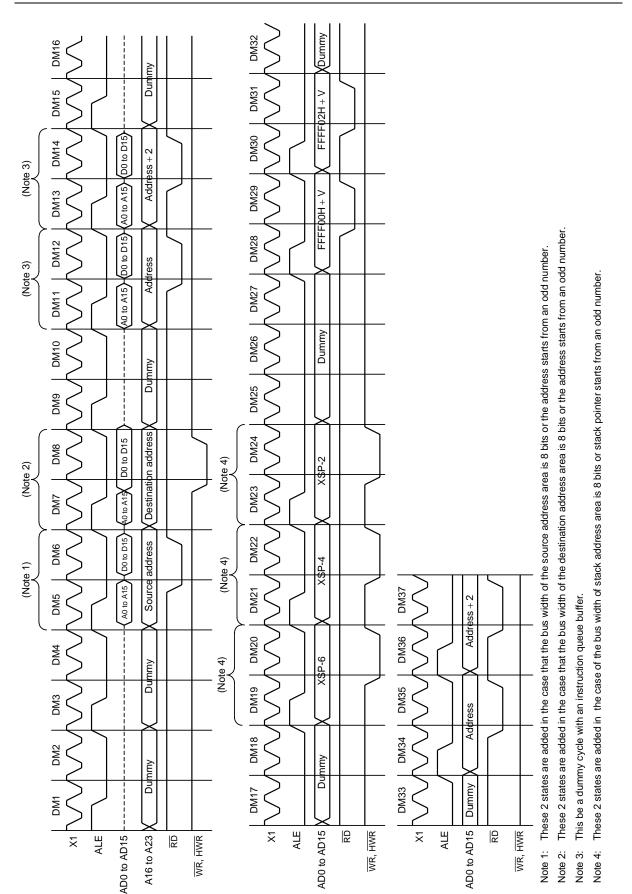
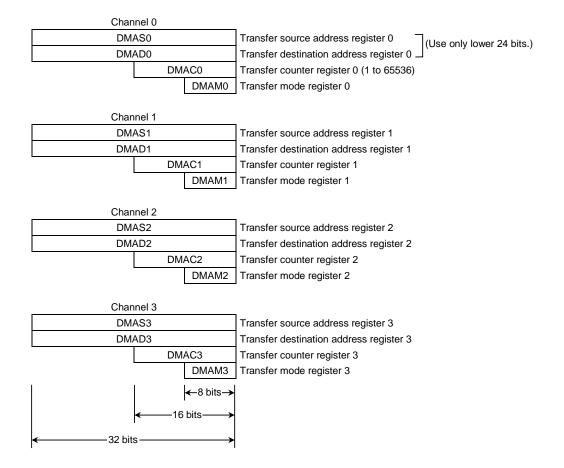
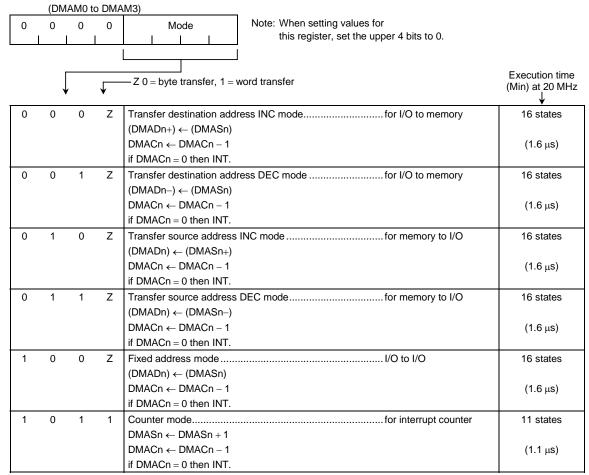



Figure 3.4.3 Micro DMA Cycle (COUNT = 0)

93CS44-40 2004-02-10

TOSHIBA

(2) Register configuration (CPU control register)



These control register can not be set only "LDC cr, r" instruction.

Example:

LD	XWA, 100H
LDC	DMAS0, XWA
LD	XWA, 50H
LDC	DMAD0, XWA
LD	WA, 40H
LDC	DMAC0, WA
LD	A, 05H
LDC	DMAM0, A

(3) Transfer mode register details

(1 states = 100 ns at 20 MHz, High-frequency mode)

Note 1: n: Corresponds to micro DMA channels 0 to 3.

DMADn+/DMASn+: Post-increment (Increments register value after transfer.)

DMADn-/DMASn-: Post-decrement (Decrement register value after transfer.)

Note 2: Execution time: When setting source address/destination address area to 16-bit bus, 0 waits.

Clock condition: fc = 20 MHz, clock gear: 1 (fc)

Note 3: Do not use the codes other than the above mentioned codes for transfer mode register.

3.4.3 Interrupt Controller

Figure 3.4.4 is a block diagram of the interrupt circuits. The left half of the diagram shows the interrupt controller; the right half includes the CPU interrupt request signal circuit and the halt release signal circuit.

Each interrupt channel (Total of 24 channels) in the interrupt controller has an interrupt request flip-flop, interrupt priority setting register, and a register for storing the micro DMA start vector. The interrupt request fip-flop is used to latch interrupt requests from peripheral devices. The flip-flop is cleared to 0 at reset, when the CPU reads the interrupt channel vector after the acceptance of interrupt, or when the CPU executes an instruction that clears the interrupt of that channel (Writes 0 in the clear bit of the interrupt priority setting register).

For example, to clear the INT0 interrupt request, set the register after the DI instruction as follows.

```
INTE0AD ← ----B
```

The status of the interrupt request flip-flop is detected by reading the clear bit. Detects whether there is an interrupt request for an interrupt channel.

The interrupt priority can be set by writing the priority in the interrupt priority setting register (e.g., INTE0AD, INTE45 etc.) provided for each interrupt source. Interrupt levels to be set are from 1 to 6. Writing 0 or 7 as the interrupt priority disables the corresponding interrupt request. The priority of the non-maskable interrupt (NMI pin, watchdog timer etc.) is fixed to 7. If interrupt requests with the same interrupt level are generated simultaneously, interrupts are accepted in accordance with the default priority (the smaller the vector value, the higher the priority).

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2:0> set in the status register by the interrupt request signal with the priority value sent; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 in the CPU SR<IFF2:0>. Interrupt requests where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine. When interrupt processing is completed (after execution of the RETI instruction) , the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR<IFF2:0>.

The interrupt controller also has four registers used to store the micro DMA start vector. These are I/O registers; unlike other micro DMA registers (DMAS, DMAD, DMAM, and DMAC). Writing the start vector of the interrupt source for the micro DMA processing (See Table 3.4.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to the micro DMA processing.

TOSHIBA

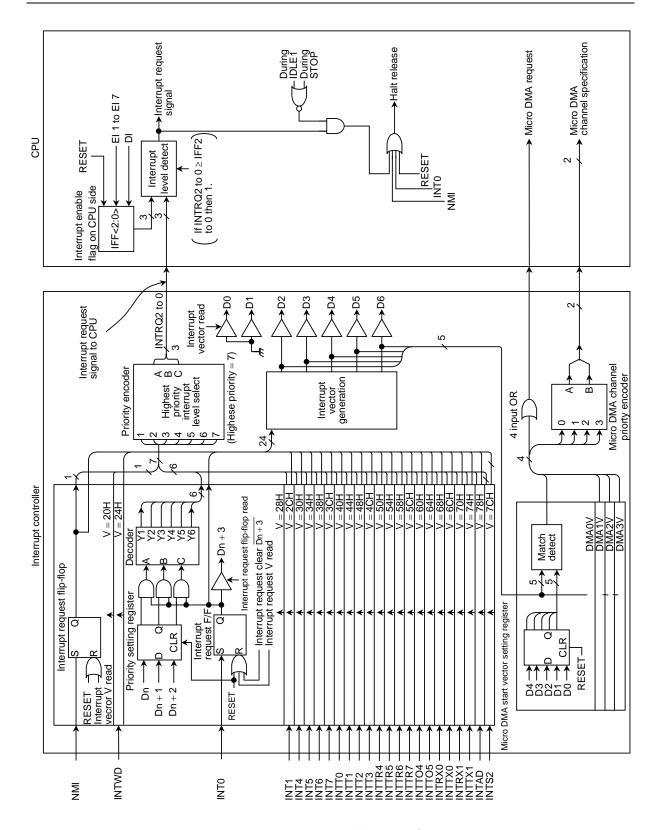


Figure 3.4.4 Block Diagram of Interrupt Controller

← Interrupt source ← Bit symbol ← Read/Write ← After reset

	(1) Interrupt priority setting register (Prohibit read-m						ead-modi	fy-write)	
Symbol	Address	7	6	5	4	3	2	1	0
		14.00		INTAD	14.0140	100		ITO	10140
INTE0AD	0070H	IADC	IADM		IADM0	IOC	I0M2	IOM1	IOM0
		R/W		W	•	R/W		W	
		0	0	0	0	0	0	0	0
		150	LENAC	INT5	IEMAO	140		IT4	14140
INTE45	0071H	I5C	I5M2		I5M0	I4C	I4M2	I4M1	I4M0
		R/W	_	W	•	R/W		W	
		0	0	0	0	0	0	0	0
				INT7				IT6	
INTE67	0072H	I7C	I7M2		I7M0	I6C	I6M2	I6M1	16M0
		R/W		W	_	R/W		W	
		0	0	0	0	0	0	0	0
				Γ1 (Timer 1)				Timer 0)	
INTET10	0073H	IT1C	IT1M		IT1M0	IT0C	IT0M2	ITOM1	IT0M0
	00.0	R/W		W		R/W		W	
		0	0	0	0	0	0	0	0
			INT	Γ3 (Timer 3)			INTT2 (Timer 2)	
INTET32	0074H	IT3C	IT3M	2 IT3M1	IT3M0	IT2C	IT2M2	IT2M1	IT2M0
INTETSE	111111111111111111111111111111111111111	R/W		W		R/W		W	
		0	0	0	0	0	0	0	0
			INTT	R5 (TREG5)			INTTR4	(TREG4)	
INTET54	0075H	IT5C	IT5M	2 IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4M0
INTET54	0075⊓	R/W		W		R/W		W	
		0	0		0	0	0	0	0
			INTT	R7 (TREG7)			INTTR6	(TREG6)	
		IT7C	IT7M		IT7M0	IT6C	IT6M2	IT6M1	IT6M0
INTET76 0076	0076H	R/W		W	1171010	R/W	110112	W	1101110
		0	0	0	0	0	0	T 0	0
		Ū		INTTO5	0			TO4	
		ITO5C	ITO5N		ITO5M0	ITO4C	ITO4M2	ITO4M1	ITO4M0
INTEO54	0077H	R/W	11031	W 1103W1	11031010	R/W	11041012	W	11041010
		0	0	0	0	0	0	0	0
		0			U	U		RX0	U
		ITX0C	ITX0N	INTTX0 12 ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	0078H	R/W	TTAUIV	W	TIXUIVIO	R/W	IIXXVIVIZ	W	IIXXVIVIO
		0	0	0	0	0	0	0	0
-		0	_	INTTX1	0	U	_	RX1	U
		ITX1C	ITX1N		ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	0079H	R/W	IIAIIV	W	TIATIVIO	R/W	INATIVIZ		INATIVIO
			0	V 	0		0	W	
		0	U	_	0	0	_	0	0
		14.0	14840	INT1	14840	1000		TS2	100140
INTE1S2	007AH	I1C	I1M2		I1M0	IS2C	IS2M2	IS2M1	IS2M0
		R/W	_	W	0	R/W	_	W	_
		0	0	0	0	0	0	0	0
			JL]		
		-							
→ IxxM2	! lxxl	//1 Iv	xM0		Function (\	Nrite)			
			_	Drobibite inter-	,	,			
0	0		0	Prohibits interr					
0					equest leve				
0	1		0	Sets interrupt r					
0	1		1	Sets interrupt r	•				
1	0 0 Sets interrupt request level to 4 0 1 Sets interrupt request level to 5								
1	0		1	•	•				
1									
1	1 1 Prohibits interrupt request.								
→ IxxC	IXXC Function (Read) Function (Write)								
+	1 "				0'				-
0		tes no inter			Clears	interrupt red			4
	Lindica	Indicates interrupt requestDon't care						1	
1	mulca	too iiitoii ap							

Note 1: Read-modify-write is prohibited.

Note 2: Note about clearing interrupt request flag

The interrupt request flag of INTRX0, INTRX1 are not cleared by writing "00" to IXXC because of they are level interrupts. They can be cleared only by resetting or reading SCBUFn.

Figure 3.4.5 Interrupt Priority Setting Register

(2) External interrupt control

Interrupt Input Mode Control Register 7 6 5 4 3 2 1 0 **IOIE NMIREE** IIMC Bit symbol **IOLE** (007BH) Read/Write W W After reset 0 0 0 Always 1: INT0 0: INT0 1: Can be Function accepted write "0". input edge Prohibit in NMI enable mode read-1: INT0 rising modifylevel edge. write mode NMI rising edge enable INT0 input enable (Note 1) INTO disable (P35 function only) Interrupt request generation at 0 falling edge 1 Input enable Interrupt request generation at 1 rising/falling edge Note 1: The INTO pin can also be used for standby release as described INTO level enable (Note 2) later. Even if the pin is not used for standby release, setting this Rising edge detect interrupt register to "0" maintains the port function during standby mode. High level interrupt

Note 2: Case of changing from level to edge for INT0 pin mode (<I0LE> "1" \rightarrow "0")

Execution example:

INT6

INT7

LD (INTE0AD) , xxxx0000B ; INT0 disable, clean the request flag.

LD (IIMC) , xxxxx10xB ; Change from level to edge.

LD (INTE0AD) , xxxx0nnnB ; Set interrupt level "n" for INT0, clear the request flag.

Note 3: IIMC<Bit7:3> is always read as "1".

P45

P46

Note 4: See electrical characteristics in section 4 for external interrupt input pulse.

Figure 3.4.6 Interrupt Input Mode Control Register

Shared Pin Interrupt Mode Setting method Falling edge IIMC<NMIREE> = 0 $\overline{\mathsf{NMI}}$ NMI (Dedicated pin) Falling and rising IIMC<NMIREE> = 1 edges Rising edge IIMC < I0LE > = 0, < I0IE > = 1INT0 P35 Level IIMC < I0LE > = 1, < I0IE > = 1INT1 P40 Rising edge Rising edge T4MOD < CAP12M1:0 > = 0, 0 or 0, 1 or 1, 1INT4 P42 Falling edge T4MOD < CAP12M1:0 > = 1, 0INT5 P43 Rising edge

Rising edge

Falling edge

Rising edge

Table 3.4.2 Setting of External Interrupt Pin Functions

T5MOD < CAP34M1:0 > = 0, 0 or 0, 1 or 1, 1

T5MOD < CAP34M1:0 > = 1, 0

(3) Micro DMA start vector

When the CPU reads the interrupt vector after accepting an interrupt, it simultaneously compares the interrupt vector (Bits 2 to 6 of the interrupt vector) with each channel's micro DMA start vector. When the two match, the interrupt from the channel whose value matched is processed in micro DMA mode.

If the interrupt vector matches more than one channel, the channel with the lower channel number has a higher priority.

Micro DMA0 Start Vector

DMA0V (007CH) Prohibit readmodifywrite

	7	6	5	4	3	2	1	0	
Bit symbol				DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0	
Read/Write						W			
After reset				0 0 0 0					
Function	Micro DMA	channel 0 pro	rocessed by matching bits 2 to 6 of the interrupt vector.						

Micro DMA1 Start Vector

DMA1V (007DH) Prohibit readmodifywrite

	7	6	5	4	3	2	1	0
Bit symbol				DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
Read/Write						W		
After reset				0	0	0	0	0
Function	Micro DMA channel 1 processed by matching bits 2 to 6 of the interrupt vector.							

Micro DMA2 Start Vector

DMA2V (007EH) Prohibit readmodifywrite

	7	6	5	4	3	2	1	0	
Bit symbol				DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0	
Read/Write						W			
After reset				0	0	0	0	0	
Function	Micro DMA	channel 2 pro	ocessed by n	natching bits 2 to 6 of the interrupt vector.					

Micro DMA3 Start Vector

DMA3V (007FH) Prohibit readmodifywrite

	7	6	5	4	3	2	1	0	
Bit symbol				DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0	
Read/Write						W			
After reset				0	0	0	0	0	
Function	Micro DMA	channel 3 pro	ocessed by n	matching bits 2 to 6 of the interrupt vector.					

Figure 3.4.7 Micro DMA Start Vector Register

(4) Notes

The instruction execution unit and the bus interface unit of this CPU operate independently of each other. Therefore, if the instruction used to clear an interrupt request flag of an interrupt is fetched before the interrupt is generated, it is possible that the CPU might execute the fetched instruction to clear the interrupt request flag while reading the interrupt vector after accepting the interrupt.

To avoid the above occurring, clear the interrupt request flag by entering the instruction to clear the flag after the DI instruction. In the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing instruction and following more than one instruction are executed. When EI instruction is placed immediately after clearing instruction, an interrupt becomes enable before interrupt request flags are cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

3.5 Functions of Ports

The TMP93CS44 has 62 bits for I/O ports. The TMP93CS45 has 44 bits for I/O ports because Port 0, Port 1, P30, and P31 are dedicated pins for AD0 to AD7, AD8 to AD15 (or A8 to A15), $\overline{\text{RD}}$, and $\overline{\text{WR}}$.

These port pins have I/O functions for the built-in CPU and internal I/Os as well as general-purpose I/O port functions. Table 3.5.1 lists the function of each port pin. Table 3.5.2 lists I/O registers and specification.

Table 3.5.1 Functions of Ports

(PU = with programmable pull-up resistor)

Port Name	Pin Name	Pin Number	Direction	R	Direction Setting Unit	Pin Name for Built-in Function
Port 0	P00 to P07	8	I/O	_	Bit	AD0 to AD7
Port 1	P10 to P17	8	I/O	-	Bit	AD8 to AD15/A8 to A15
Port 2	P20 to P27	8	I/O	PU	Bit	A0 to A7/A16 to A23
Port 3	P30	1	Output	_	(fixed)	RD
	P31	1	Output	_	(fixed)	WR
	P32	1	I/O	PU	Bit	HWR /SCK
	P33	1	I/O	_	Bit	SO/SDA
	P34	1	I/O	_	Bit	SI/SCL
	P35	1	I/O	_	Bit	INT0
Port 4	P40	1	I/O	-	Bit	TIO/INT1
	P41	1	I/O	_	Bit	TO3
	P42	1	I/O	_	Bit	TI4/INT4
	P43	1	I/O	_	Bit	TI5/INT5
	P44	1	I/O	_	Bit	TO4
	P45	1	I/O	_	Bit	TI6/INT6
	P46	1	I/O	_	Bit	TI7/INT7
	P47	1	I/O	_	Bit	TO6
Port 5	P50 to P52	3	Input	-	(fixed)	AN0 to AN2
	P53	1	Input	_	(fixed)	AN3/ ADTRG
	P54 to P57	4	Input	_	(fixed)	AN4 to AN7
Port 6	P60	1	I/O	PU	Bit	TXD0
	P61	1	I/O	PU	Bit	RXD0
	P62	1	I/O	PU	Bit	SCLK0/CTS0
	P63	1	I/O	PU	Bit	TXD1
	P64	1	I/O	PU	Bit	RXD1
	P65	1	I/O	PU	Bit	SCLK1/CTS1
	P66	1	I/O	_	Bit	XT1
	P67	1	I/O	_	Bit	XT2
Port 7	P70	1	I/O	-	Bit	WAIT (High current output)
	P71 to P77	7	I/O	_	Bit	(High current output)

Table 3.5.2 I/O Registers and Specification (1/2)

Port 0	Dowt	Nama	Charification	I,	/O Regist	er
Port 1	Port	Name	Specification	Pn	PnCR	PnFC
Port 1	Port 0	P00 to P07	Input port (Note 1)	×	0	
Port 1			Output port (Note 1)	×	1	None
Output port (Note 1)			AD0 to AD7 bus	×	×	
AD8 to AD15 bus (Note 2)	Port 1	P10 to P17	Input port (Note 1)	×	0	0
AD8 to AD15 output (Note 2)			Output port (Note1)	×	1	0
Port 2			AD8 to AD15 bus (Note 2)	×	0	1
Input port (with pull up)			AD8 to AD15 output (Note 2)	×	1	1
Output port	Port 2	P20 to P27	Input port (without pull up)	0	0	0
A0 to A7 output (Note 1)			Input port (with pull up)	1	0	0
Port 3			Output port	×	1	0
Port 3 P30			A0 to A7 output (Note 1)	0	0	1
Outputs RD only when accessing external space			A16 to A23 output	0	1	1
Always outputs RD	Port 3	P30	Output port (Note 1)	×		0
Always outputs RD			Outputs RD only when accessing external space	1	None	1
P32				0	1	1
P32 Input port SCK input (without pull up)		P31	Output port (Note 1)	×		0
Input port SCK input (with pull up)				×	None	1
Output port		P32	Input port SCK input (without pull up)	0	0	0
Fivil R output (<p32m>= 0)</p32m>			Input port SCK input (with pull up)	1	0	0
SCK output (<p32m> = 1)</p32m>			Output port	×	1	0
P33			$\overline{\text{HWR}}$ output (<p32m> = 0)</p32m>	×	1	1
Output port			SCK output (<p32m> = 1)</p32m>	×	1	1
SDA I/O, SO output		P33	Input port	×	0	0
P34			Output port	×	1	0
Sl input			SDA I/O, SO output	×	1	1
Output port		P34	Input port	×	0	0
SCL I/O			SI input	×	0	×
P35 Input port/INT0 input (Note 3) × 0 None Port 4 P40 Input port/TI0/INT × 0 None P41 Input port × 1 0 0 Output port × 1 0 0 TO3 output × 1 1 P42 Input port/TI4/INT4 input × 0 0 Output port × 1 None P43 Input port/TI5/INT5 input × 0			Output port	×	1	0
Port 4			SCL I/O	×	1	1
Port 4		P35	Input port/INT0 input (Note 3)	×	0	
Output port X			Output port	×	1	None
Output port X	Port 4	P40	Input port/TI0/INT	×	0	
P41 Input port × 0 0 Output port × 1 0 TO3 output × 1 1 P42 Input port/TI4/INT4 input × 0 Output port × 1 None P43 Input port/TI5/INT5 input × 0			 	×	1	None
Output port × 1 0 TO3 output × 1 1 P42 Input port/TI4/INT4 input × 0 Output port × 1 None P43 Input port/TI5/INT5 input × 0		P41	Input port	×	0	0
P42 Input port/TI4/INT4 input × 0 Output port × 1 P43 Input port/TI5/INT5 input × 0				×	1	0
Output port × 1 P43 Input port/TI5/INT5 input × 0			TO3 output	×	1	1
P43 Input port/TI5/INT5 input × 0		P42	Input port/TI4/INT4 input	×	0	
P43 Input port/TI5/INT5 input × 0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×	1	No
Output port × 1		P43	Input port/TI5/INT5 input	×	0	ivone
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×	1	1

X: Don't care, n: Port number

Note 1: In the TMP93CS45, these functions are not available.

Note 2: In the TMP93CS45, these functions are fixed depending on the value of the AM8/ $\overline{\text{AM16}}$ pin.

Note 3: Using P35 pin as INT0, IIMC register has to be set enable interrupt.

Table 3.5.2 I/O Registers and Specification (2/2)

Dowt	Nama	Charification	I/	O Registe	er
Port	Name	Specification	Pn	PnCR	PnFC
Port 4	P44	Input port	×	0	0
		Output port	×	1	0
		TO4 output	×	1	1
	P45	Input port/TI6/INT6 input	×	0	
		Output port	×	1	None
	P46	Input port/TI7/INT7 input	×	0	None
		Output port	×	1	
	P47	Input port	×	0	0
		Output port	×	1	0
		TO6 output	×	1	1
Port 5	P50 to P57	Input port	×	No	20
		AN0 to AN7 input (Note 4)	×	INC	ile
Port 6	P60	Input port (without pull up)	0	0	0
		Input port (with pull up)	1	0	0
		Output port	×	1	0
		TXD0 output	×	1	1
	P61	Input port/RXD0 input (without pull up)	0	0	
		Input port/RXD0 input (with pull up)	1	0	None
		Output port	×	1	
	P62	Input port/SCLK0/ CTS0 input (without pull up)	0	0	0
		Input port/SCLK0/ CTS0 input (with pull up)	1	0	0
		Output port	×	1	0
		SCLK0 output	×	1	1
	P63	Input port (without pull up)	0	0	0
		Input port (with pull up)	1	0	0
		Output port	×	1	0
		TXD1 output (Note 3)	×	1	1
	P64	Input port/RXD1 input (without pull up)	0	0	
		Input port/RXD1 input (with pull up)	1	0	None
		Output port	×	1	
	P65	Input port/SCLK1/ CTS1 input (without pull up)	0	0	0
		Input port/SCLK1/ CTS1 input (with pull up)	1	0	0
		Output port	×	1	0
		SCLK1 output	×	1	1
	P66, P67	Input port	×	0	
		Output port (Note 5)	×	1	None
		XT1/2 (Note 6)	×	0	
Port 7	P70	Input port/ WAIT input	×	0	
		Output port	×	1	None
	P71 to P77	Input port	×	0	INOTIE
		Output port	×	1	

X: Don't care, n: Port number

Note 4: Using P50 to P57 pins as input channels for the AD converter, the channels are selected by ADMOD1<ADCH2:0>.

Note 5: Using P66 and P67 pins as the output ports, output is through the open-drain buffer.

Note 6: Using P66 and P67 pins as the XT1 to XT2, oscillation is enabled by the SYSCR0 register.

Resetting makes the port pins listed below function as general-purpose I/O ports.

I/O pins programmable for input or output are set to input ports except P66/XT1, P67/XT2.

To set port pins for built-in functions, a program is required.

Since the TMP93CS45 needs external ROMs, some ports are permanently assigned for memory interface.

- P00 to P07 \rightarrow AD0 to AD7 P30 \rightarrow $\overline{\text{RD}}$
- P10 to P17 \rightarrow AD8 to AD15 (or A8 to A15) P31 \rightarrow \overline{WR}

3.5.1 Port 0 (P00 to P07)

Port 0 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis using the control register P0CR. Resetting sets all bits of P0CR to 0 and sets port 0 to input mode. Figure 3.5.3 shows the registers for port 0.

In addition to functioning as a general-purpose I/O port, port 0 also shares functions as an address data bus (AD0 to AD7). To access external memory, port 0 functions as an address data bus (AD0 to AD7) and all bits of the control register P0CR are set to 0.

With the TMP93CS45, which needs external ROMs, port 0 always functions as an address data bus (AD0 to AD7) regardless of the value set in control register P0CR.

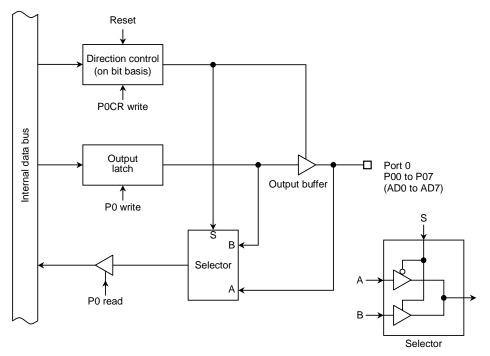


Figure 3.5.1 Port 0

3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis using control register P1CR and function register P1FC. Resetting sets all bits of output latch P1, control register P1CR, and function register P1FC to 0 and sets port 1 to input mode.

Figure 3.5.3 shows the registers for port 1.

In addition to functioning as a general-purpose I/O port, port 1 also shares functions as an address data bus (AD8 to AD15) or an address bus (A8 to A15).

With the TMP93CS45, which needs external ROMs, port 1 always functions as an address data bus (AD8 to AD15) (the case of AM8/ $\overline{AM16}$ = 0), as an address bus (A8 to A15) (the case of AM8/ $\overline{AM16}$ = 1) regardless of the value set in control register P1CR.

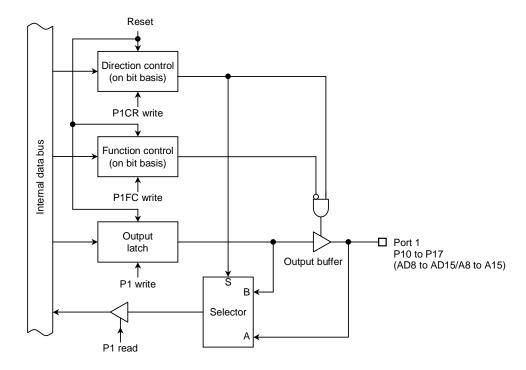
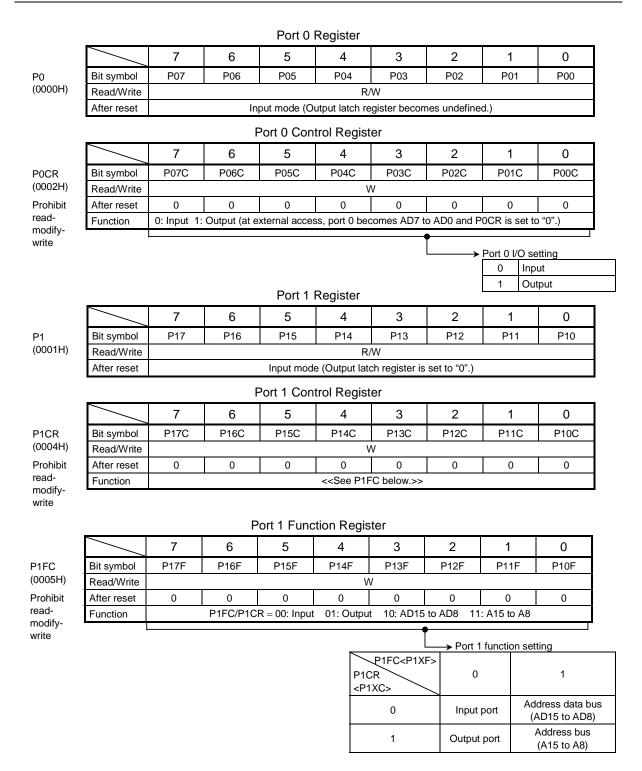



Figure 3.5.2 Port 1

Note: <P1XF> is bit X in register P1FC; <P1XC>, in register P1CR.

Figure 3.5.3 Registers for Port 0 and Port 1

3.5.3 Port 2 (P20 to P27)

Port 2 is an 8-bit general-purpose I/O port. I/O can be set on bit basis using the control register P2CR and function register P2FC. All bits of the output latch P2 is set to 1 by reset, and all bits of P2CR and P2FC are cleared to 0. Port 2 becomes the input mode with the pull-up resistor.

In addition to functioning as a general-purpose I/O port, port 2 also shares functions as an address data bus (A0 to A7) and an address bus (A16 to A23). Using port 2 as address bus (A0 to A7 or A16 to A23), write 0 to output latches and be off the programmable pull-up resistor.

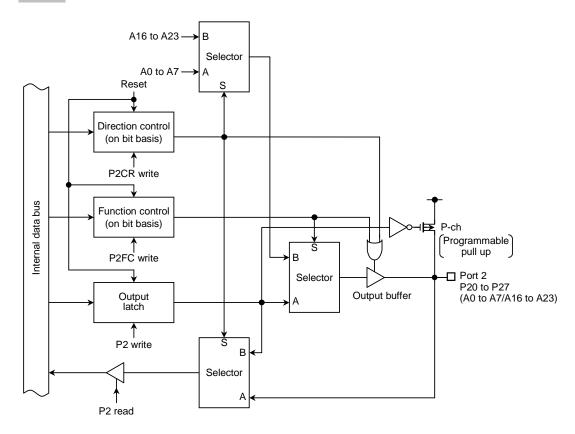


Figure 3.5.4 Port 2

Port 2 Register

P2 (0006H)

	7	6	5	4	3	2	1	0				
Bit symbol	P27	P26	P25	P24	P23	P22	P21	P20				
Read/Write		R/W										
After reset	·	Input mode (Output latch register is set to "1".)										

Note 1: When port 2 is used in the input mode, P2 register controls the built-in pull-up resistor. Read-modify-write is prohibited in the input mode or the I/O mode.

Setting the built-in pull-up resistor may be depended on the states of the input pin.

Port 2 Control Register

P2CR (0008H) Prohibit readmodifywrite

	7	6	5	4	3	2	1	0				
Bit symbol	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C				
Read/Write		W										
After reset	0	0	0	0	0	0	0	0				
Function				< <see p2f<="" td=""><td>C below.>></td><td></td><td></td><td></td></see>	C below.>>							

Port 2 Function Register

P2FC (0009H) Prohibit readmodifywrite

				3				
	7	6	5	4	3	2	1	0
Bit symbol	P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
Read/Write				V	V			
After reset	0	0	0	0	0	0	0	0
Function		P2FC/P2	CR = 00: Inp	ut 01: Outp	out 10: A7 t	o A0 11: A	23 to A16	

Port 2 function setting

P2FC<P2XF>
0
1
Address bus
(A7 to A0)

1
Output port
Address bus
(A23 to A16)

Note 2: <P2XF> is bit X in register P2FC; <P2XC>, in register P2CR. To set as an address bus A23 to A16, set P2FC after setting P2CR.

Figure 3.5.5 Registers for Port 2

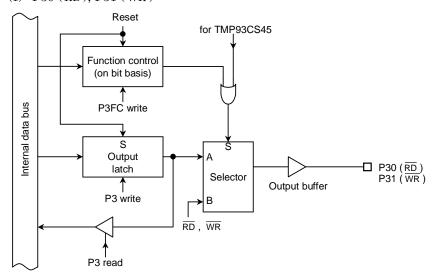
3.5.4 Port 3 (P30 to P35)

Port 3 is an 6-bit general-purpose I/O port.

I/O can be set on a bit basis, but note that P30 and P31 are used for output only. I/O is set using control register P3CR and function register P3FC. Resetting sets all bits of output latch P3 to 1. All bits of control register P3CR (bits 0 and 1 are unused), and function register P3FC are set to 0. Resetting also outputs 1 from P30 and P31.

In addition to functioning as a general purpose I/O port, port 3 also shares functions as an I/O for the CPU's control/status signal and serial bus interface.

With the TMP93CS44, when P30 pin is defined as \overline{RD} signal output mode (<P30F> = 1), setting the output latch register <P30> to 0 outputs the \overline{RD} strobe (Used for the pseudo static RAM) from the P30 pin even when the internal address area is accessed.


If the output latch register <P30> remains 1, the $\overline{\text{RD}}$ strobe signal is output only when the external address area is accessed.

When P33 and P34 are used as the serial bus interface I/O pins in I^2C bus mode (P3FC<P34F:P33F> = 11), set open drain outputs (ODE<ODE34:33> = 11).

With the TMP93CS45, which needs external ROMs, P30 outputs the $\overline{\text{RD}}$ signal; P31, the $\overline{\text{WR}}$ signal, regardless of the values set in function registers <P30F> and <P31F>.

The \overline{RD} signal is output not only when the external address area is accessed at $\langle P30 \rangle = 1$ but also the internal address area is accessed at $\langle P30 \rangle = 0$.

(1) $P30(\overline{RD}), P31(\overline{WR})$

(2) P32 (HWR /SCK)

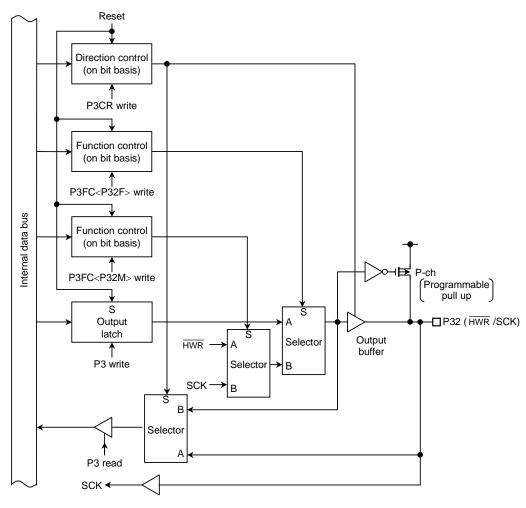


Figure 3.5.6 Port 3 (P30, P31, P32)

(3) P33 (SDA/SO), P34 (SCL/SI)

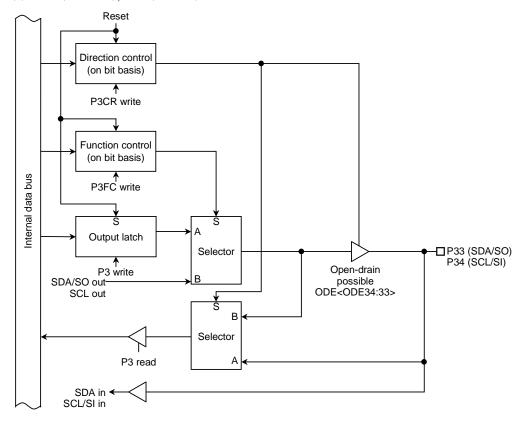


Figure 3.5.7 Port 3 (P33 and P34)

(4) P35 (INT0)

Port 35 is a general-purpose I/O port, and also used as an INT0 pin for external interrupt request input.

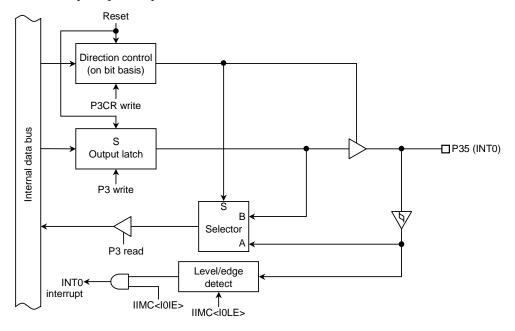


Figure 3.5.8 Port 3 (P35)

93CS44-60 2004-02-10

P3 (0007H)

Port 3 Register 7 5 3 2 6 4 1 0 P35 P33 P31 P30 Bit symbol P34 P32 Read/Write R/W After reset 1 1 1 Input mode Function Input mode Output mode (pulled up)

Note 1: When port 32 is used in the input mode, P3 register controls the built-in pull-up resistor. Read-modify-write is prohibited in the input mode or the I/O mode.

Setting the built-in pull-up resistor may be depended on the states of the input pin.

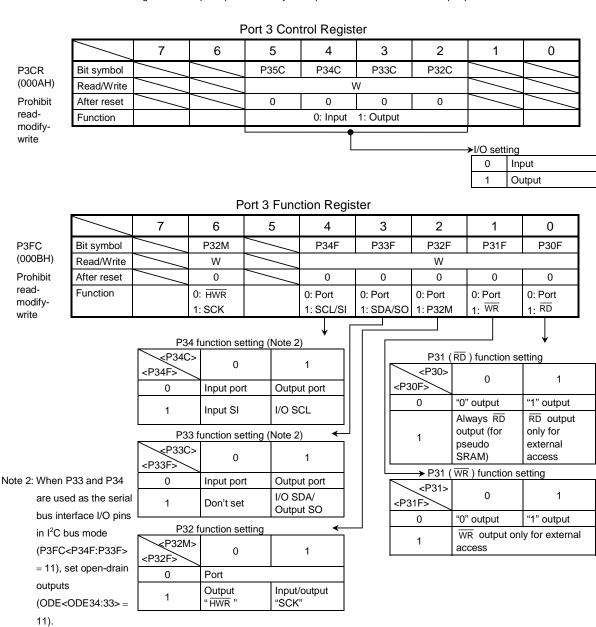


Figure 3.5.9 Registers for Port 3

3.5.5 Port 4 (P40 to P47)

Port 4 is a 8-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets port 4 to the input port. In addition to functioning as a general-purpose I/O port, port 4 also shares functions as an input for 8-bit timer 0 clock, 16-bit timer 4 and 5 clocks, an output for 8-bit timer F/F 3, 16-bit timer F/F 4 and 6 output. Writing 1 in the corresponding bit of the port 4 function register (P4FC) enables output of the timer.

(1) P40 and P41

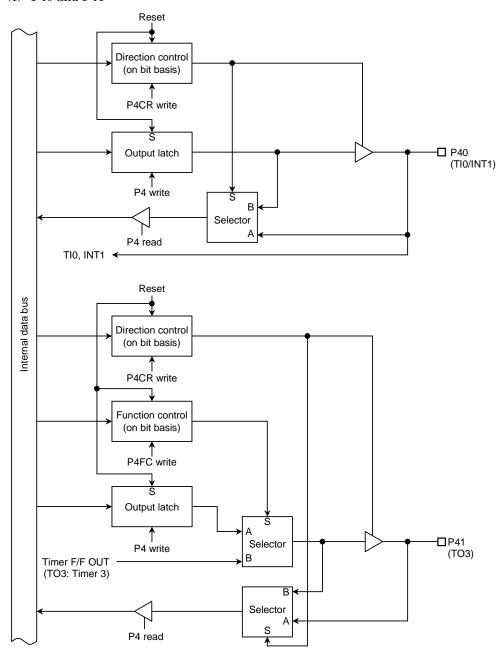
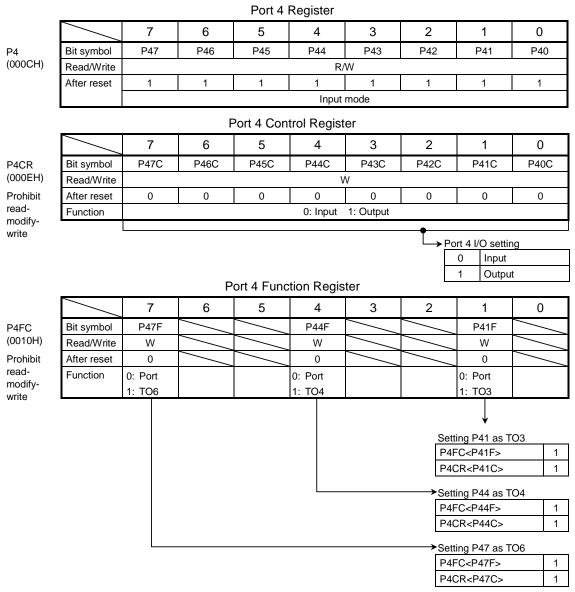



Figure 3.5.10 Port 4 (P40 and P41)

(2) P42 to P47 Reset Direction control (on bit basis) P4CR write P42 (TI4/INT4) P43 (TI5/INT5) P45 (TI6/INT6) P46 (TI7/INT7) Output latch P4 write В Selector P4 read TI4, INT4 ◀ TI5, INT5 TI6, INT6 TI7, INT7 Reset Internal data bus Direction control (on bit basis) P4CR write Function control (on bit basis) P4FC write Output latch -□P44 (TO4) P47 (TO6) Selector P4 write В Timer F/F OUT TO4: Timer 4 TO6: Timer 5 В Selector

Figure 3.5.11 Port 4 (P42 to P47)

P4 read

Note: P40/Tl0, P42/Tl4, P43/Tl5, P45/Tl6, P46/Tl7 pin does not have a register changing port/function.

For example, when it is used as an input port, the input signal for port is inputted to 8- or 16-bit timer as a timer input.

Figure 3.5.12 Register for Port 4

93CS44-64 2004-02-10

3.5.6 Port 5 (P50 to P57)

Port 5 is an 8-bit input port, also used as an analog input pin for the internal AD converter. Additionally, P53 is also used as an analog conversion external trigger input pin (\overline{ADTRG}) .

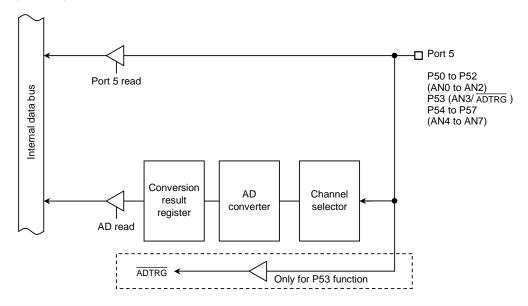


Figure 3.5.13 Port 5

Port 5 Register

P5 (000DH)

	7	6	5	4	3	2	1	0				
Bit symbol	P57	P56	P55	P54	P53	P52	P51	P50				
Read/Write		R										
After reset		Input mode										

Figure 3.5.14 Register for Port 5

Note: The input channel selection of AD converter is set by AD converter mode register ADMOD1.

3.5.7 Port 6 (P60 to P67)

• Ports 60 to 65

Ports 60 to 65 are a 6-bit general-purpose I/O port. I/Os can be set on a bit basis.

Resetting sets P60 to P65 to an input port and connects a pull-up resistor.

It also sets all bits of the output latch register to 1.

In addition to functioning as a general-purpose I/O port, P60 to P65 can also share function as an I/O for serial channels 0 and 1. Writing "1" in the corresponding bit of the Port 6 function register (P6FC) enables this function.

Resetting sets the function register value to 0 and sets all bits to input ports.

• Port 66 and port 67

Port 66 and port 67 are a 2-bit general-purpose I/O port. I/Os can be set on a bit basis.

The output buffer for P66, P67 is an open-drain type buffer.

Resetting outputs high-impedance (High-Z) because output latch and control register are set to 1.

In addition to functioning as a general-purpose I/O port, P66, P67 can also function as a low-frequency oscillator connecting pin (XT1, XT2) for dual clock mode. The dual clock function can be set by programming system clock control registers SYSCR0, SYSCR1.

(1) Port 60 (TXD0) and port 63 (TXD1)

Port 60 and port 63 also function as serial channel TXD output pins in addition to I/O ports.

They have a programmable open-drain function.

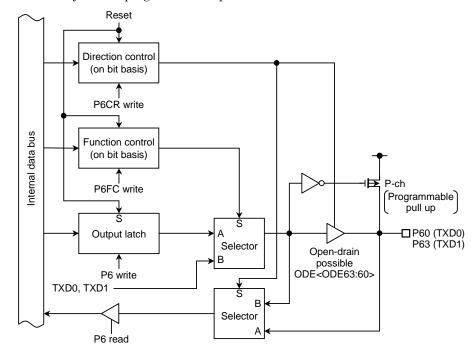


Figure 3.5.15 Ports 60 and 63

(2) Port 61 (RXD0) and port 64 (RXD1)

Port 61 and port 64 are I/O ports, and also used as RXD input pins for serial channels.

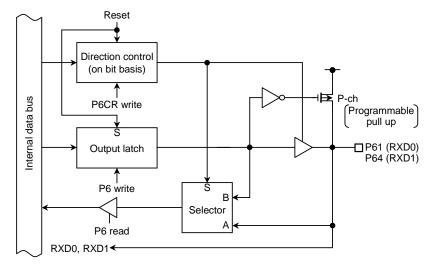


Figure 3.5.16 Port 61 and Port 64

(3) Port 62 (CTS0/SCLK0) and port 65 (CTS1/SCLK1)

Port 62 and port 65 are I/O ports, and also used as a $\overline{\text{CTS}}$ input pin and as a SCLK I/O pin for serial channels.

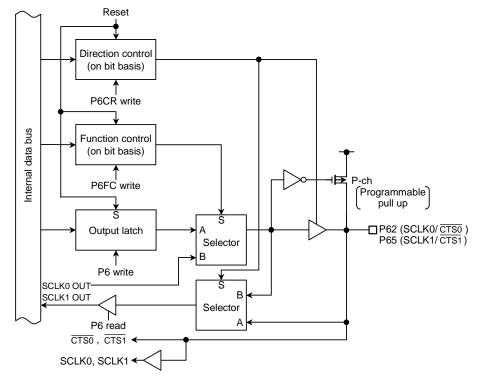


Figure 3.5.17 Port 62 and Port 65

(4) Port 66 (XT1) and port 67 (XT2)

Port 66 and port 67 are general purpose I/O ports. It is also used as a low-frequency oscillator connecting pin.

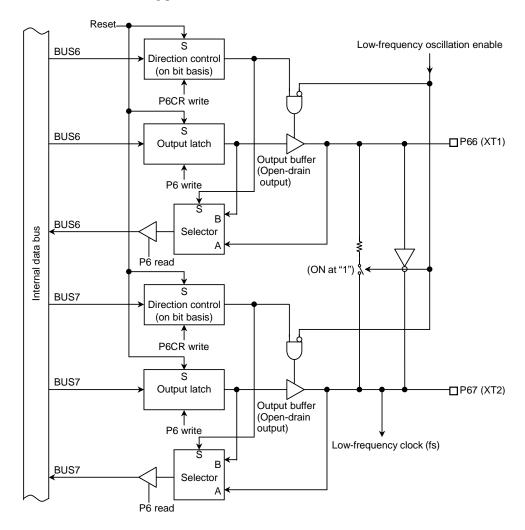


Figure 3.5.18 Port 66 to Port 67

Port 6 Register

P6 (0012H)

	7	6	5	4	3	2	1	0			
Bit symbol	P67	P66	P65	P64	P63	P62	P61	P60			
Read/Write		R/W									
After reset	1	1	1	1	1	1	1	1			
	Output	t mode	Input mode								

Note 1: When P6 is used in the input mode, P6 register controls the built-in pull-up resistor. Read-modify-write is prohibited in the input mode or the I/O mode. Setting the built-in pull-up resistor may be depended on the states of the input pin.

Port 6 Control Register

P6CR (0014H) Prohibit readmodifywrite

				3						
	7	6	5	4	3	2	1	0		
Bit symbol	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C		
Read/Write				V	V					
After reset	1	1	0	0	0	0	0	0		
Function		0: Input				1: Output				

Note: Output buffer for port 66, 67 is an open-drain output type.

Port 6 I/O setting

0 Input

1 Output

Port 6 Function Register

P6FC (0016H) Prohibit readmodifywrite

			ort or unc	tion regio	itoi					
	7	6	5	4	3	2		1	0)
Bit symbol			P65F		P63F	P62	2F		P60	0F
Read/Write			W			W			V	/
After reset			0		0	0	0		0)
Function			0: Port		0: Port	0: Por	t		0: Por	rt
			1: SCLK1		1: TXD1	1: SCI	LK0		1: TXI	D0
			Dog Tv	(D4	↓	,	Doo	TYPO		(3.1. <i>(</i>
				D1 output se	etting (Note)		TXD0 output	setting) (Note
			P6FC<	:P63F>	1		P6F	C <p60f></p60f>		1
			P6CR<	<p63c></p63c>	1		P6C	R <p60c></p60c>		1
			→ P65 SCLK1 output setting → P62 SCLK0 output setting						ut settir	ng
			P6FC<	:P65F>	1		P6F	C <p62f></p62f>		1
			P6CR<	<p65c></p65c>	1		P6C	R <p62c></p62c>		1

Note 2: To set the TXD pin to open drain, write "1" in bit0 (for TXD0 pin) or bit1 (for TXD1 pin) of the ODE register.

P61/RXD0, P64/RXD1 pins do not have a register changing port/function.

When using as input ports, the serial receive data is input to SIO.

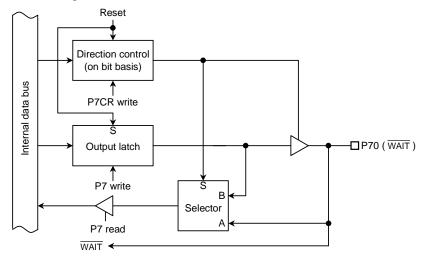
Note 3: Notes on using low-frequency oscillation circuit. To connect a low frequency resonator to port 66, 67, it is necessary to set the following procedures to reduce the consumption power supply.

(Connecting to a resonator)

Set P6CR<P66C:P67C> = "11", P6<P66:67> = "00"

(Connecting to an oscillator)

Set P6CR<P66C:P67C> = "11", P6<P66:67> = "10"


Figure 3.5.19 Register for Port 6

3.5.8 Port 7 (P70 to P77)

Port 7 is an 8-bit general-purpose I/O port. I/O can be set on a bit basis. Port 7 can output large current and drive LED directly. In addition to I/O port, port 70 also shares functions as WAIT input pin. Resetting sets the function register P7CR to 0, and all bits to input ports. Port 7 as an input port. It also sets all bits of the output latch register P7 to 1.

(1) $P70 (\overline{WAIT})$

Port 70 is a general-purpose I/O port, and also used as an $\overline{\text{WAIT}}$ pin for external wait input.

(2) P71 to P77

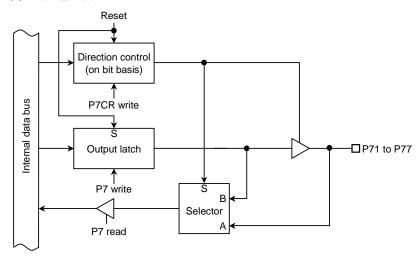
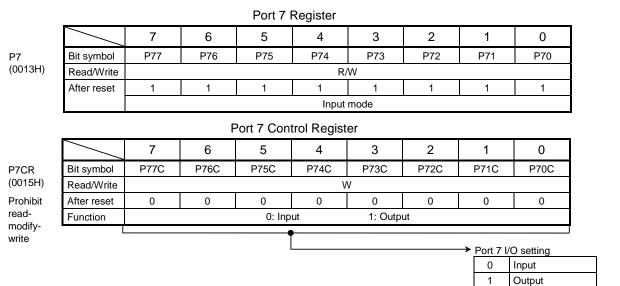



Figure 3.5.20 Port 7

Note: P70/ WAIT pin does not have a register changing port/function.

For example, when it is used as and input port, the input signal is inputted as $\overline{\text{WAIT}}$ input.

When it is used as WAIT input pin, bit<BmWn> of bus width WAIT control register must be specified.

Figure 3.5.21 Register for Port 7

3.6 Bus Width/Wait Controller and AM8/AM16 Pin

TMP93CS44/S45 have a built-in controller used to control wait (WAIT pin) and data bus size (8 or 16 bits) for any of the three block address areas.

And AM8/ $\overline{AM16}$ pin selects external data bus width for TMP93CS45.

3.6.1 AM8/AM16 pin

(1) TMP93CS44

Set this pin to "H". After reset, the CPU accesses the internal ROM with 16-bit bus width. The bus width when the CPU accesses an external area is set by the bus width/wait control register (Described at 3.6.3) and the registers of Port 1. (The value 1 of this pin is ignored and the value set by register is active.)

(2) TMP93CS45

1. With fixed external 16-bit data bus and external 16-bit data bus or 8-bit data bus is selectable

Set this pin to "L". Port1, AD8 to AD15 and A8 to A15 pins are fixed to AD8 to AD15 functions. The values set in port 1 control register and port 1 function register are invalid.

The external data bus width is set by the bus width/wait control register which is described in section 3.6.3.

It is necessary to set the program memory to be accessed to 16-bit data bus after reset.

2. With fixed external 8-bit data bus

Set this pin to "H". Port1, AD8 to AD15 and A8 to A15 pins are fixed to A8 to A15 functions. The values set in port 1 control register and port 1 function register are invalid.

The values of bit4: <B0BUS>, <B1BUS>, and <B2BUS>, in the bus width/wait control register described in section 3.6.3 are invalid. The external 8-bit data bus is fixed.

3.6.2 Address/Data Bus Pins

Port 0/AD0 to AD7, port 1/AD8 to AD15/A8 to A15 and port 2/A16 to A23/A0 to A7 function as address/data bus for connecting the external memories and so on.

		(1) (2)		(3)	(4)	
Prod	ducts	TMP93CS4	5F (Note 4)	TMP93CS44F (I	Note 2), (Note 3)	
	Address Bus ins	Max 24 (to 16 Mbytes)	Max 24 (to 16 Mbytes)	Max 16 (to 64 Kbytes)	Max 8 (to 256 bytes)	
	of Data Bus ins	8	16	8	16	
	Multiplexed ins	8	16	0	0	
Mode Pins	ĒĀ	V	IL	V _{IH}		
Wode Pins	AM8/ AM16	V _{IH}	V _{IL}	V	H	
Б.	Port 0	AD0 to AD7	AD0 to AD7	AD0 to AD7	AD0 to AD7	
Port Function	Port 1	A8 to A15	AD8 to AD15	A8 to A15	AD8 to AD15	
1 dilotion	Port 2	A16 to A23	A16 to A23	A0 to A7	A0 to A7	
		A23 to 8	A23 to 16 A23 to 16	A15 to 0 A15 to 0 (Note 1)	A7 to 0	
Timin	g Chart	AD7 to 0 $\left\langle \begin{array}{c} A7 \\ \text{to 0} \end{array} \right\rangle \left\langle \begin{array}{c} D7 \\ \text{to 0} \end{array} \right\rangle$	AD15 to 0 \(\begin{pmatrix} A15 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AD7 to 0 $\begin{pmatrix} A7 \\ to 0 \end{pmatrix} \begin{pmatrix} D7 \\ to 0 \end{pmatrix}$	AD15 to $0 \left\langle \begin{array}{c} A15 \\ to 0 \end{array} \right\rangle \left\langle \begin{array}{c} D15 \\ to 0 \end{array} \right\rangle$	
	y Chart	ALE	ALE	ALE	ALE	
		RD	RD	RD	\overline{RD}	

- Note 1: In case of (3) and (4), the data bus signals output the addresses since the signals are also used as the address bus. Writing "0" to bit CKOCR<ALEEN>, ALE signal can be stopped outputting.
- Note 2: After reset operation, port 0, port 1 and port 2 of TMP93CS44F function as input ports.
- Note 3: In case of TMP93CS44F, all (1) to (4) can be available using P1CR, P1FC, P2CR and P2FC registers.
- Note 4: In case of TMP93CS45F, case (3) and (4) cannot be available.

3.6.3 Bus Width/Wait Control Registers

Figure 3.6.1 shows control registers.

One block address areas are controlled by 1-byte bus width/wait control registers (WAITC0, WAITC1, WAITC2).

(1) Data bus size select

Bit4 (<B0BUS>, <B1BUS>, <B2BUS>) of the control register is used to specify data bus size. Setting this bit to 0 accesses the memory in 16-bit data bus mode; setting it to 1 accesses the memory in 8-bit data bus mode.

Changing data bus size depending on the access address is called dynamic bus sizing. Table 3.6.1 shows the details of the bus operation.

This bit is changed by the state of AM8/ AM16 pin.

(2) Wait control

Control register bits 3 and 2 (<B0W1:0>, <B1W1:0>, <B2W1:0>) are used to specify the number of waits.

These bits execute the following operation by setting.

- "00" A 2-state wait is inserted regardless of the WAIT pin status.
- "01" A 1-state wait is inserted regardless of the WAIT pin status.
- "10" A 1-state wait is inserted and the WAIT pin status is sampled. If the pin is low, inserting the wait maintains the bus cycle until the pin goes high.
- "11" The bus cycle is completed without a wait (0 waits) regardless of the WAIT pin status.

These bits are initialized to 00 by reset.

(3) Address area specification

Control register bits 1 and 0 (<B0C1:0>, <B1C1:0>, <B2C1:0>) are used to specify the target address area. Setting these bits to 00 enables settings (Wait state, bus size etc.) as follows:

- WAITC0 setting enabled when 7F00H to 7FFFH is accessed.
- WAITC1 setting enabled when 880H to 7FFFH is accessed.
- WAITC2 setting enabled when 8000H to 3FFFFFH is accessed.

Setting bits to 01 enables setting for each block when 400000H to 7FFFFFH is accessed. Setting bits to 10 enables them 800000H to BFFFFFH is accessed. Setting bits to 11 enables them when C000000H to FFFFFFH is accessed.

		7	6	5	4	3	2	1	0	
WAITC0	Bit symbol				B0BUS	B0W1	B0W0	B0C1	B0C0	
(0068H)	Read/Write						W			
Prohibit	After reset				0	0	0	0	0	
read-	Function				0: 16-bit	00: 2 waits		00: 7F00H	to 7FFFH	
modify- write					bus	01: 1 wait		01: From 4	00000H	
WIIIO					1: 8-bit bus	10: (1 + N)	waits	10: From 8	00000H	
						11: 0 waits		11: From C	H00000	
WAITC1	Bit symbol				B1BUS	B1W1	B1W0	B1C1	B1C0	
(0069H)	Read/Write	/					W			
Prohibit	After reset	/			0	0	0	0	0	
read-	Function				0: 16-bit	0: 16-bit 00: 2 waits			00: 880H to 7FFFH	
modify- write					bus	01: 1 wait		01: From 4	00000H	
WIIIO					1: 8-bit bus	10: (1 + N)	waits	10: From 8	00000H	
						11: 0 waits		11: From C	H00000	
WAITC2	Bit symbol				B2BUS	B2W1	B2W0	B2C1	B2C0	
(006AH)	Read/Write						W			
Prohibit	After reset				0	0	0	0	0	
read-	Function				0: 16-bit	00: 2 waits		00: From 8	000H	
modify- write					bus	01: 1wait		01: From 4	H00000	
***************************************					1: 8-bit bus	10: (1 + N)	waits	10: From 8	H00000	
						11: 0 waits		11: From C	H00000	

Figure 3.6.1 Bus Width/Wait Control Registers

Table 3.6.1 Dynamic Bus Sizing

Operand	Operand Start	Memory	CPU Address	CPU	Data
Data Size	Address	Data Size	Ci O Address	D15 to D8	D7 to D0
8 bits	2n + 0	8 bits	2n + 0	XXXXX	b7 to b0
	(Even number)	16 bits	2n + 0	XXXXX	b7 to b0
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0
	(Odd number)	16 bits	2n + 1	b7 to b0	xxxxx
16 bits	2n + 0	8 bits	2n + 0	XXXXX	b7 to b0
	(Even number)		2n + 1	xxxxx	b15 to b8
		16 bits	2n + 0	b15 to b8	b7 to b0
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0
	(Odd number)		2n + 2	xxxxx	b15 to b8
		16 bits	2n + 1	b7 to b0	xxxxx
			2n + 2	xxxxx	b15 to b8
32 bits	2n + 0	8 bits	2n + 0	XXXXX	b7 to b0
	(Even number)		2n + 1	xxxxx	b15 to b8
			2n + 2	xxxxx	b23 to b16
			2n + 3	xxxxx	b31 to b24
		16 bits	2n + 0	b15 to b8	b7 to b0
			2n + 2	b31 to b24	b23 to b16
	2n + 1	8 bits	2n + 1	XXXXX	b7 to b0
	(Odd number)		2n + 2	xxxxx	b15 to b8
			2n + 3	xxxxx	b23 to b16
			2n + 4	xxxxx	b31 to b24
		16 bits	2n + 1	b7 to b0	xxxxx
			2n + 2	b23 to b16	b15 to b8
			2n + 4	xxxxx	b31 to b24

xxxxx: During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains non-active.

3.6.4 Bus Width/Wait Control

An image of the actual bus width/wait control is shown below. Out of the whole memory area, address areas that can be specified are divided into four parts. Addresses from 000000H to 3FFFFFH are divided differently: 7F00H to 7FFFH is specified for WAITC0; 880H to 7FFFH, for WAITC1; and 8000H to 3FFFFFH, for WAITC2. The reason is that a device other than ROM (e.g., RAM or I/O) might be connected externally.

7F00H to 7FFFH (256 bytes) for WAITCO are mapped mainly for possible expansions to external I/O.

880H to 7FFFH (approx. 31 Kbytes) for WAITC1 are mapped there mainly for possible extensions to external RAM.

8000H to 3FFFFFH (approx. 4 Mbytes) for WAITC2 are mapped mainly for possible extensions to external ROM. With the TMP93CS45, which does not have a built-in ROM, the program is externally read at address FF0000H in this setting (16-bit bus, 2 waits). With the TMP93CS44 which has a built-in ROM, addresses from FF0000H to FFFFFFH are used as the internal ROM area; WAITC2 is disabled in this area. After reset, the CPU reads the program from the built-in ROM in 16-bit bus, 0 WAIT mode.

Note 1: Access priority is highest for built-in I/O, then built-in memory, and lowest for the bus width/wait controller.

Note 2: External areas other than WAITC0 to WAITC2 are accessed in 0 WAIT mode. In the TMP93CS45, when the AM8/ AM16 pin is set to "L", the data bus width is fixed to 16-bit. When the AM8/ AM16 pin is set to "H", it is fixed to 8 bits. In the TMP93CS44, the data bus width is always fixed to 16 bits.

When using the bus width/wait controller, do not specify the same address area more than once. (However, when addresses 7F00H to 7FFFH for WAITC0 and 880H to 7FFFH for WAITC1 are specified, in other words, specifications overlap, only the WAITC0 setting is active.)

3.6.5 Example of Usage

X: Don't care

(1) Example of usage-1

Figure 3.6.2 is an example in which an external memory is connected to the TMP93CS45. In this example, a ROM is connected using 16-bit bus; a RAM is connected using 8-bit bus.

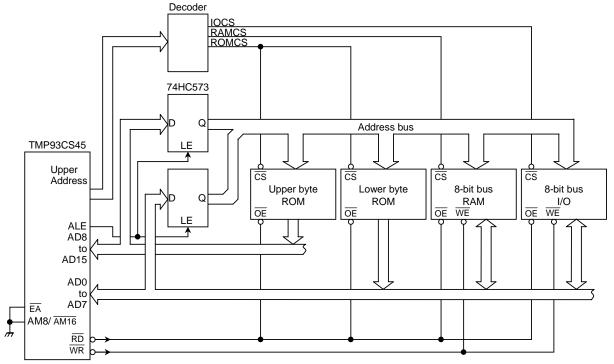


Figure 3.6.2 Example of External Memory Connection (ROM = 16 bits, RAM and I/O = 8 bits)

WAITC0 **EQU** 68H WAITC1 EQU 69H WAITC2 EQU 6AH (WAITC0), XXX10000B LD ; WAITC0 = 8 bits, 2 waits, 7F00H to 7FFFH. (WAITC1), LD XXX11100B ; WAITC1 = 8 bits, 0 waits, 880H to 7EFFH. LD (WAITC2), XXX00111B ; WAITC2 = 16 bits, 1 wait, C00000H to FFFFFH.

(1) Example of usage-2

Figure 3.6.3 is an example in which an external memory is connected to the TMP93CS45. In this example, a ROM, RAM, and I/O are connected using 8-bit bus.

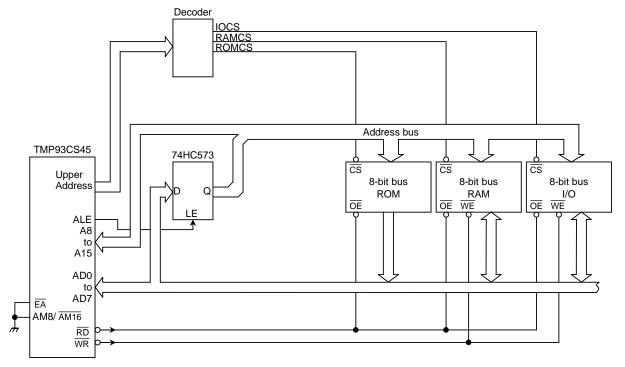


Figure 3.6.3 Example of External Memory Connection (ROM, RAM and I/O = 8 bits)

WAITC0	EQU	68H	
WAITC1	EQU	69H	
WAITC2	EQU	6AH	
LD	(WAITC0),	XXX10000B	; WAITC0 = 8 bits, 2 waits, 7F00H to 7FFFH
LD	(WAITC1),	XXX11100B	; WAITC1 = 8 bits, 0 waits, 880H to 7EFFH
LD	(WAITC2),	XXX00111B	; WAITC2 = 8 bits, 1 wait, C00000H to FFFFFH

X: Don't care

(3) Example of usage-3

Figure 3.6.4 is an example in which an external memory is connected to the TMP93CS44. In this example, ROM 128 Kbytes are connected using 16-bit bus, and RAM 256 Kbytes are connected using 16-bit bus.

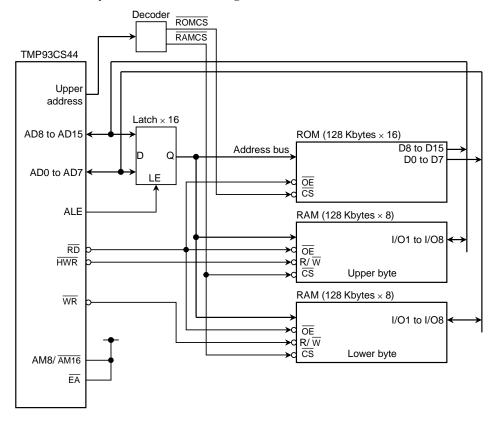


Figure 3.6.4 Example of External Memory Connection (ROM and RAM = 16 bits)

The TMP93CS44 has built-in ROM and RAM. When ROM and RAM have insufficient capacity, it is possible to connect an external memory as the example of the external memory connection. In this example, the memory configuration is as follows.

Mer	nory	Memory Size	Address	Data Bus
ROM	Internal	64 Kbytes	FF0000H to FFFFFFH	16 bits
	External	128 Kbytes	400000H to 41FFFFH	16 bits
SRAM	Internal	2 Kbytes	000080H to 00087FH	16 bits
	External	256 Kbytes	800000H to 83FFFFH	16 bits

3.7 8-Bit Timers

TMP93CS44/S45 contains four 8-bit timers (Timer 0, 1, 2, 3), each of which can be operated independently. The cascade connection allows these timers to be used as 16-bit timer. The following four operating modes are provided for the 8-bit timers.

- 8-bit interval timer mode (4 timers)
- 16-bit interval timer mode (2 timers)
- 8-bit programmable square wave pulse generation (PPG: Variable duty with variable cycle) output mode (1 timer)
- 8-bit pulse width modulation (PWM: Variable duty with constant cycle) output mode (1 timer)

Figure 3.7.1 shows the block diagram of 8-bit timer (Timer 0, 1), and Figure 3.7.2 shows the block diagram of 8-bit timer (Timer 2, 3).

Each interval timer consists of an 8-bit up counter, 8-bit comparator, and 8-bit timer register. Besides, timer flip-flops (TFF1, TFF3), are provided for pair of timer 0/1 and 2/3.

Among the input clock sources for the interval timers, the internal clocks of ϕ T1, ϕ T4, ϕ T16, and ϕ T256 are obtained from the 9-bit prescaler shown in Figure 3.7.3.

The operation modes and timer flip-flops of the 8-bit timer are controlled by five control registers T10MOD, T32MOD, TFFCR, TRUN and TRDC.

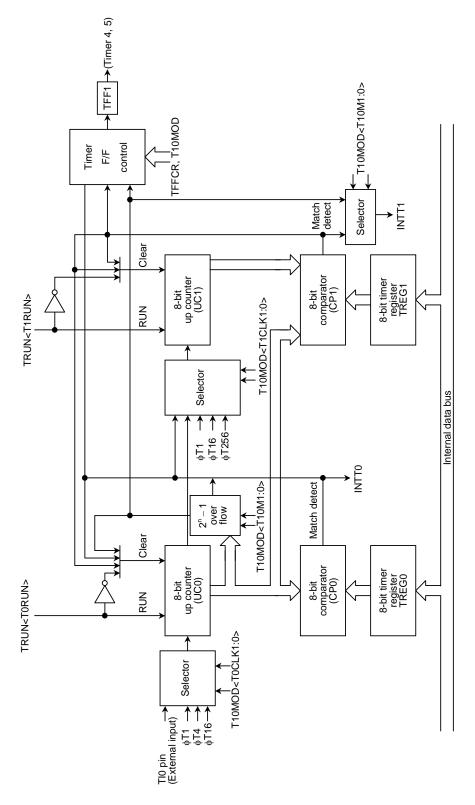


Figure 3.7.1 Block Diagram of 8-Bit Timers (Timer 0 and 1)

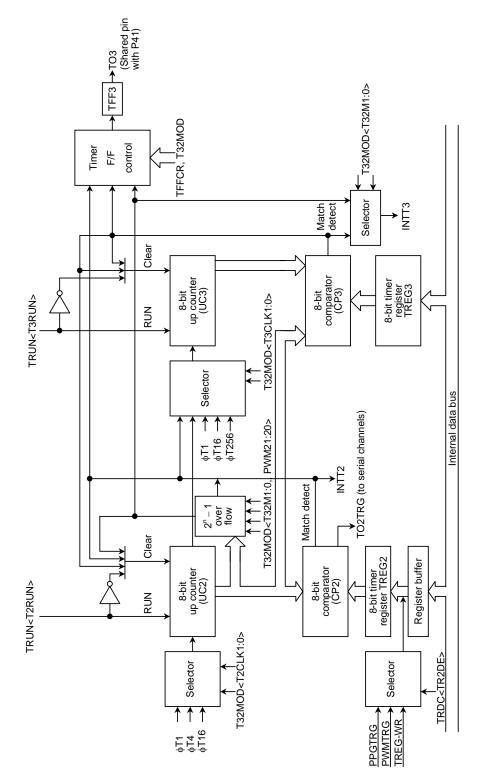


Figure 3.7.2 Block Diagram of 8-Bit Timers (Timer 2 and 3)

1. Prescaler

There are 9-bit prescaler and prescaler clock selection registers to generate input clock for 8-bit timer 0, 1, 2, 3, 16-bit timer 4, 5 and serial interface 0, 1.

Figure 3.7.3 shows the block diagram. Table 3.7.1 shows prescaler clock resolution into $8,\,16$ -bit timer.

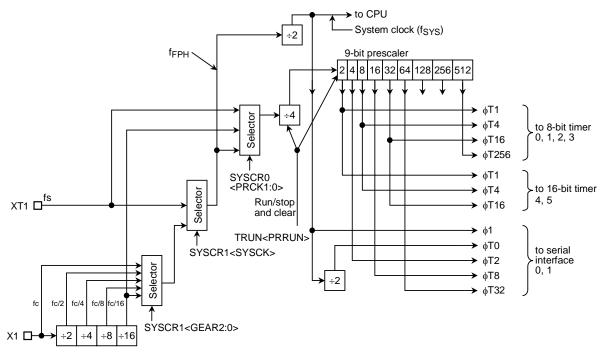


Figure 3.7.3 The Block Diagram of Prescaler

Table 3.7.1 Prescaler Clock Resolution to 8- and 16-Bit Timer

at fc = 20 MHz, fs = 32.768 kHz

					at 10 - 20 Mi	12, 15 = 32.700 KHZ
Select System Clock	Select Prescaler Clock	Gear Value		Prescaler C	lock Resolution	n
<sysck></sysck>	<prck1:0></prck1:0>	<gear2:0></gear2:0>	φ T 1	фТ4	фТ16	φT256
1 (fs)		XXX	fs/2 ³ (244 μs)	fs/2 ⁵ (977 μs)	fs/2 ⁷ (3.9 ms)	fs/2 ¹¹ (62.5 ms)
	00 (f _{FPH})	000 (fc)	fc/2 ³ (0.4 μs)	fc/2 ⁵ (1.6 μs)	fc/2 ⁷ (6.4 μs)	fc/2 ¹¹ (102.4 μs)
		001 (fc/2)	fc/2 ⁴ (0.8 μs)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)	fc/2 ¹² (204.8 μs)
0 (fc)		010 (fc/4)	fc/2 ⁵ (1.6 μs)	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹³ (409.6 μs)
		011 (fc/8)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)	fc/2 ¹⁰ (51.2 μs)	fc/2 ¹⁴ (819.2 μs)
		100 (fc/16)	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹¹ (102.4 μs)	fc/2 ¹⁵ (1.6384 ms)
XXX	01 (Low-frequency clock)	XXX	fs/2 ³ (244 μs)	fs/2 ⁵ (977 μs)	fs/2 ⁷ (3.9 ms)	fs/2 ¹¹ (62.5 ms)
XXX	10 (Note) (fc/16 clock)	XXX	fs/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹¹ (102.4 μs)	fc/2 ¹⁵ (1.6384 ms)

XXX: Don't care

Note: The fc/16 clock as a prescaler clock can not be used when the fs is used as a system clock.

The clock selected among fFPH clock, fc/16 clock, and fs clock is divided by 4 and input to this prescaler. This is selected by prescaler clock selection register SYSCR0<PRCK1:0>.

Resetting sets <PRCK1:0> to "00", therefore fFPH/4 clock is input.

The 8-bit timer selects between 4 clock inputs: ϕ T1, ϕ T4, ϕ T16, and ϕ T256 among the prescaler output.

This prescaler can be run or stopped by the timer control register TRUN<PRRUN>. Counting starts when <PRRUN> is set to "1", while the prescaler is cleared to zero and stops operation when <PRRUN> is set to "0".

When the IDLE1 mode (Operates only oscillator) is used, set TRUN<PRRUN> to "0" to stop this prescaler before "HALT" instruction is executed.

2. Up counter

This is an 8-bit binary counter which counts up by the input clock pulse specified by T10MOD and T32MOD.

The input clock of timer 0, 2 are selected from the external clock from TI0 (Only timer 0) pin and the three internal clocks $\phi T1$, $\phi T4$, and $\phi T16$, according to the set value of T10MOD/T32MOD registers.

The input clock of timer 1 and 3 differs depending on the operation mode. When set to 16-bit timer mode, the overflow outputs of timer 0 and 2 are used as the input clock. When set to any other mode than 16-bit timer mode, the input clock is selected from the internal clocks $\phi T1$, $\phi T16$, and $\phi T256$ as well as the comparator output (Match detection signal) of timer 0, 2 according to the set value of T10MOD and T32MOD registers.

Example: When T10MOD<T10M1:0> = 01, the overflow output of timer 0 becomes the input clock of timer 1 (16-bit timer mode).

When T10MOD<T10M1:0> = 00 and T10MOD<T1CLK1:0> = 01, ϕ T1 becomes the input of timer 1 (8-bit timer mode).

Operation mode is also set by T10MOD and T32MOD registers. When reset, it is initialized to T10MOD<T10M1:0> = 00 and T32MOD<T32M1:0> = 00 whereby the up counter is placed in the 8-bit timer mode.

The counting and stop and clear of up counter can be controlled for each interval timer by the timer operation control register TRUN. When reset, all up counters will be cleared to stop the timers.

3. Timer register

This is an 8-bit register for setting an interval time. When the set value of timer registers TREG0, TREG1, TREG2, TREG3, matches the value of up counter, the comparator match detect signal becomes active. If the set value is 00H, this signal becomes active when the up counter overflows.

Timer registers TREG2 are double buffer structure, each of which makes a pair with register buffer.

The timer flip-flop controll register TRDC<TR2DE> bits control whether the double buffer structure in the TREG2 should be enabled or disabled. They are disabled when $\langle TR2DE \rangle = 0$ and enabled when they are set to 1.

In the condition of double buffer enable state, the data is transferred from the register buffer to the timer register when the 2^n-1 overflow occurs in PWM mode, or at the PPG cycle in PPG mode. Therefore, during timer mode, the double buffer can not be used.

When reset, it will be initialized to $\langle TR2DE \rangle = 0$ to disable the double buffer. To use the double buffer, write data in the timer register, set $\langle TR2DE \rangle$ to 1, and write the following data in the register buffer.

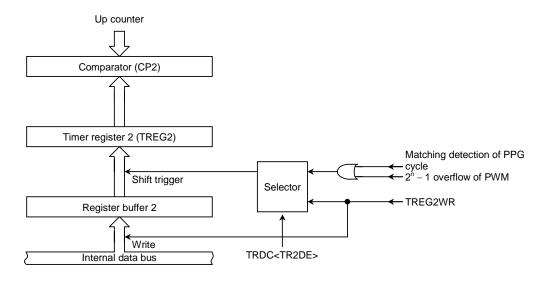


Figure 3.7.4 Configuration of Timer Register 2

Note: Timer register and the register buffer are allocated to the same memory address. When <TR2DE> = 0, the same value is written in the register buffer as well as the timer register, while when <TR2DE> = 1 only the register buffer is written.

The memory address of each timer register is as follows.

TREG0: 000022H TREG2: 000026H TREG1: 000023H TREG3: 000027H

All the registers are write only and cannot be read.

4. Comparator

A comparator compares the value in the up counter with the values to which the timer register is set. When they match, the up counter is cleared to zero and an interrupt signal (INTT0, INTT1, INTT2, INTT3) is generated. If the timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

5. Timer flip-flop (Timer F/F: TFF1, TFF3)

The timer flip-flop is a flip-flop inverted by the match detect signal (8-bit comparator output) of each interval timer.

Inverting is disabled or enabled by the timer flip-flop control register TFFCR<TFF3IE, TFF1IE>.

After reset operation, the value of TFF1, TFF3 is undefined. Writing 01 or 10 to TFFCR<TFF3C1:0, TFF1C1:0> sets 0 or 1 to TFF1, TFF3. Additionally, writing 00 to this bit inverts the value of TFF1, TFF3. (Software inversion.)

The signal of TFF3 is output through the TO3 pin (Also used as P41). When using as the timer output, the timer flip-flop should be set by port 4 function register P4FC beforehand. The output pin of TFF1 does not exist.

Timer Operation Control Register

TRUN (0020H)

			•					
	7	6	5	4	3	2	1	0
Bit symbol	PRRUN		T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	T0RUN
Read/Write	R/W				R/	W		
After reset	0		0	0	0	0	0	0
Function	Prescaler and timer run/stop control 0: Stop and clear 1: Run (Count up)							
				•				

PRRUN: Operation of prescaler

T5RUN: Operation of 16-bit timer (Timer 5)
T4RUN: Operation of 16-bit timer (Timer 4)
T3RUN: Operation of 8-bit timer (Timer 3)
T2RUN: Operation of 8-bit timer (Timer 2)
T1RUN: Operation of 8-bit timer (Timer 1)
T0RUN: Operation of 8-bit timer (Timer 0)

Count operation

O Stop and

Stop and clear Count

Note: TRUN<Bit6> is always read as "1".

System Clock Control Register

SYSCR0 (006EH)

	7	6	5	4	3	2	1	0
Bit symbol	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
Read/Write				R/W				
After reset	1	0	1	0	0	0	0	0
Function	oscillator (fc) 0: Stop	oscillator (fs) 0: Stop 1: Oscillation	oscillator (fc) after released STOP mode	after released	after released STOP mode 0: fc 1: fs	timer (Write) 0: Don't care 1: Start timer	-	

Select prescaler input clock

00	f _{FPH}	·
01	fs	
10	fc/16	
11	(Reserved)

Figure 3.7.5 8-Bit Timer Related Registers (1/5)

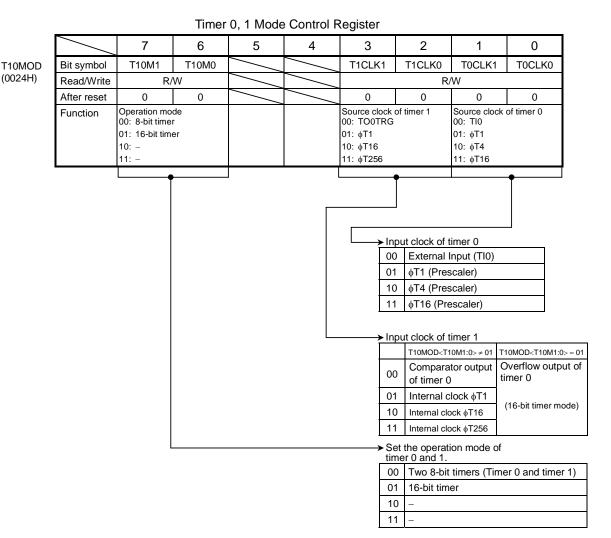


Figure 3.7.6 8-Bit Timer Related Register (2/5)

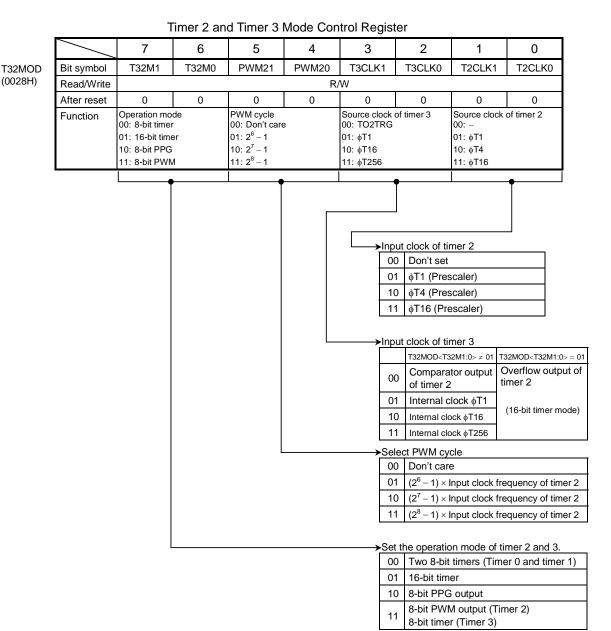
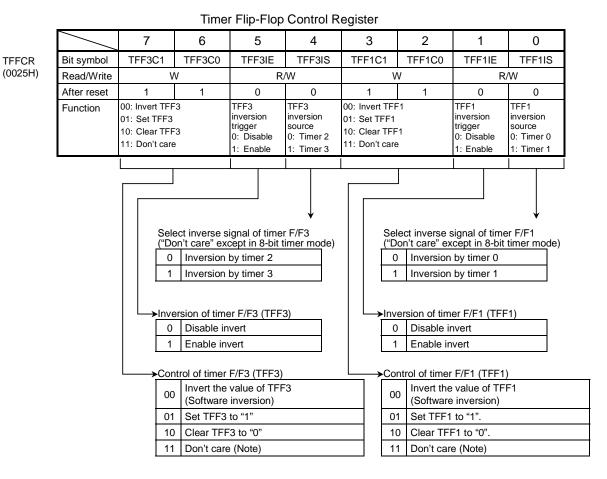



Figure 3.7.7 8-Bit Timer Related Register (3/5)

93CS44-89 2004-02-10

Note: TFFCR<TFF3C1:0, TFF1C1:0> is always read as "1".

Figure 3.7.8 8-Bit Timer Related Register (4/5)

93CS44-90 2004-02-10

Timer Register Double Buffer Control Register

TRDC (0029H)

	7	6	5	4	3	2	1	0
Bit symbol							TR2DE	-
Read/Write							R	W
After reset							0	0
Function							0: Double buffer disable 1: Double buffer enable	Always write "0".

Operation of timer register 2 double butter

Disable Enable

Figure 3.7.9 8-Bit Timer Related Register (5/5)

(1) 8-bit timer mode

Four interval timers 0, 1, 2, 3 can be used independently as 8-bit interval timer.

1. Generating interrupts in a fixed cycle (in case of timer 1)

To generate timer 1 interrupt at constant intervals using timer 1 (INTT1), first stop timer 1 then set the operation mode, input clock, and a cycle to T10MOD and TREG1 register, respectively. Then, enable interrupt INTT1 and start the counting of timer 1.

Example: To generate timer 1 interrupt every 1 second at fs = 32 kHz, set each register in the following manner.

```
System clock: Low frequency (fs)
Prescaler clock: Low frequency (fs)
```

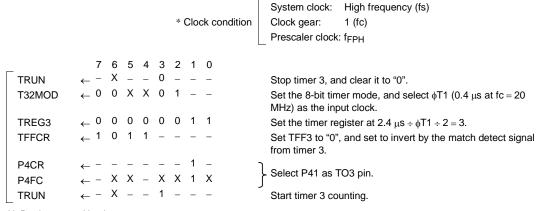
	MSB	LSB
	7 6 5 4 3 2 1 0	
TRUN	$\leftarrow - X - - - 0 - $	Stop timer 1, and clear it to "0".
T10MOD	← 0 0 X X 1 0	Set the 8-bit timer mode, and select ϕ T16 (4 ms at fs = 32 kHz) as the input clock.
TREG1	← 1 1 1 1 1 0 1 0	Set the timer register 1 s $\div \phi$ T16 = 250 = FAH
INTET10	← 1 1 0 1	Enable INTT1, and set it to Level 5.
TRUN	\leftarrow 1 X 1 (Start timer 1 counting.

X: Don't care, (: No change

Use the Table 3.7.1 for selecting the input clock.

Note: The input clock of timer 0 and timer 1 are different from as follows.

Timer 0: TI0 input, (T1, (T4, (T16.


Timer 1: Match output of timer 0, (T1, (T16, (T256.

2. Generating a 50% duty square wave pulse

The timer flip-flop is included in timer 1 and 3.

The timer flip-flop (TFF3) is inverted at constant intervals, and its status is output to timer output pin (TO3). The output pin of TFF1 does not exist.

Example: To output a 2.4 (s square wave pulse from TO3 pin at fc (20 MHz, set each register in the following procedures. Either timer 2 or timer 3 may be used, but this example uses timer 3.

X: Don't care, -: No change

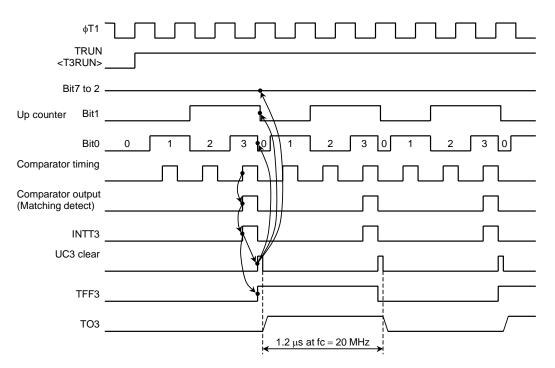


Figure 3.7.10 Square Wave (50% duty) Output Timing Chart

3. Making timer 1 count up by match signal from timer 0 comparator (Same function is achieved by using timer 3 and timer 2)

Set the 8-bit timer mode, and set the comparator output of timer 0 as the input clock to timer 1.

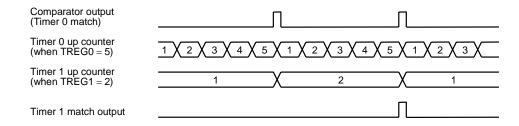


Figure 3.7.11 Timer 1 Count up by Timer 0

(2) 16-bit timer mode

A 16-bit interval timer is configured by using the pair of timer 0 and timer 1 or timer 2 and timer 3.

To make a 16-bit interval timer by cascade connecting timer 0 and timer 1, set timer 0/1 mode register T10MOD<T10M1:0> to 01.

When set in 16-bit timer mode, the overflow output of timer 0 will become the input clock of timer 1 and 3, regardless of the set value of T10MOD<T1CLK1:0> and T32MOD<T3CLK1:0>. Table 3.7.1 shows the relation between the cycle of timer (Interrupt) and the selection of input clock.

The lower 8 bits of the timer (Interrupt) cycle are set by the timer register TREG0 or TREG2, and the upper 8 bits are set by TREG1 or TREG3. Note that TREG0 and TREG2 always must be set first. (Writing data into TREG0 and TREG2 disables the comparator temporarily, and the comparator is restarted by writing data into TREG1 and TREG3.)

Setting example: To generate an interrupt INTT3 every 0.4 seconds at fc = 20 MHz, set the following values for timer registers TREG2 and TREG3.

```
* Clock condition System clock: High frequency (fs)

Clock gear: 1 (fc)

Prescaler clock: f<sub>FPH</sub>
```

When counting with input clock of ϕ T16 (6.4 μ s at 20 MHz)

 $0.4~s \div 6.4~\mu s = 62500 = F424H$

Therefore, set $\mathsf{TREG3} = \mathsf{F4H}$ and $\mathsf{TREG2} = \mathsf{24H}$, respectively.

The comparator match signal is output from timer 2 each time the up counter UC2 matches TREG2, where the up counter UC2 is not be cleared.

With the timer 3 comparator, the match detect signal is output at each comparator timing when up counter UC3 and TREG3 values match. When the match detect signal is output simultaneously from both comparators of timer 2 and timer 3, the up counters UC2 and UC3 are cleared to 0, and the interrupt INTT3 is generated. If inversion is enabled, the value of the timer flip-flop TFF3 is inverted.

Example: When TREG3 = 04H and TREG2 = 80H

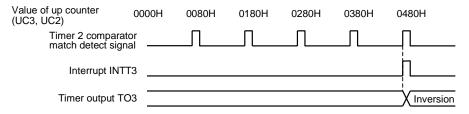


Figure 3.7.12 Timer Output by 16-Bit Timer Mode

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulse can be generated at any frequency and duty by timer 2. The output pulse may be either low active or high active. In this mode, timer 3 cannot be used.

Timer 2 outputs pulse to TO3 pin (Also used as P41).

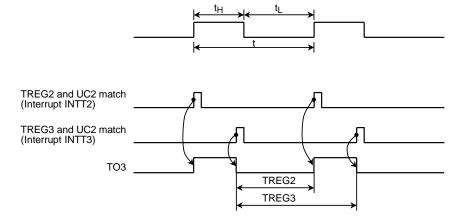


Figure 3.7.13 8-Bit PPG Output Waveforms

In this mode, a programmable square wave is generated by inverting timer output each time the 8-bit up counter (UC2) matches the timer registers TREG2 and TREG3.

However, it is required that the set value of TREG2 is smaller than that of TREG3.

Though the up counter (UC3) of timer 3 is not used in this mode, UC3 should be set for counting by setting TRUN<T3RUN> to 1.

Figure 3.7.14 shows the block diagram for this mode.

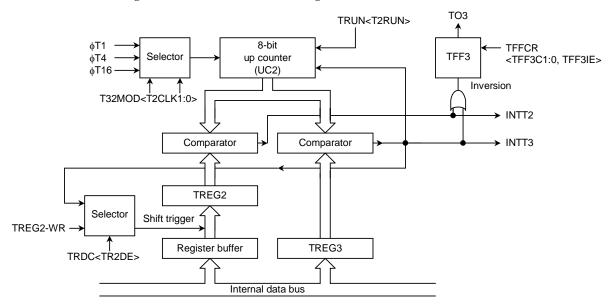


Figure 3.7.14 Block Diagram of 8-Bit PPG Output Mode

When the double buffer of TREG2 is enabled in this mode, the value of register buffer will be shifted in TREG2 each time TREG3 matches UC2.

Use of the double buffer makes easy the handling of low duty waves (when duty is varied).

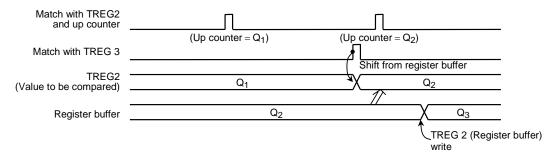
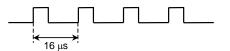



Figure 3.7.15 Operation of Register Buffer

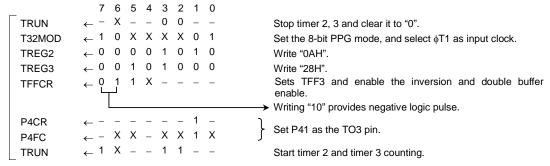
Example: Generating 1/4 duty 62.5 kHz pulse (at fc = 20 MHz)

* Clock condition System clock: High frequency (fs)
Clock gear: 1 (fc)
Prescaler clock: f_{FPH}

Calculate the value to be set for timer register.

To obtain the frequency 62.5 kHz, the pulse cycle t should be: t=1/62.5 kHz = 16 μs .

Given $\phi T1 = 0.4 \mu s$ (at 20 MHz),


$$16 \ \mu s \div 0.4 \ \mu s = 40$$

Consequently, to set the timer register 3 (TREG3) to TREG3 = 40 = 28H

and then duty to 1/4, $t\times$ 1/4 = 16 $\mu s\times$ 1/4 = 4 μs

$$4 \mu s \div 0.4 \mu s = 10$$

Therefore, set timer register 2 (TREG2) to TREG2 = 10 = 0AH.

X: Don't care, -: No change

(4) 8-bit PWM Output mode

This mode is valid only for timer 2. In this mode, maximum 8-bit resolution of PWM pulse can be output.

PWM pulse is output to TO3 pin (also used as P41) when using timer 2. Timer 3 can also be used as 8-bit timer.

Timer output is inverted when up counter (UC2) matches the set value of timer register TREG2 or when 2^n-1 (n = 6, 7 or 8; specified by T32MOD<PWM21:20>) counter overflow occurs. Up counter UC0 is cleared when 2^n-1 counter overflow occurs.

To use this PWM mode, the following conditions must be satisfied.

(Set value of timer register) < (Set value of 2ⁿ - 1 counter overflow)

(Set value of timer register) $\neq 0$

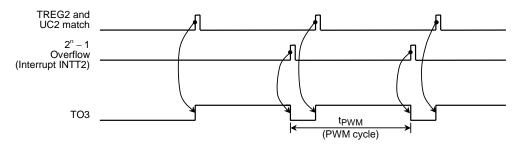


Figure 3.7.16 8-Bit PWM Waveforms

Figure 3.7.17 shows the block diagram of this mode.

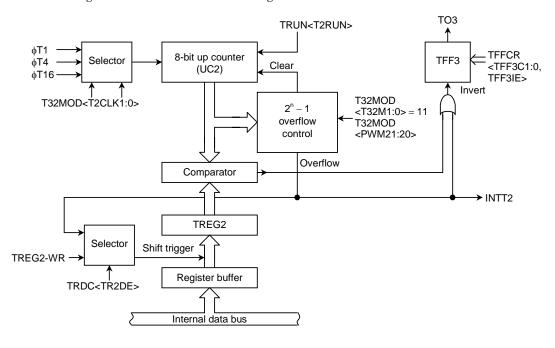


Figure 3.7.17 Block Diagram of 8-Bit PWM Mode

In this mode, the value of register buffer will be shifted in TREG2 if 2^n-1 overflow is detected when the double buffer of TREG2 is enabled.

Use of the double buffer makes easy the handling of small duty waves.

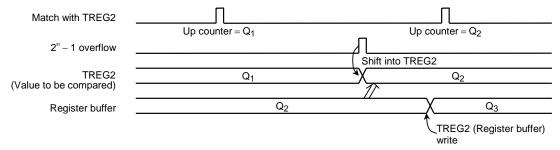
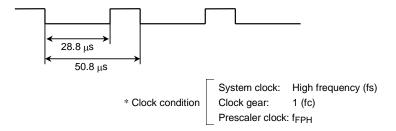



Figure 3.7.18 Operation of Register Buffer

Example: To output the following PWM waves to TO3 pin at fc = 20 MHz.

To realize 50.8 μs of PWM cycle by $\phi T1 = 0.4 \ \mu s$ (at fc = 20 MHz),

$$50.8~\mu s \div 0.4~\mu s = 127 = 2n-1$$

Consequently, n should be set to 7.

As the period of low level is 28.8 μ s, for ϕ T1 = 0.4 μ s,

set the following value for TREG2.

$$28.8~\mu s \div 0.4~\mu s = 72 = 48 H$$

	MSB	LSB
	7 6 5 4 3 2 1 0	
TRUN	← - X 0	Stop timer 2, and clear it to "0".
T32MOD	← 1 1 1 0 0 1	Set 8-bit PWM mode (cycle: $2^7 - 1$) and select $\phi T 1$ as the input clock.
TREG2	← 0 1 0 0 1 0 0 0	Writes "48H".
TFFCR	← 1 0 1 X	Clears TFF3, enable the inversion and double buffer.
P4CR	← 1 -	
P4FC	← - X X - X X 1 X	Set P41 as the TO3 pin.
TRUN	← 1 X 1	Start timer 2 counting.

X: Don't care, -: No change

Table 3.7.2 PWM Cycle

at fc = 20 MHz, fs = 32.768 kHz

Select	Select Prescaler Clock <prck1:0></prck1:0>	Gear Value <gear2:0></gear2:0>	PWM Cycle								
System Clock <sysck></sysck>			2 ⁶ – 1			2 ⁷ – 1			2 ⁸ – 1		
			φT1	φТ4	φT16	φT1	φΤ4	φT16	φT1	φТ4	φT16
1 (fs)	00 (f _{FPH})	XXX	15.4 ms	61.5 ms	246 ms	31.0 ms	124 ms	496 ms	62.3 ms	249 ms	996 ms
0 (fc)		000 (fc)	25.2 μs	100.8 μs	403.2 μs	50.8 μs	203.2 μs	812.8 μs	102.0 μs	408.0 μs	1.63 ms
		001 (fc/2)	50.4 μs	201.6 μs	806.4 μs	101.6 μs	406.4 μs	1.63 ms	204.0 μs	816.0 μs	3.26 ms
		010 (fc/4)	100.8 μs	403.2 μs	1.61 ms	203.2 μs	812.8 μs	3.26 ms	408.0 μs	1.63 ms	6.53 ms
		011 (fc/8)	201.6 μs	806.4 μs	3.23 ms	406.4 μs	1.63 ms	6.52 ms	816.0 μs	3.26 ms	13.06 ms
		100 (fc/16)	403.2 μs	1.61 ms	6.45 ms	812.8 μs	3.25 ms	13.04 ms	1.63 ms	6.53 ms	26.11 ms
XXX	01 (Low-frequency clock)	XXX	15.4 ms	61.5 ms	246 ms	31.0 ms	124 ms	496 ms	62.3 ms	249 ms	996 ms
XXX	10 (fc/16 clock)	xxx	403.2 μs	1.61 ms	6.45 ms	812.8 μs	3.25 ms	13.04 ms	1.63 ms	6.53 ms	26.11 ms

XXX: Don't care

(5) Timer mode setting registers

Table 3.7.3 shows the list of 8-bit timer modes.

Table 3.7.3 Timer Mode Setting Register

Register Name	Register Name T10MOD/T32MOD					
Name of Function in Register	T10M/T32M	PWM2	T1CLK/T3CLK	T0CLK/T2CLK	TFF1IS/TFF3IS	
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select	
16-bit timer mode	01	*	-	External clock (Only timer 0), \$pt 1, \$pt 4, \$pt 16 \$(00, 01, 10, 11)	-	
8-bit timer × 2 channels	00	*	Lower timer match, φT1, 16, 256 (00, 01, 10, 11)	External clock (Only timer 0), \$pt 1, \$pt 4, \$pt 16 \$(00, 01, 10, 11)	O: Lower timer output 1: Upper timer output	
8-bit PPG × 1 channel	* 10	*	*	* External clock (Only timer 0), \$\phi\$T1, \$\phi\$T4, \$\phi\$T16 (00, 01, 10, 11)	*	
8-bit PWM × 1 channel	* 11	* 2 ⁶ - 1, 2 ⁷ - 1, 2 ⁸ - 1 (01, 10, 11)	*	* External clock (Only timer 0), \$\phi\$T1, \$\phi\$T4, \$\phi\$T16 (00, 01, 10, 11)	*	
8-bit timer × 1 channel	* 11	-	φT1, φT16, φT256 (01, 10, 11)	-	Output disabled	

-: Don't care, *: Don't set in T10MOD

3.8 16-Bit Timers/Event Counters

The TMP93CS44/TMP93CS45 contains two (Timer 4 and timer 5) multifunctional 16-bit timer/event counter with the following operation modes.

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) mode

Can be used following operation modes by capture function.

- Frequency measurement mode
- Pulse width measurement mode
- Time differential measurement mode

Timer/event counter consists of 16-bit up counter, two 16-bit timer registers, two 16-bit capture registers (One of them applies double buffer), two comparators, capture input controller, and timer flip-flop and the control circuit.

Timer/event counter is controlled by 4 control registers: T4MOD/T5MOD, T4FFCR/T5FFCR, TRUN and T45CR.

Figure 3.8.1, 2 shows the block diagram of 16-bit timer/event counter (Timer 4 and timer 5). Timer 4 and 5 can be used independently.

All timers operate in the same manner, and thus only the operation of timer 4 will be explained below.

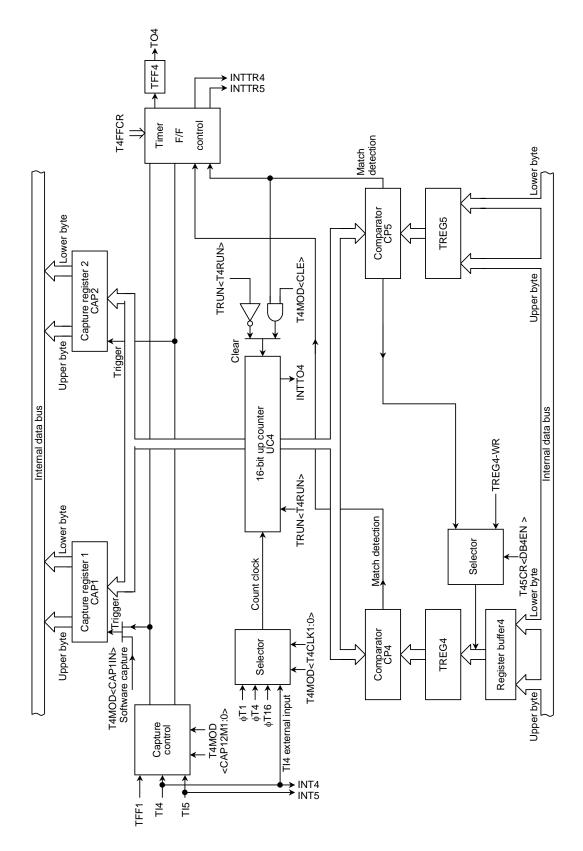


Figure 3.8.1 Block Diagram of 16-Bit Timer (Timer 4)

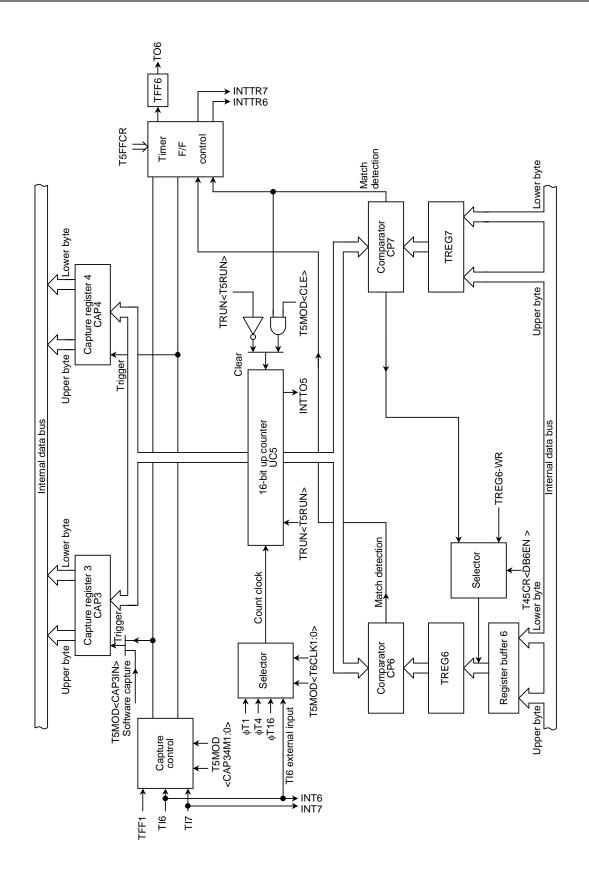


Figure 3.8.2 Block Diagram of 16-Bit Timer (Timer 5)

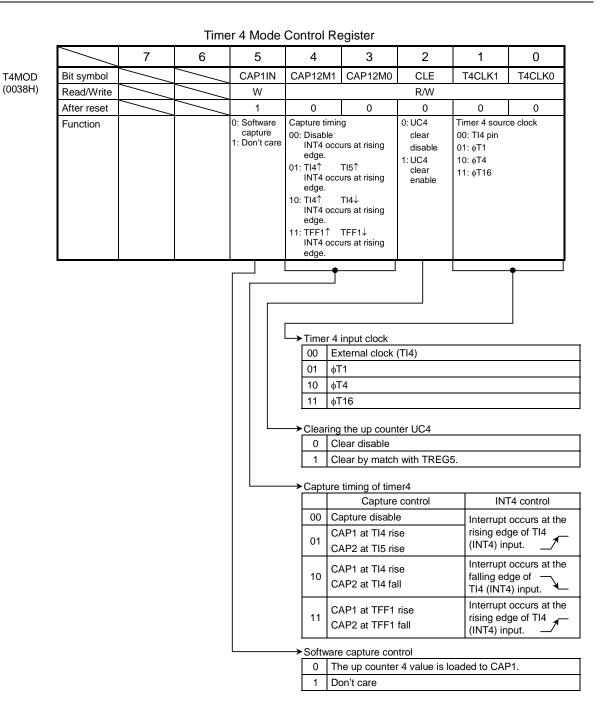


Figure 3.8.3 16-Bit Timer/Event Counter Related Register (1/6)

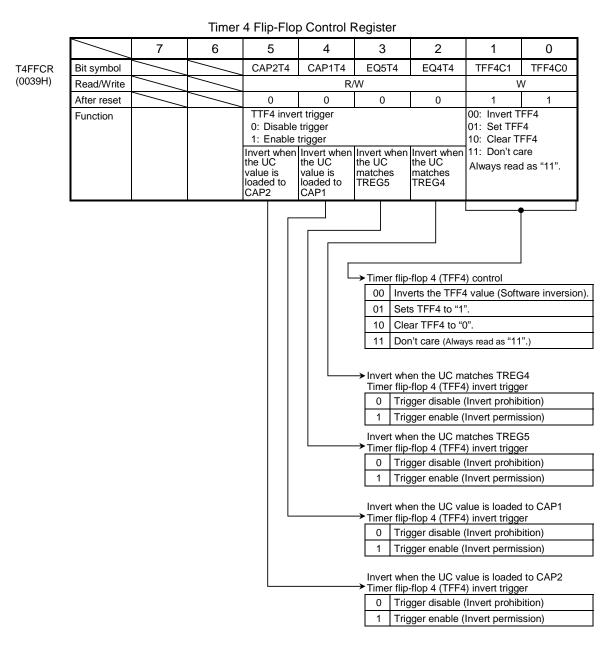


Figure 3.8.4 16-Bit Timer/Event Counter Related Register (2/6)

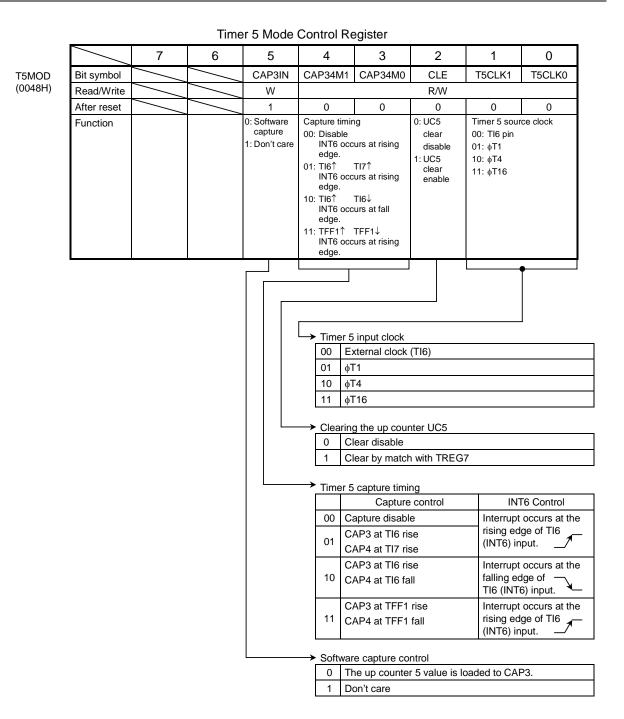


Figure 3.8.5 16-Bit Timer/Event Counter Related Register (3/6)

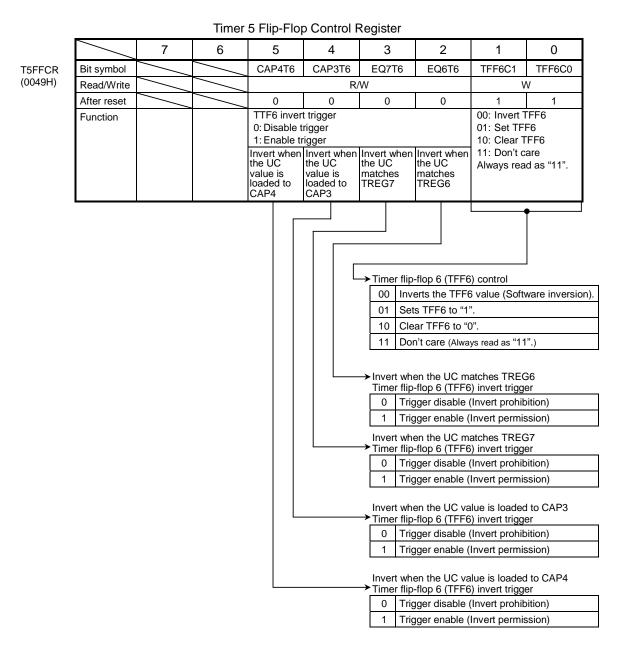


Figure 3.8.6 16-Bit Timer/Event Counter Related Register (4/6)

Timer 4 and Timer 5 Control Register 7 6 5 4 2 1 0 QCU DB6EN DB4EN Bit symbol Read/Write R/W R/W After reset 0 0 0 Watchdog timer/ warm-up Double buffer Function 0: Disable 1: Enable timer Double buffer of TREG4 Double control buffer of TREG6 Double buffer control 0 Disable 1 Enable DB6EN: Double buffer of TREG6 DB4EN: Double buffer of TREG4

Note 1: In case of unused 7 state binary counter as a warm-up timer, the stable clock must be input from external circuit.

➤ Watchdog timer/warm-up timer input control Use 7 stage binary counter

Not use 7 stage binary counter (Note 1)

Note 2: Bit6 to 2 of T45CR is read as 1.

T45CR

(003AH)

Figure 3.8.7 16-Bit Timer/Event Counter Related Register (5/6)

Timer Operation Control Register

TRUN (0020H)

	7	6	5	4	3	2	1	0
Bit symbol	PRRUN		T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	T0RUN
Read/Write	R/W		R/W					
After reset	0	0 0 0 0 0 0						0
Function		Prescaler and timer run/stop control 0: Stop and clear 1: Run (Count up)						
l		Count operation 0 Stop and clear						

PRRUN: Operation of prescaler

T5RUN: Operation of 16-bit timer (Timer 5)

Count

T4RUN: Operation of 16-bit timer (Timer 4)

T3RUN: Operation of 8-bit timer (Timer 3)

T2RUN: Operation of 8-bit timer (Timer 2)

T1RUN: Operation of 8-bit timer (Timer 1)

T0RUN: Operation of 8-bit timer (Timer 0)

Note: Bit6 of TRUN is read as "1".

System Clock Control Register

SYSCR0 (006EH)

		- ,						
	7	6	5	4	3	2	1	0
Bit symbol	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
Read/Write		•	•	R/W		•		
After reset	1	0	1	0	0	0	0	0
Function	High-frequency oscillator (fc) 0: Stop 1: Oscillaton	oscillator (fs) 0: Stop	after released	oscillator (fc) after released STOP mode	after released	(Write)	Select gear va high frequenc 00: fFPH 01: fs 10: fc/16 11: (Reserved	y (fs)
							\downarrow	

Select gear value of high frequency

Figure 3.8.8 16-Bit Timer/Event Counter Related Registers (6/6)

1. Prescaler

There are 9-bit prescaler and prescaler clock selection registers to generate input clock for 8-bit timer 0, 1, 2, 3, 16-bit timer 4, 5 and serial interface 0, 1.

Figure 3.8.9 shows the block diagram. Table 3.8.1 shows prescaler clock resolution into $8,\,16$ -bit Timer.

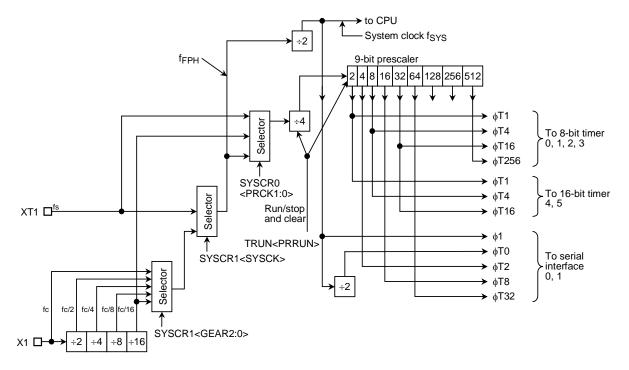


Figure 3.8.9 The Block Diagram of Prescaler

Table 3.8.1 Prescaler Clock Resolution to 8-Bit Timer and 16-Bit Timer

at fc = 20 MHz, fs = 32.768 kHz

Select System Clock	Select Prescaler Clock	Gear Value		Prescaler C	lock Resolution	n
<sysck></sysck>	<prck1:0></prck1:0>	<gear2:0></gear2:0>	φТ1	φТ4	φT16	φT256
1 (fs)		XXX	fs/2 ³ (244 μs)	fs/2 ⁵ (977 μs)	fs/2 ⁷ (3.9 ms)	fs/2 ¹¹ (62.5 ms)
		000 (fc)	fc/2 ³ (0.4 μs)	fc/2 ⁵ (1.6 μs)	fc/2 ⁷ (6.4 μs)	fc/2 ¹¹ (102.4 μs)
	00 (f _{FPH})	001 (fc/2)	fc/2 ⁴ (0.8 μs)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)	fc/2 ¹² (204.8 μs)
0 (fc)	OO (IFPH)	010 (fc/4)	fc/2 ⁵ (1.6 μs)	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹³ (409.6 μs)
		011 (fc/8)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)	fc/2 ¹⁰ (51.2 μs)	fc/2 ¹⁴ (819.2 μs)
		100 (fc/16)	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹¹ (102.4 μs)	fc/2 ¹⁵ (1.6384 ms)
XXX	01 (Low-frequency clock)	XXX	fs/2 ³ (244 μs)	fs/2 ⁵ (977 μs)	fs/2 ⁷ (3.9 ms)	fs/2 ¹¹ (62.5 ms)
XXX	10 (Note) (fc/16 clock)	XXX	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹¹ (102.4 μs)	fc/2 ¹⁵ (1.6384 ms)
XXX:	Don't care		-	16-bit timer8-bit timer		→

Note: The fc/16 clock as a prescaler clock can not be used when the fs is used as a system clock.

The clock selected among fFPH clock, fc/16 clock, and fs clock is divided by 4 and input to this prescaler. This is selected by prescaler clock selection register SYSCR0<PRCK1:0>.

Resetting sets <PRCK1:0> to 00, therefore fFPH/4 clock is input.

The 16-bit timer 4, 5 selects between 3 clock inputs: ϕ T1, ϕ T4, and ϕ T16 among the prescaler outputs.

This prescaler can be run or stopped by the timer operation control register TRUN<PRRUN>. Counting starts when <PRRUN> is set to 1, while the prescaler is cleared to 0 and stops operation when <PRRUN> is set to 0.

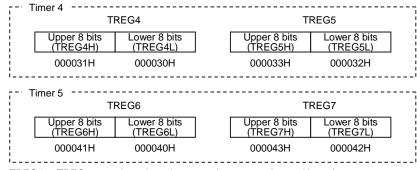
When the IDLE1 mode (Operates only oscillator) is used, set TRUN<PRRUN> to 0 to stop this prescaler before "HALT" instruction is executed.

2. Up counter

UC4 is a 16-bit binary counter which counts up according to the input clock specified by T4MOD<T4CLK1:0> register.

As the input clock, one of the internal clocks $\phi T1$, $\phi T4$, and $\phi T16$ from 9-bit prescaler (also used for 8-bit timer), and external clock from TI4 pin (also used as P42/INT4 pin) can be selected. When reset, it will be initialized to $\langle T4CLK1:0 \rangle = 00$ to select TI4 input mode. Counting or stop and clear of the counter is controlled by timer operation control register TRUN $\langle T4RUN \rangle$.

When clearing is enabled, up counter UC4 will be cleared to 0 each time it coincides matches the timer register TREG5. The "clear enable/disable" is set by T4MOD<CLE>.


If clearing is disabled, the counter operates as a free-running counter.

A timer overflow interrupt (INTTO4) is generated when UC4 overflow occurs.

3. Timer registers

These two 16-bit registers are used to set the interval time. When the value of up counter UC4 matches the set value of this timer register, the comparator match detect signal will be active.

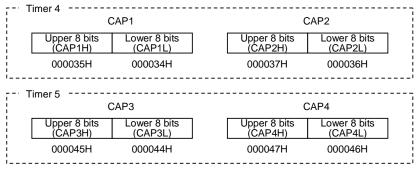
Setting data for both upper and lower timer registers (TREG4 and TREG5) is always needed. For example, either using 2-byte data transfer instruction or using 1-byte data transfer instruction twice for lower 8 bits and upper 8 bits in order.

TREG4 to TREG7 are write-only registers, so they can not be read by software.

TREG4 timer register is of double buffer structure, which is paired with register buffer. The timer control register T45CR<DB4EN> controls whether the double buffer structure should be enabled or disabled. Disabled when $\langle DB4EN \rangle = 0$, while enabled when $\langle DB4EN \rangle = 1$.

When the double buffer is enabled, the timing to transfer data from the register buffer to the timer register is at the match between the up counter (UC4) and timer register TREG5.

After reset, TREG4 and TREG5 are undefined. To use the 16-bit timer after reset, data should be written beforehand.


When reset, it will be initialized to $\langle DB4EN \rangle = 0$, whereby the double buffer is disabled. To use the double buffer, write data in the timer register, set $\langle DB4EN \rangle = 1$, and then write the following data in the register buffer.

TREG4 and register buffer are allocated to the same memory addresses 000030H/000031H. When $\langle DB4EN \rangle = 0$, same value will be written in both the timer register and register buffer. When $\langle DB4EN \rangle = 1$, the value is written into only the register buffer.

4. Capture register

These 16-bit registers are used to latch the values of the up counter.

Data in the capture registers should be read all 16 bits. For example, using a 2-byte data load instruction or two 1-byte data load instruction, from the lower 8-bit followed by the upper 8 bits.

CAP1 to CAP4 are read-only registers, so it cannot be written by software.

5. Capture input control

This circuit controls the timing to latch the value of up counter UC4 into CAP1, CAP2. The latch timing of capture register is controlled by register T4MOD<CAP12M 1:0>.

• When T4MOD<CAP12M1:0> = 00

Capture function is disabled. Disable is the default on reset.

• When T4MOD < CAP12M1:0 > = 01

Data is loaded to CAP1 at the rise edge of TI4 pin (also used as P42/INT4) input, while data is loaded to CAP2 at the rise edge of TI5 pin (also used as P43/INT5) input.

• When T4MOD<CAP12M1:0> = 10

Data is loaded to CAP1 at the rise edge of TI4 pin input, while to CAP2 at the fall edge. Only in this setting, interrupt INT4 occurs at fall edge.

• When T4MOD < CAP12M1:0 > = 11

Data is loaded to CAP1 at the rise edge of timer flip-flop TFF1, while to CAP2 at the fall edge.

Besides, the value of up counter can be loaded to capture registers by software. Whenever "0" is written in T4MOD<CAP1IN> the current value of up counter will be loaded to capture register CAP1. It is necessary to keep the prescaler in RUN mode (TRUN<PRRUN> to be "1").

6. Comparator

These are 16-bit comparators which compare the up counter UC4 value with the set value of (TREG4, TREG5) to detect the match. When a match is detected, the comparators generate an interrupt (INTTR4, INTTR5) respectively. The up counter UC4 is cleared only when UC4 matches TREG5. (The clearing of up counter UC4 can be disabled by setting T4MOD<CLE> = 0.)

7. Timer flip-flop (TFF4)

This flip-flop is inverted by the match detect signal from the comparators and the latch signals to the capture registers. Disable/enable of inversion can be set for each element by T4FFCR<CAP2T4, CAP1T4, EQ5T4, EQ4T4>. After reset, the value of TFF4 is undefined. TFF4 will be inverted when "00" is written in T4FFCR<TFF4C1:0>. Also it is set to "1" when "01" is written, and set to "0" when "10" is written. The value of TFF4 can be output to the timer output pin TO4 (also used as P44). Timer output should be specified by the function register of port 4. (See register for port 4 in Figure 3.5.11.)

(1) 16-bit timer mode

Generating interrupts at fixed intervals

In this example, the interval time is set in the timer register TREG5 to generate the interrupt INTTR5.

```
7 6 5 4 3 2 1 0
TRUN
                        0 - - - -
                                                  Stop timer 4.
INTET54
                     0 0 1 0 0 0
                                                  Enable INTTR5 and sets interrupt level 4. Disable INTTR4.
T4FFCR
            ← X X 0 0 0 0 1 1
                                                  Disable trigger.
T4MOD
            \leftarrow 0 0 1 0 0 1
                                                  Select internal clock for input and disable the capture
                                                  function.
TREG5
                                                  Set the interval time (16 bits).
TRUN
                                                  Start timer 4.
```

X: Don't care, -: No change

(2) 16-bit event counter mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TI4 pin input) as the input clock. To read the value of the counter, first perform "software capture" once and read the captured value.

The counter counts at the rise edge of TI4 pin input.

TI4 pin can also be used as P42/INT4.

Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

```
7 6 5 4 3 2 1 0
TRUN
                 X - 0 - -
                                               Stop timer 4.
P4CR
                                               Set P42 to input mode.
INTET54
            ← 1 1 0 0 1 0 0 0
                                               Enable INTTR5 and sets interrupt level 4, while disables
                                               INTTR4.
T4FFCR
            ← X X 0 0 0 0 1 1
                                               Disable trigger.
T4MOD
            \leftarrow 0 0 1 0 0 1 0 0
                                               Select TI4 as the input clock.
TREG5
                                               Set the number of counts (16 bits).
TRUN
            ← 1 X - 1 - -
                                               Start timer 4.
```

X: Don't care, -: No change

When used as an event counter, set the prescaler in RUN mode. (TRUN<PRRUN> = 1)

(3) 16-bit programmable pulse generation (PPG) output mode

Square wave pulse can be generated at any frequency and duty by timer 4. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TFF4 that is to be enabled by the match of the up counter UC4 with the timer register TREG4 or TREG5 and to be output to TO4 (also used as P44). In this mode, the following conditions must be satisfied.

(Set value of TREG4) < (Set value of TREG5)

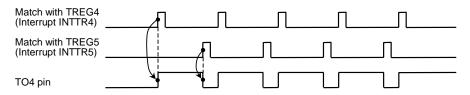


Figure 3.8.10 Programmable Pulse Generation (PPG) Output Waveforms

When the double buffer of TREG4 is enabled in this mode, the value of register buffer 4 will be shifted in TREG4 at match with TREG5. This feature makes easy the handling of low duty waves.

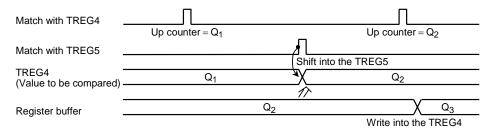


Figure 3.8.11 Operation of Register Buffer

Shows the block diagram of this mode.

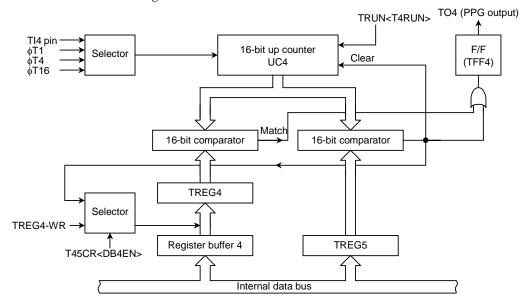


Figure 3.8.12 Block Diagram of 16-Bit PPG Mode

In 16-bit PPG mode, set the registers is the following order:

```
7 6 5 4 3 2 1 0
T45CR
             \leftarrow 0 X X X X X \rightarrow 0
                                                  Double buffer of TRG4 disable.
TRUN
                     - 0 - -
                                                  Stop timer 4.
TREG4
                                                  Set the duty (16 bits).
                     * * * * * *
TREG5
                                                  Set the cycle (16 bits).
T45CR
             \leftarrow 0 X X X X X - 1
                                                  Double buffer of TREG4 enable.
                                                  (Change the duty and cycle at the interrupt INTTR5.)
                                                  Set the mode to invert TFF4 at the match with
T4FFCR
             ← X X 0 0 1 1 1 0
                                                  TREG4/TREG5, and also set the TFF4 to "0".
T4MOD
             ← 0 0 1 0 0 1 * *
                                                  Select the internal clock for the input, and disable the capture
                                                  function.
                    (** = 01, 10, 11)
P4CR
                   - - 1 - -
                                                  Assign P44 as TO4.
P4FC
                  X X 1 X X X X
TRUN
                                                  Start timer 4.
```

TOSHIBA

(4) Application examples of capture function

Used capture function, they can be applied in many ways, for example:

- 1. One-shot pulse output from external trigger pulse
- 2. Frequency measurement
- 3. Pulse width measurement
- 4. Time difference measurement
- 1. One-shot pulse output from external trigger pulse

Set to T4MOD<CAP12M1:0> = 01.

Set the up counter UC4 in free-running mode with the internal input clock, input the external trigger pulse from TI4 pin, and load the value of up counter into capture register CAP1 at the rise edge of the TI4 pin.

When the interrupt INT4 is generated at the rise edge of TI4 input, set the CAP1 value (c) plus a delay time (d) to TREG4 (= c + d), and set the above set value (c + d) plus a one-shot pulse width (p) to TREG5 (= c + d + p). When the interrupt INT4 occurs the T4FFCR<EQ5T4, EQ4T4>register should be set "11" and that the TFF4 inversion is enabled only when the up counter value matches TREG4 or TREG5. When interrupt INTTR5 occurs, this inversion will be disabled after one-shot pulse is output.

The (c), (d) and (p) correspond to c, d and p in Figure 3.8.13.

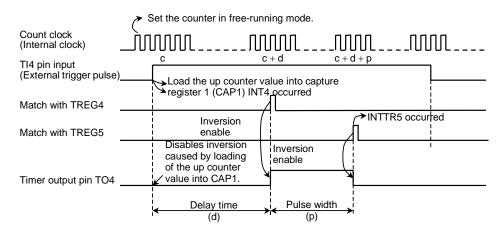
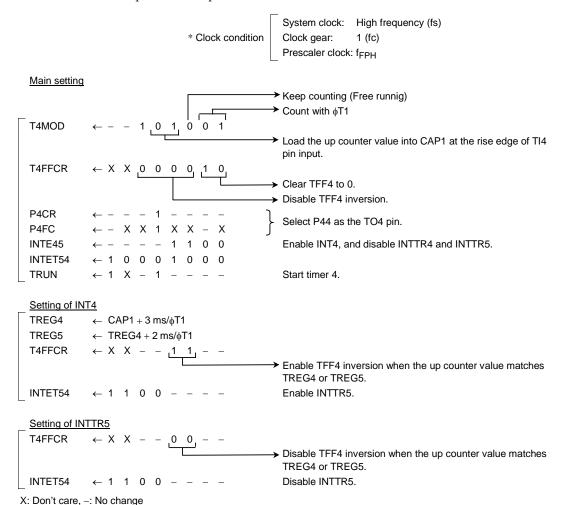



Figure 3.8.13 One-shot Pulse Output (with Delay)

Setting example: To output 2 ms one-shot pulse with 3 ms delay to the external trigger pulse to TI4 pin

When delay time is unnecessary, invert timer flip-flop (TFF4) when the up counter value is loaded into capture register 1 (CAP1), and set the CAP1 value (c) plus the one-shot pulse width (p) to TREG5 when the interrupt INT4 occurs. The TFF4 inversion should be enabled when the up counter (UC4) value matches TREG5, and disabled when generating the interrupt INTTR5.

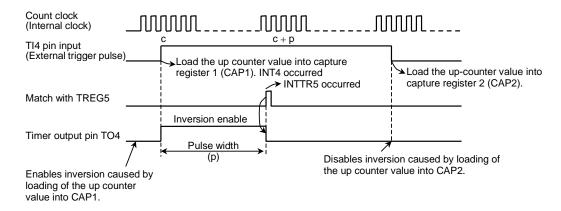


Figure 3.8.14 One-shot Pulse Output (without Delay)

2. Frequency measurement

The frequency of the external clock can be measured in this mode. The clock is input through the TI4 pin, and its frequency is measured by the 8-bit timers (Timer 0 and timer 1) and the 16-bit timer/event counter (Timer 4).

The TI4 pin input should be selected for the input clock of Timer 4. Set to T4MOD<CAP12M1:0> = 11. The value of the up counter is loaded into the capture register CAP1 at the rise edge of the timer flip-flop (TFF1) of 8-bit timers (Timer 0 and timer 1), and into CAP2 at its fall edge.

The frequency is calculated by the difference between the loaded values in CAP1 and CAP2 when the interrupt (INTT0 or INTT1) is generated by either 8-bit timer

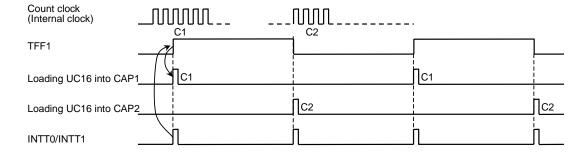


Figure 3.8.15 Frequency Measurement

For example, if the value for the level "1" width of TFF1 of the 8-bit timer is set to 0.5 seconds and the difference between CAP1 and CAP2 is 100, the frequency will be $100 \div 0.5$ [s] = 200 [Hz].

3. Pulse width measurement

This mode allows to measure the "H" level width of an external pulse. While keeping the 16-bit timer/event counter counting (Free running) with the internal clock input, the external pulse is input through the TI4 pin. Then the capture function is used to load the UC4 values into CAP1 and CAP2 at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT4 occurs at the falling edge of TI4.

The pulse width is obtained from the difference between the values of CAP1 and CAP2 and the internal clock cycle.

For example, if the internal clock is 0.8 microseconds and the difference between CAP1 and CAP2 is 100, the pulse width will be $100 \times 0.8 \,\mu s = 80 \,\mu s$.

Additionally, the pulse width which is over the UC4 maximum count time specified by the clock source can be measured by changing software.

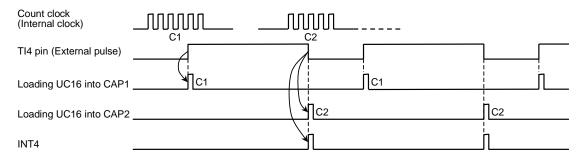


Figure 3.8.16 Pulse Width Measurement

Note: Only in this pulse width measuring mode (T4MOD<CAP12M1:0> = 10), external interrupt INT4 occurs at the falling edge of TI4 pin input. In other modes, it occurs at the rising edge.

The width of "L" level can be measured by multiplying the difference between the first C2 and the second C1 at the second INT interrupt and the internal clock cycle together. See Figure 3.8.17 "Time Difference Measurement".

4. Time difference measurement

This mode is used to measure the difference in time between the rising edges of external pulses input through TI4 and TI5.

Keep the 16-bit timer/event counter (Timer 4) counting (Free running) with the internal clock, and load the UC4 value into CAP1 at the rising edge of the input pulse to TI4. Then the interrupt INT4 is generated.

Similarly, the UC4 value is loaded into CAP2 at the rising edge of the input pulse to TI5, generating the interrupt INT5.

The time difference between these pulses can be obtained from the difference between the time counts at which loading the up counter value into CAP1 and CAP2 was performed. (= $(CAP2 - CAP1) \times the internal clock cycle.)$

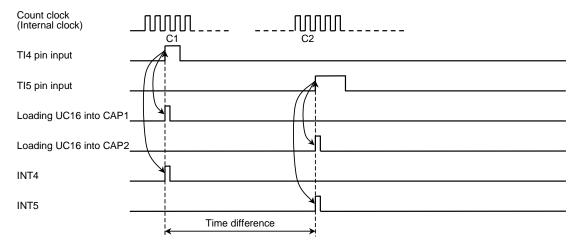
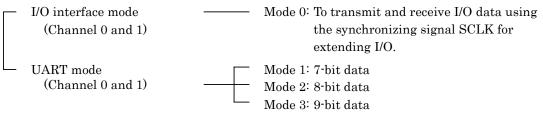
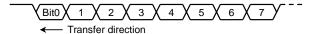



Figure 3.8.17 Time Difference Measurement

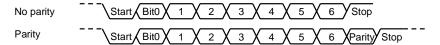
3.9 Serial Channel

TMP93CS44/TMP93CS45 contains 2 serial I/O channels for full duplex asynchronous transmission (UART) as well as for I/O extension.

The serial channel has the following operation modes.



In mode 1 and mode 2, a parity bit can be added. Mode 3 has wakeup function for making the master controller start slave controllers in serial link (Multi-controller system).


Figure 3.9.1 shows the data format (for one frame) in each mode.

Serial channel 0 and 1 can be used independently.


• Mode 0 (I/O interface mode)

Mode 1 (7-bit UART mode)

Mode 2 (8-bit UART mode)

Mode 3 (9-bit UART mode)

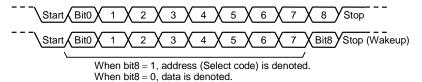


Figure 3.9.1 Data Formats

The serial channel has a buffer register for transmitting and receiving operations, in order to temporarily store transmitted or received data, so that transmitting and receiving operations can be done independently (Full duplex).

However, in I/O interface mode, SCLK (Serial clock) pin is used for both transmission and receiving, the channel becomes half duplex.

The receiving data register is of a double buffer structure to prevent the occurrence of overrun error and provides one frame of margin before CPU reads the received data. The receiving data register stores the already received data while the buffer register receives the next frame data.

By using $\overline{\text{CTS}}$ and $\overline{\text{RTS}}$ (there is no $\overline{\text{RTS}}$ pin, so any 1 port must be controlled by software), it is possible to halt data send until the CPU finishes reading receive data every time a frame is received (Handshake function).

In the UART mode, a check function is added not to start the receiving operation by error start bits due to noise. The channel starts receiving data only when the start bit is detected to be normal at least twice in three samplings.

When the transmission buffer becomes empty and requests the CPU to send the next transmission data, or when data is stored in the receiving data register and the CPU is requested to read the data, INTTX or INTRX interrupt occurs. Besides, if an overrun error, parity error, or framing error occurs during receiving operation, flag SCOCR/SC1CR<OERR, PERR, FERR> will be set.

The serial channel 0/1 includes a special baud rate generator, which can set any baud rate by dividing the frequency of 4 clocks (ϕ T0, ϕ T2, ϕ T8, and ϕ T32) from the internal prescaler (shared by 8- or 16-bit timer) by the value 1 to 16. In addition, serial channel 0/1 can operated by using external input clock (SCLK).

In I/O interface mode, it is possible to input synchronous signals as well as to transmit or receive data by external clock.

3.9.1 Control registers

The serial channel 0 is controlled by 3 control registers SC0CR, SC0MOD and BR0CR. Transmitted and received data are stored in register SC0BUF.

The serial channel 1 has same registers (SC1CR, SC1MOD, BR1CR and SC1BUF).

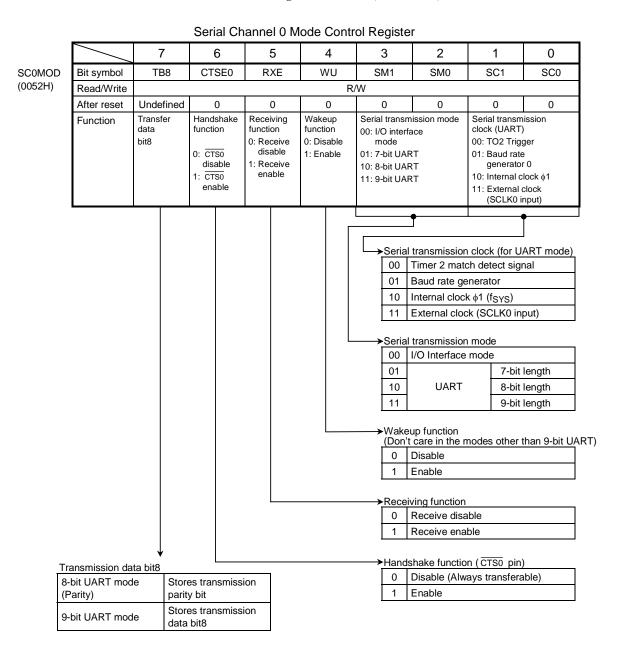
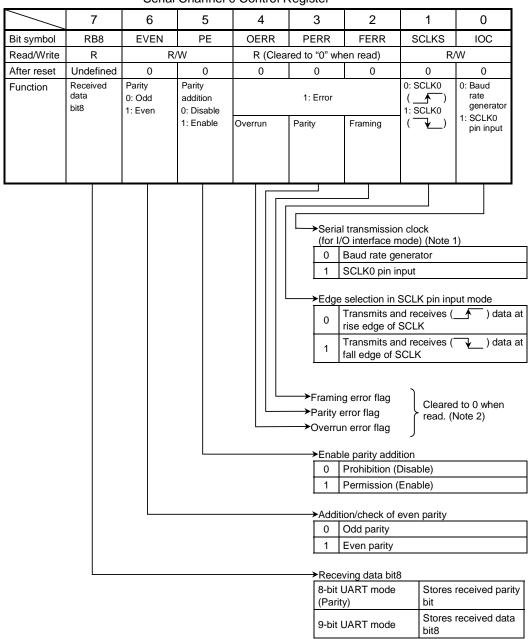
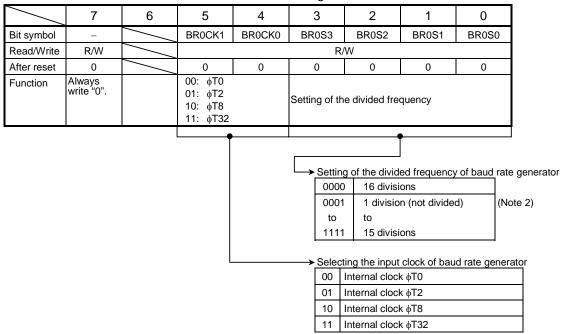



Figure 3.9.2 Serial Channel 0 Related Register (1/7)

Serial Channel 0 Control Register

SC0CR (0051H)


Note 1: To use baud rate generator, set TRUN<PRRUN> to 1, putting the prescaler in RUN mode.

Note 2: As all error flags are cleared after reading, do not test only a single bit with a bit testing instruction.

Figure 3.9.3 Serial Channel 0 Related Register (2/7)

Baud Rate Generator 0 Control Register

BR0CR (0053H)

Note 1: To use baud rate generator, set TRUN<PRRUN> to 1, putting the prescaler in RUN mode.

Note 2: "1 division" of baud rate generator can be used only UART mode. Do not set it in I/O interface mode.

Note 3: Bit6 of BR0CR is read as 1.

Note 4: Don't read from or write to BR0CR register during sending or receiving.

Serial Channel 0 Buffer Register

SC0BUF (0050H) Prohibit readmodifywrite

					0			
	7	6	5	4	3	2	1	0
Bit symbol	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
,	TB7	TB6 TB5 TB4 TB3 TB2 TB1 TB0						
Read/Write		R (Receiving)/W (Transmission)						
After reset				Unde	fined			

Figure 3.9.4 Serial Channel 0 Related Registers (3/7)

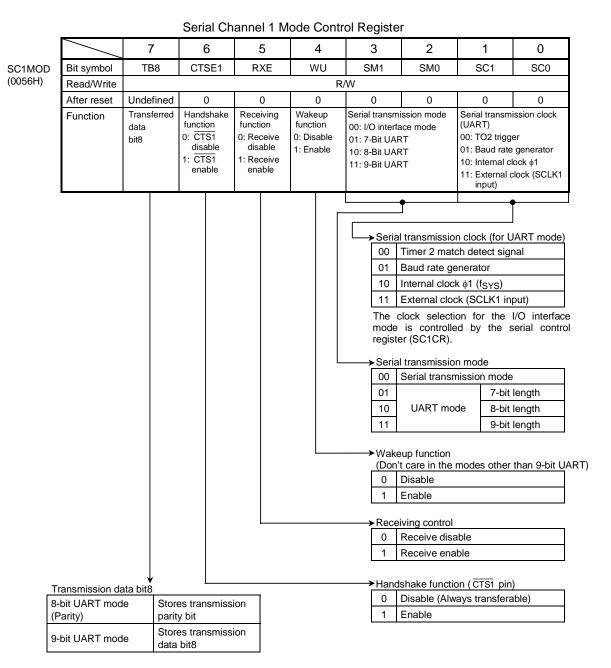
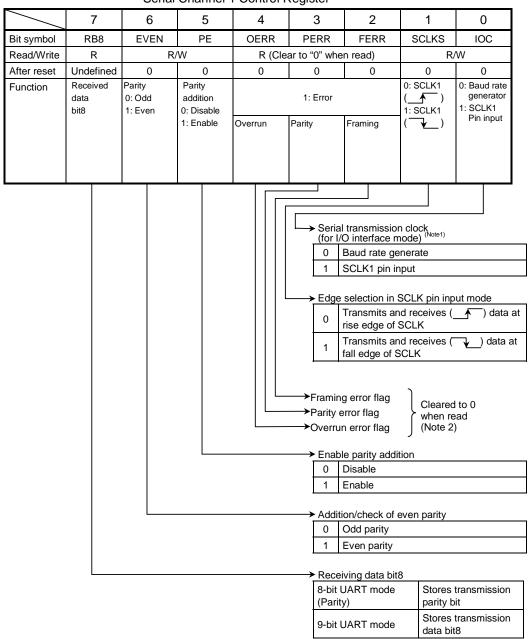
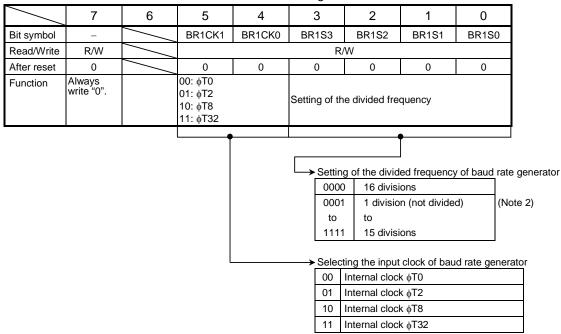



Figure 3.9.5 Serial Channel 1 Related Register (4/7)

Serial Channel 1 Control Register

SC1CR (0055H)


Note 1: To use baud rate generator, set TRUN<PRRUN> to 1, putting the prescaler in RUN mode.

Note 2: As all error flags are cleared after reading, do not test only a single bit with a bit testing instruction.

Figure 3.9.6 Serial Channel 1 Related Register (5/7)

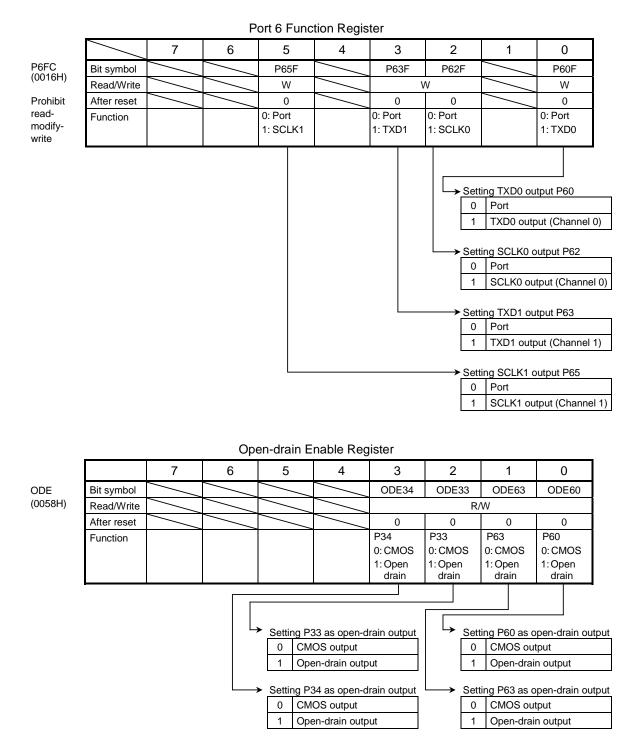
Baud Rate Generator 1 Control Register

BR1CR (0057H)

Note 1: To use baud rate generator, set TRUN<PRRUN> to "1", putting the prescaler in RUN mode.

Note 2: "1 division" of baud rate generator can be used only UART mode. Do not set it in I/O interface mode.

Note 3: Bit6 of BR1CR is read as "1".


Note 4: Don't read from or write to BR1CR register during sending or receiving.

Serial Channel 1 Buffer Register

SC0BUF (0054H) Prohibit readmodifywrite

					0			
	7	6	5	4	3	2	1	0
Bit symbol	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
	TB7	TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0						
Read/Write		R (Receiving)/W (Transmission)						
After reset				Unde	fined			

Figure 3.9.7 Serial Channel 1 Related Registers (6/7)

Note: Bit7 to 4 of ODE are read as 1.

Figure 3.9.8 Serial Channel Related Registers (7/7)

3.9.2 Configuration

Figure 3.9.9 shows the block diagram of the serial channel 0.

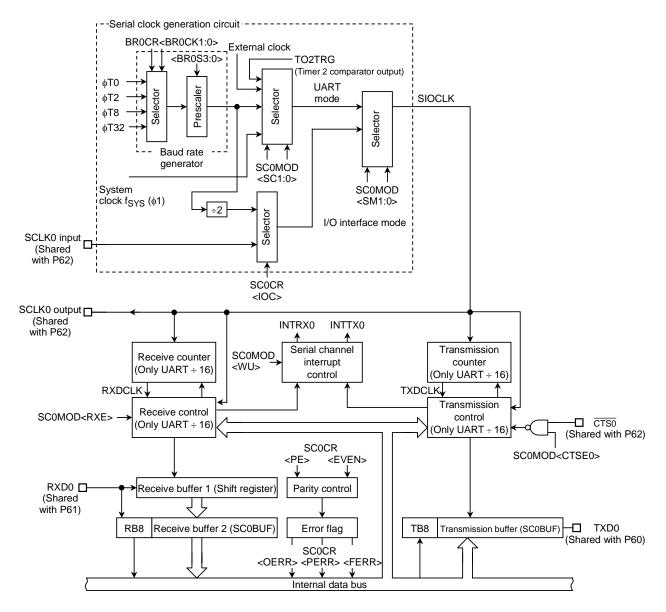


Figure 3.9.9 Block Diagram of the Serial Channel 0

Figure 3.9.10 shows the block diagram of the serial channel 1.

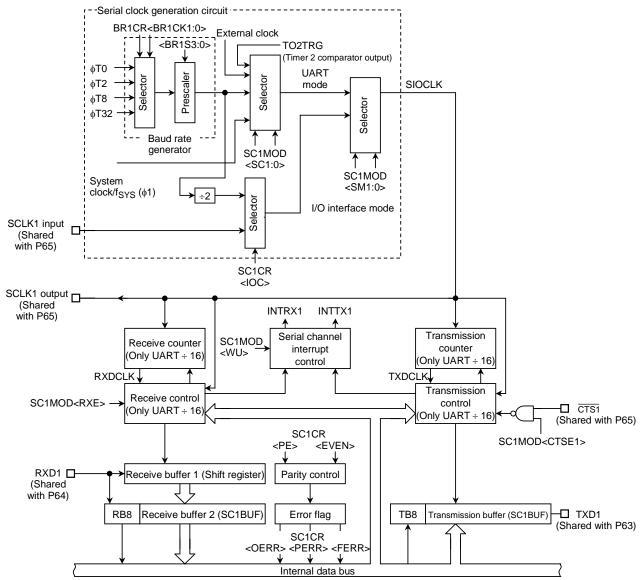


Figure 3.9.10 Block Diagram of the Serial Channel 1

1. Prescaler

There are 9-bit prescaler and prescaler clock selection registers to generate input clock for 8-bit timer 0, 1, 2, 3, 16-bit timer 4, 5, and serial interface 0, 1.

Figure 3.9.11 shows the block diagram. Table 3.9.1 shows prescaler clock resolution into the baud rate generator.

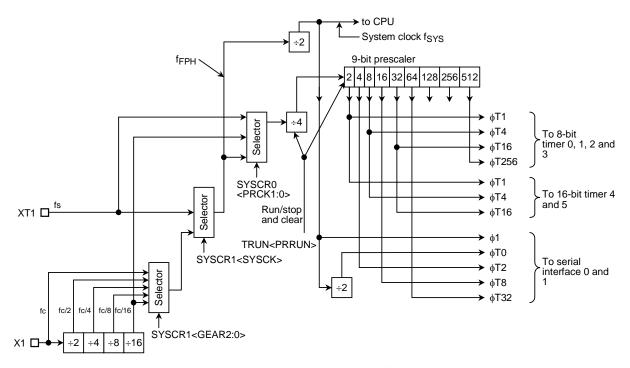


Figure 3.9.11 The Block Diagram of Prescaler

Table 3.9.1 Prescaler Clock Resolution to Baud Rate Generator

at fc = 20 MHz, fs = 32.768 kHz

						AIIC = 20 IVIMZ, IS	- 32.700 KI IZ			
Select System Clock	Select Prescaler Clock	Coor Volue		alue Prescaler Output Clock Resolution						
<sysck></sysck>	<prck1:0></prck1:0>	<gear2:0></gear2:0>	ф1	φТО	φТ2	фТ8	φТ32			
1 (fs)		XXX	fs/2 (61 μs)	fs/2 ² (122 μs)	fs/2 ⁴ (488.5 μs)	fs/2 ⁶ (1.95 μs)	fs/2 ⁸ (7.8 μs)			
		000 (fc)	fc/2 (0.1 μs)	$fc/2^2 (0.2 \mu s)$	fc/2 ⁴ (0.8 μs)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)			
	00 (f _{FPH})	001 (fc/2)	fc/2 ² (0.2 μs)	$fc/2^3 (0.4 \mu s)$	fc/2 ⁵ (1.6 μs)	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)			
0 (fc)	OO (IFPH)	010 (fc/4)	fc/2 ³ (0.4 μs)	fc/2 ⁴ (0.8 μs)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)	fc/2 ¹⁰ (51.2 μs)			
		011 (fc/8)	fc/2 ⁴ (0.8 μs)	fc/2 ⁵ (1.6 μs)	fc/2 ⁷ (6.4 μs)	fc/2 ⁹ (25.6 μs)	fc/2 ¹¹ (102.4 μs)			
		100 (fc/16)	fc/2 ⁵ (1.6 μs)	fc/2 ⁶ (3.2 μs)	fc/2 ⁸ (12.8 μs)	fc/2 ¹⁰ (51.2 μs)	fc/2 ¹² (204.8 μs)			
XXX	01 (Low-frequency clock)	XXX	_	-	fs/2 ⁴ (488.5 μs)	fs/2 ⁶ (1.95 μs)	fs/2 ⁸ (7.8 μs)			
XXX	10 (Note) (fc/16 clock)	XXX	_	_	fc/2 ⁸ (12.8 μs)	fc/2 ¹⁰ (51.2 μs)	fc/2 ¹² (204.8 μs)			

XXX: Don't care, -: Can not use

Note: The fc/16 clock as a prescaler prescaler clock can not be used when the fs is used as a system clock.

The clock selected among fFPH clock, fc/16 clock, and fs clock is divided by 4 and input to this prescaler.

This is selected by prescaler clock selection register SYSCR0<PRCK1:0>.

Resetting sets <PRCK1:0> to "00" and selects the fFPH clock input divided by 4.

The baud rate generator selects between 4 clock inputs: $\phi T0$, $\phi T2$, $\phi T8$, and $\phi T32$ among the prescaler outputs.

The prescaler can be run or stopped by the timer operation control register TRUN<PRRUN>. Counting starts when <PRRUN> is set to "1", while the prescaler is cleared to zero and stops operation when <PRRUN> is set to "0".

When the IDLE1 mode (operates only oscillator) is used, set TRUN<PRRUN> to "0" to reduce the power consumption of this prescaler before "HALT" instruction is executed.

2. Baud rate generator

Baud rate generator comprises a circuit that generates transmission and receiving clocks to determine the transfer rate of the serial channel.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$, or $\phi T32$ is generated by the 9-bit prescaler which is shared by the timers. One of these input clocks is selected by the baud rate generator control register BR0CK<BR0CK1:0>.

The baud rate generator includes a 4-bit frequency divider, which divides frequency by 1 to 16 values to determine the transfer rate.

How to calculate a transfer rate when the baud rate generator is used is explained below.

UART mode

$$Baud\ rate = \frac{Input\ clock\ of\ baud\ rate\ generator}{Frequency\ divisor\ of\ baud\ rate\ generator}\ \ \div 16$$

• I/O interface mode

$$Baud\ rate = \frac{Input\ clock\ of\ baud\ rate\ generator}{Frequency\ divisor\ of\ baud\ rate\ generator}\ \div 2$$

Accordingly, when source clock fc is 12.288 MHz, input clock is ϕ T2 (fc/16), and frequency divisor is 5, the transfer rate in UART mode becomes as follows:

Baud rate =
$$\frac{\text{fc/16}}{5} \div 16$$

= $12.288 \times 10^6 \div 16 \div 5 \div 16 = 9600 \text{ (bps)}$

The maximum baud rate of this baud rate generator is 307.2 kbps.

Table 3.9.2 shows an example of the transfer rate in UART mode.

Also with 8-bit timer 2, the serial channel can get a transfer rate. Table 3.9.3 shows an example of baud rate using timer 2.

Table 3.9.2 Selection of UART Transfer Rate (1) (when baud rate generator is used)

Unit (kbps)

fc [MHz]	Input Clock Frequency Divisor	φT0 (4/fc)	φT2 (16/fc)	φT8 (64/fc)	φT32 (256/fc)
9.830400	1	153.600	38.400	9.600	2.400
	2	76.800	19.200	4.800	1.200
	4	38.400	9.600	2.400	0.600
	8	19.200	4.800	1.200	0.300
	16	9.600	2.400	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
	10	19.200	4.800	1.200	0.300
14.745600	1	230.400	57.600	14.400	3.600
	3	76.800	19.200	4.800	1.200
	6	38.400	9.600	2.400	0.600
	12	19.200	4.800	1.200	0.300
17.2032	7	38.400	9.600	2.400	0.600
	14	19.200	4.800	1.200	0.300
19.6608	2	153.600	38.400	9.600	2.400
	4	76.800	19.200	4.800	1.200
	8	38.400	9.600	2.400	0.600
	16	19.200	4.800	1.200	0.300

Note 1: Transfer rate in I/O interface mode is 8 times faster than the values given in the above table.

Note 2: This table is calculated when fc is selected as a system clock, fc/1 as a clock gear, and the system clock as a prescaler clock.

Table 3.9.3 Selection of UART Transfer Rate (2) (when timer 2 (input clock ∮T1) is used)

Unit (kbps)

							OTHE (REPO)
fc TREG2	19.6608 MHz	14.7456 MHz	12.288 MHz	12 MHz	9.8304 MHz	8 MHz	6.144 MHz
1H	153.6	115.2	96		76.8	62.5	48
2H	76.8	57.6	48		38.4	31.25	24
3H	51.2	38.4	32	31.25			16
4H	38.4	28.8	24		19.2		12
5H	30.72	23.04	19.2				9.6
8H	19.2	14.4	12		9.6		6
AH	15.36	11.52	9.6				4.8
10H	9.6	7.2	6		4.8		3
14H	7.68	5.76	4.8				2.4

How to calculate the transfer rate (when timer 2 is used):

$$\begin{aligned} \text{Transfer rate} = \frac{\text{The clock frequency selected by the register SYSCR0}}{\text{TREG2} \times \underline{8} \times 16} \\ \text{(when timer 2 (input clock ϕT1) is used)} \end{aligned}$$

Note 1: Timer 2 match detect signal cannot be used as the transfer clock in I/O interface mode.

Note 2: This table is calculated when fc is selected as a system clock, fc/1 as a clock gear, and the system clock as a prescaler clock.

3. Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

• I/O interface mode

When in SCLK output mode with the setting of SCOCR<IOC> = 0, the basic clock will be generated by dividing by 2 the output of the baud rate generator described before. When in SCLK input mode with the setting of SCOCR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of SCOCR<SCLKS> register to generate the basic clock.

• UART mode

According to the setting of SC0MOD<SC1:0>, the above baud rate generator clock, internal clock $\phi 1$ (Max 625 kbps at fc = 20 MHz), the match detect signal from timer 0, or external clock SCLK0 will be selected to generate the basic clock SIOCLK.

4. Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode and counts up by SIOCLK clock. 16 pulses of SIOCLK are used for receiving 1 bit of data, and the data bit is sampled three times at 7th, 8th and 9th clock.

With the three samples, the received data is evaluated by the rule of majority.

For example, if the sampled data bit is "1", "0" and "1" at 7th, 8th and 9th clock respectively, the received data is evaluated as "1". The sampled data "0", "0" and "1" is evaluated that the received data is "0".

5. Receiving control

• I/O interface mode

When in SCLK output mode with the setting of SC0CR<IOC> = 0, RXD0 signal will be sampled at the rising edge of shift clock which is output to SCLK0 pin.

When in SCLK input mode with the setting SC0CR<IOC>= 1 RXD0 signal will be sampled at the rising edge or falling edge of SCLK0 input according to the setting of SC0CR<SCLKS> register.

UART mode

The receiving control has a circuit for detecting the start bit by the rule of majority. When two or more "0" are detected during 3 samples, it is recognized as start bit and the receiving operation is started.

Data being received are also evaluated by the rule of majority.

6. Receiving buffer

To prevent overrun error, the receiving buffer has a double buffer structure.

Received data are stored one bit by one bit in the receiving buffer 1 (Shift register type). When 7 bits or 8 bits of data is stored in the receiving buffer 1, the stored data are transferred to the receiving buffer 2 (SC0BUF), generating an interrupt INTRXO. The CPU reads only receiving buffer 2 (SC0BUF). Even before the CPU reads the receiving buffer 2 (SC0BUF), the received data can be stored in the receiving buffer 1. However, unless the receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by the receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of the receiving buffer 1 will be lost, although the contents of the receiving buffer 2 and SC0CR<RB8> is still preserved.

The parity bit added in 8-bit UART mode and the most significant bit (MSB) in 9-bit UART mode are stored in SCOCR<RB8>.

When in 9-bit UART mode, the wakeup function of the slave controllers is enabled by setting SC0MOD<WU> to 1, and interrupt INTRX0 occurs only when SC0CR<RB8> is set to 1.

7. Transmission counter

Transmission counter is a 4-bit binary counter which is used in UART mode and, counts by SIOCLK clock, generating TXDCLK every 16 clock pulses.

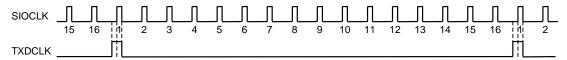


Figure 3.9.12 Generation of Transmission Clock

8. Transmission controller

I/O interface mode

In SCLK0 output mode with the setting of SC0CR<IOC>=0, the data in the transmission buffer are output bit by bit to TXD0 pin at the rising edge of shift clock which is output from SCLK0 pin.

In SCLK0 input mode with the setting of SC0CR<IOC>= "1", the data in the transmission buffer are output bit by bit to TXD0 pin at the rising edge or falling edge of SCLK0 input according to the setting of SC0CR<SCLKS> register.

• UART mode

When transmission data are written in the transmission buffer sent from the CPU, transmission starts at the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

Handshake function

The serial channels use the $\overline{\text{CTSO}}$ pin to transmit data in units of frames, thus preventing an overrun error. Use SC0MOD<CTSE0> to enable or disable the handshake function.

When $\overline{\text{CTS0}}$ goes high, data transmission is halted after the completion of the current transmission and is not restarted until $\overline{\text{CTS0}}$ returns to low. An INTTX0 interrupt is generated to request the CPU for the next data to transmit. When the CPU write the data to the transmit buffer, processing enters standby mode.

An \overline{RTS} pin is not provided, but a handshake function can easily be configured if the receiver sets any port assigned to the \overline{RTS} function to high (in the receive interrupt routine) after data receive, and requests the transmitter to temporarily halt transmission.

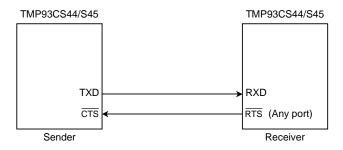
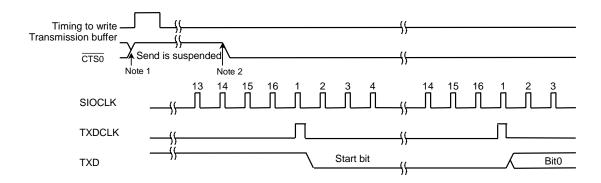



Figure 3.9.13 Handshake Function

Note 1: If the CTS signal rises during transmission, the next data is not sent after the completion of the current transmission

Note 2: Transmission starts at the first TXDCLK clock fall after the $\overline{\text{CTS}}$ signal falls.

Figure 3.9.14 Timing of CTS (Clear to send)

9. Transmission buffer

Transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU from the least significant bit (LSB) in order. When all bits are shifted out, the transmission buffer becomes empty and generates INTTX0 interrupt.

10. Parity control circuit

When serial channel control register SCOCR<PE>is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7- or 8-bit UART mode. With SCOCR <EVEN> register, even (odd) parity can be selected.

For transmission, parity is automatically generated according to the data written in the transmission buffer SC0BUF, and data are transmitted after being stored in SC0BUF<TB7> when in 7-bit UART mode while in SC0MOD<TB8> when in 8-bit UART mode. <PE> and <EVEN> must be set before transmission data are written in the transmission buffer.

For receiving, data are shifted in the receiving buffer 1, and parity is added after the data are transferred in the receiving buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> when in 7-bit UART mode and with SC0MOD<RB8> when in 8-bit UART mode. If they are not equal, a parity error occurs, and SC0CR<PERR> flag is set.

11. Error flag

Three error flags are provided to increase the reliability of receiving data.

1. Overrun error <OERR>

If all bits of the next data are received in receiving buffer 1 while valid data are stored in receiving buffer 2 (SC0BUF), an overrun error will occur.

2. Parity error <PERR>

The parity generated for the data shifted in receiving buffer 2 (SC0BUF) is compared with the parity bit received from RXD pin. If they are not equal, a parity error occurs.

3. Framing error <FERR>

The stop bit of received data is sampled three times around the center. If the majority is 0, a framing error occurs.

12. Signal generation timing

1) In UART mode

Receive

Mode	9-Bit	8-Bit + Parity	8-Bit, 7-Bit + Parity, 7-Bit
Timing for Interrupt Generation	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit
Timing for Framing Error Generation	Center of stop bit	Center of stop bit	Center of stop bit
Timing for Parity Error Generation	-	Center of last bit (Parity bit)	Center of stop bit
Timing for Overrun Error Generation	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit

Note: In 9-bit and 8-bit + parity mode, interrupts coincide with the ninth bit pulse. Thus, when serving the interrupt, it is necessary to want for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Send

Mode	9-Bit	8-Bit + Parity	8-Bit, 7-Bit + Parity, 7-Bit
Timing for Interrupt Generation	Immediately before stop bit sent	+	←

2) In I/O interface mode

Timing for Send	SCLK0 output mode	Immediately after rise of last SCLK0 signal (See Figure 3.9.17)
Interrupt Generation	SCLK0 input mode	Immediately after rise (Rising mode) or fall (Falling mode) of last SCLK0 signal (See Figure 3.9.18)
Timing for Receive	SCLK0 output mode	Immediately after final SCLK0 (when received data are transferred to receive buffer 2 (SC0BUF) (See Figure 3.9.19)
Interrupt Generation	SCLK0 input mode	Immediately after final SCLK0 (when received data are transferred to receive buffer 2 (SC0BUF) (See Figure 3.9.20)

3.9.3 Operational description

(1) Mode 0 (I/O interface mode)

This mode is used to increase the number of I/O pins of for transmitting or receiving data to or from the external shifter register.

This mode includes SCLK output mode to output synchronous clock SCLK0 and SCLK input mode to input external synchronous clock SCLK0.

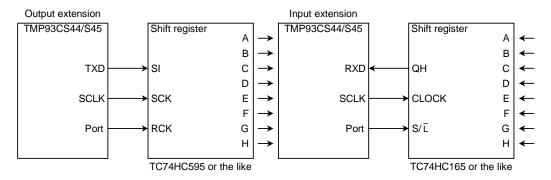


Figure 3.9.15 Example of SCLK Output Mode Connection

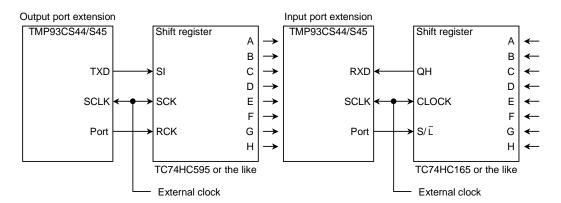


Figure 3.9.16 Example of SCLK Input Mode Connection

1. Transmission

In SCLK output mode, 8-bit data and synchronous clock are output from TXD0 pin and SCLK0 pin, respectively, each time the CPU writes data in the transmission buffer. When all data is output, INTESO<ITX0C> will be set to generate INTTX0 interrupt.

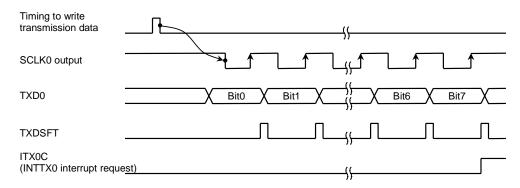


Figure 3.9.17 Transmitting Operation in I/O Interface Mode (SCLK output mode)

In SCLK output mode, 8-bit data are output from TXD0 pin when SCLK0 input becomes active while data are written in the transmission buffer by CPU.

When all data are output, INTESO<ITX0C> will be set to generate INTTX0 interrupt.

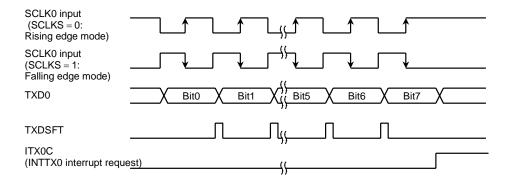


Figure 3.9.18 Transmitting Operation in I/O Interface Mode (SCLK input mode)

2. Receiving

In SCLK output mode, synchronous clock is outputted from SCLK0 pin and the data are shifted in the receiving buffer 1 whenever the receive interrupt flag INTES0<IRX0C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred in the receiving buffer 2 (SC0BUF) at the timing shown below, and INTES0<IRX0C> will be set again to generate INTRX0 interrupt.

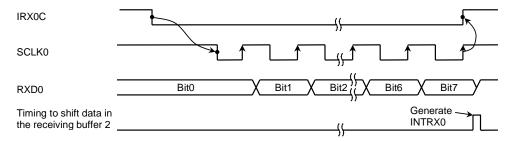


Figure 3.9.19 Receiving Operation in I/O Interface Mode (SCLK output mode)

In SCLK input mode, the data is shifted in the receiving buffer 1 when SCLK input becomes active while the receive interrupt flag INTESO<IRX0C> is cleared by reading the received data. When 8-bit data is received, the data will be shifted in the receiving buffer 2 (SC0BUF) at the timing shown below, and INTESO<IRX0C> will be set again to generate INTRX0 interrupt.

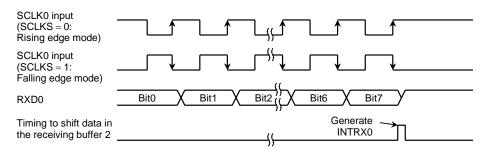
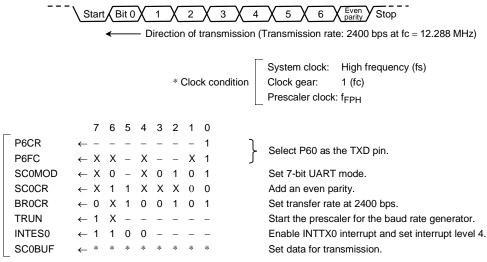


Figure 3.9.20 Receiving Operation in I/O Interface Mode (SCLK input mode)

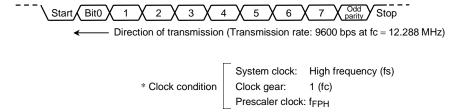

Note: For data receiving, the system must be placed in the receive enable state (SC0MOD<RXE> = 1).

(2) Mode 1 (7-bit UART mode)

7-bit UART mode can be set by setting serial channel mode register SC0MOD<SM1:0> to 01.

In this mode, a parity bit can be added, and the addition of a parity bit can be enabled or disabled by serial channel control register SCOCR<PE>, and even parity or odd parity is selected by SCOCR < EVEN> when < PE> is set to 1 (Enable).

Setting example: When transmitting data with the following format, the control registers should be set as described below.



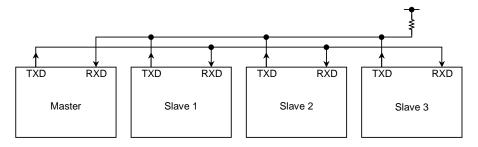
X: Don't care, -: No change

(3) Mode 2 (8-bit UART mode)

8-bit UART mode can be specified by setting SC0MOD<SM1:0> to 10. In this mode, parity bit can be added, the addition of a parity bit is enabled or disabled by SC0CR<PE>, and even parity or odd parity is selected by SC0CR<EVEN> when <PE> is set to 1 (Enable).

Setting example: When receiving data with the following format, the control register should be set as described below.

Main setting									
	7	6	5	4	3	2	1	0	
P6CR	← -	_	_	_	_	_	0	_	Select P61 (RXD) as the input pin.
SC0MOD	← -	0	1	Χ	1	0	0	1	Enable receiving in 8-bit UART mode.
SC0CR	← X	0	1	Χ	Χ	Χ	0	0	Add an odd parity.
BR0CR	← 0	Χ	0	1	0	1	0	1	Set transfer rate at 9600 bps.
TRUN	← 1	Χ	_	_	_	_	_	_	Start the prescaler for the baud rate generator.
INTES0	← -	_	_	_	1	1	0	0	Enable INTRX0 interrupt and set interrupt level 4.
X: Don't care,	–: No d	han	ge						
Interrupt pro	cessin	g							
A _{CC} ← SC0	CR AN	D 0	001	1100	0				Charlefor and
if $A_{CC} \neq 0$ the	en ER	ROF	?						Check for error.
$A_{CC} \leftarrow SCOI$	BUF								Read the received data.


(4) Mode 3 (9-bit UART mode)

9-bit UART mode can be specified by setting SC0MOD<SM1:0> to 11. In this mode, parity bit cannot be added.

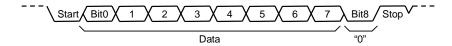
For transmission, the MSB (9th bit) is written in SC0MOD<TB8>, while in receiving it is stored in SC0CR<RB8>. For writing and reading the buffer, the MSB is read or written first then SC0BUF.

Wakeup function

In 9-bit UART mode, the wakeup function of slave controllers is enabled by setting SCOMOD < WU > to 1. The interrupt INTRX0 occurs only when < RB8 > = 1.

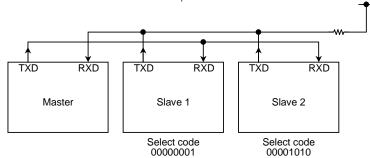


Note: TXD pin of the slave controllers must be in open drain output mode.


Figure 3.9.21 Serial Link Using Wakeup Function

Protocol

- 1. Select the 9-bit UART mode for the master and slave controllers.
- 2. Set SCOMOD<WU> bit of each slave controller to 1 to enable data receiving.
- 3. The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (Bit8) <TB8> is set to 1.



- 4. Each slave controller receives the above frame, and clears <WU> bit to 0 if the above select code matches its own select code.
- 5. The master controller transmits data to the specified slave controller whose SC0MOD<WU> bit is cleared to 0. The MSB (Bit8) <TB8> is cleared to 0.

- 6. The other slave controllers (with the <WU> bit remaining at 1) ignore the receiving data because their MSBs (Bit8 or <RB8>) are set to 0 to disable the interrupt INTRXO.
 - The slave controllers (<WU>=0) can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

Setting example: To link two slave controllers serially with the master controller, and use the internal clock $\phi 1$ as the transfer clock.

Since serial channels 0 and 1 operate in exactly the same way, channel 0 is used for the purposes of explanation.

• Setting the master controller

```
Main
P6CR
                                                   Select P60 as TXD0 pin and P61 as RXD0 pin.
P6FC
             ← X X − X − −
                                   X 1
INTES0
                1 1 0 0 1 1 0 1
                                                   Enable INTTX0 and set the interrupt level 4.
                                                   Enable INTRX0 and set the interrupt level 5.
SCOMOD
             \leftarrow 1 0 1 0 1 1 1 0
                                                   Set $\phi1$ as the transmission clock in 9-bit UART mode.
SC0BUF
             \leftarrow 0 0 0 0 0 0 1
                                                   Set the select code for slave controller 1.
INTTX0 interrupt
SCOMOD
                                                   Sets TB8 to "0".
SC0BUF
                                                   Set data for transmission.
```

• Setting the slave controller 2

```
INTRX0 interrupt
A_{CC} \leftarrow SC0BUF
if A_{CC} = Select code
Then SC0MOD \leftarrow ---0 ----
```

Clear <WU> to "0".

3.10 Serial Bus Interface (SBI)

The TMP93CS44/S45 has a 1-channel serial bus interface which employs a clocked synchronous 8-bit serial bus interface and an I^2C bus.

The serial bus interface is connected to an external device through P33 (SDA) and P34 (SCL) in the I²C bus mode; and through P32 (SCK), P33 (SO), and P34 (SI) in the clocked synchronous 8-bit SIO mode.

TMP93CS44/S45 has no an arbitration function which is necessary when two or more master devices scramble for the bus control. In master mode, other devices which are connected on the same bus need be slave devices (Single master).

Setting of every pins is as follows.

	ODE <ode34:33></ode34:33>	P3CR <p34c, p32c="" p33c,=""></p34c,>	P3FC <p32m, p32f="" p33f,="" p34f,=""></p32m,>
I ² C Bus Mode	11	11X	X110
Clock Synchronous 8-Bit SIO Mode	XX	011 010	1111

X: Don't care

3.10.1 Configuration

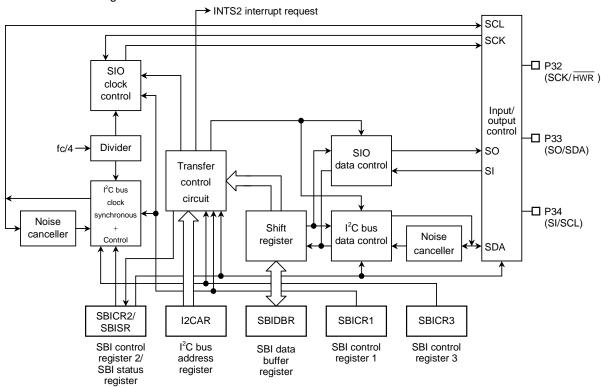
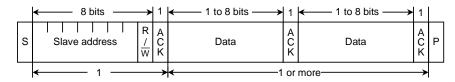


Figure 3.10.1 Serial Bus Interface (SBI)

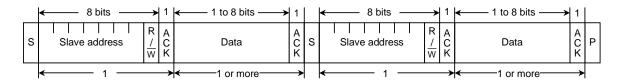
3.10.2 Serial bus interface (SBI) control

The following registers are used for control and operation status monitoring when using the serial bus interface (SBI).

- Serial bus interface control register 1 (SBICR1)
- Serial bus interface control register 2 (SBICR2)
- Serial bus interface control register 3 (SBICR3)
- Serial bus interface data buffer register (SBIDBR)
- I²C bus address register (I2CAR)
- Serial bus interface status register (SBISR)


The above registers differ depending on an mode to be used.

Refer to section $3.10.4~{\rm ``I^2C}$ Bus Mode Control" and $3.10.6~{\rm ``Clock}$ Synchronous 8-Bit SIO Mode Control".


3.10.3 The Data Formats in the I²C Bus Mode

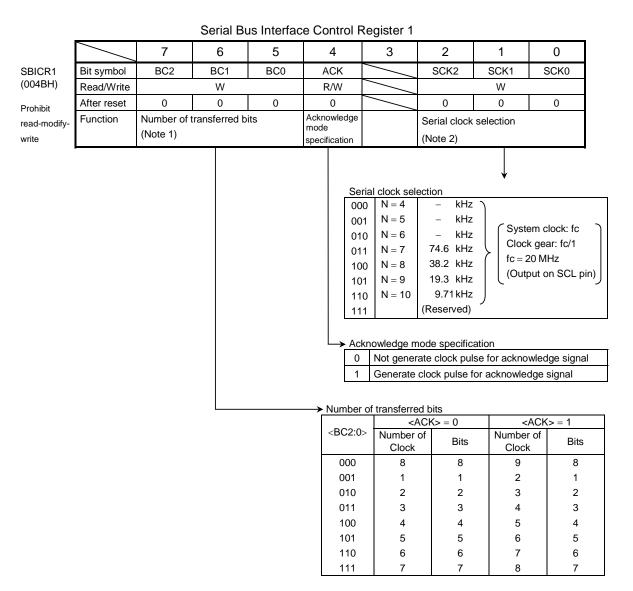
The data formats when using the TMP93CS44/S45 in the I2C bus mode are shown below.

(a) Addressing format

(b) Addressing format (with restart)

(c) Free data format

S: Start condition R/ W : Direction bit


ACK: Acknowledge bit

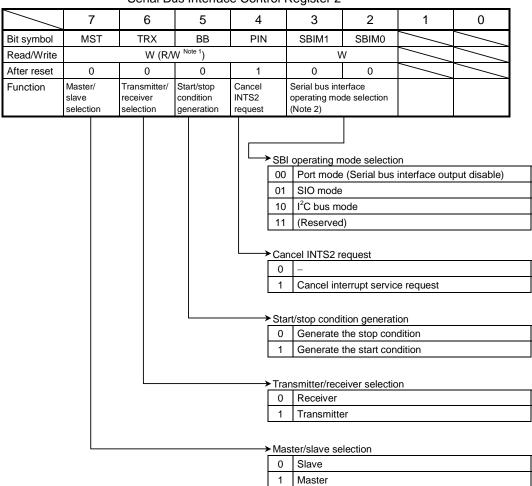
P: Stop condition

Figure 3.10.2 Data Format in the I²C Bus Mode

3.10.4 I2C Bus Mode Control

The following registers are used for control and operation status monitoring when using the serial bus interface (SBI) in the I²C bus mode.

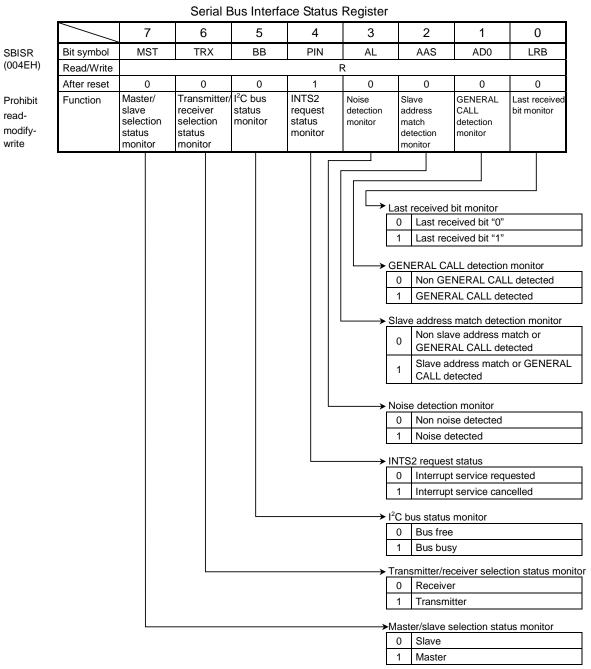
Note 1: Set <BC2:0> to "000" before switching to a clock synchronous 8-bit SIO mode.


Figure 3.10.3 Register for I²C Bus Mode (1/4)

Note 2: Refer to sentence of 3.10.4 (3) "Serial clock".

Note 3: This I^2C bus circuit does not support high-speed mode. It supports standard mode only.

SBICR2 (004EH) Prohibit readmodifywrite



Note 1: This register functions as the SBISR by reading.

Note 2: Switch a mode to the port mode after confirming that the bus is free.

Switch a mode to the I²C bus mode and the clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

Figure 3.10.4 Register for I²C Bus Mode (2/4)

Note: Bits 7 to 2 of this register function as the SBICR2 by writing.

Figure 3.10.5 Register for I²C Bus Mode (3/4)

Serial Bus Interface Control Register 3 7 6 5 4 2 0 1 **SWRST** SBICR3 Bit symbol (004FH) Read/Write R/W After reset 0 Function Software reset 0: Don't care 1: Initialize SBI Software reset 0 Don't care

Serial Bus Interface Data Buffer Register

SBIDBR (004CH) Prohibit read-

modify -write

	7	6	5	4	3	2	1	0	
Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Read/Write	R (Receive)/W (Send)								
After reset	Undefined								

Note 1: When writing the send data, start from the MSB (Bit7). Receiving data is placed from LSB (Bit0).

Note 2: SBIDBR can't be read the written data. Therefore read-modify-write instruction (e.g., "BIT" instruction) is prohibitted.

Note 3: Written data in SBIDBR is cleared by INTS2 signal.

I²C Bus Address Register

I2CAR (004DH)

Prohibit read-modify -write

	1 O Dus Address Register								
	7	6	5	4	3	2	1	0	
Bit symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS	
Read/Write	W								
After reset	0	0	0	0	0	0	0	0	
Function			Slave	address sele	ection.			Address recognition mode specification	
								1	

Address recognition mode specification

Initialize SBI (after initializing SBI, SWRST is automatically cleared to "0").

0 Slave address recognition

1 Non slave address recognition

Figure 3.10.6 Register for I²C Bus Mode (4/4)

(1) Acknowledge mode specification

Set SBICR1<ACK> to "1" for operation in the acknowledge mode. The TMP93CS44/S45 generates an additional clock pulse for an acknowledge signal when operating in the master mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the low level in order to generate the acknowledge signal.

Set <ACK> to 0 for operation in the non-acknowledge mode. The TMP93CS44/S45 does not generate a clock pulse for the acknowledge signal when operating in the master mode.

In the acknowledgment mode, when the TMP93CS44/S45 is the slave mode, clocks are counted for the acknowledge signal. During the clock for the acknowledge signal, when a received slave address matches to a slave address set to the I2CAR or a GENERAL CALL is received, the SDA pin is set to low level generating an acknowledge signal.

After a received slave address matches to a slave address set to the I2CAR and a GENERAL CALL is received, in the transmitter mode during the clock for the acknowledge signal, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode, the SDA pin is set to low level generating an acknowledge signal.

In the non-acknowledgment mode, when the TMP93CS44/S45 is the slave mode, clocks for the acknowledge signal are not counter.

(2) Number of transfer bits

SBICR1<BC2:0> are used to select a number of bits for transmitting and receiving data.

Since <BC2:0> are cleared to 000 as a start condition, a slave address and direction bit transmissions are executed in 8 bits. Other than these, <BC2:0> retain a specified value.

(3) Serial clock

1. Clock source

SBICR1<SCK2:0> are used to select a maximum transfer frequency output on the SCL pin in the master mode. Set the baud rates, which have been calculated according to the formula below, to meet the specifications of the $\rm I^2C$ bus, such as the smallest pulse width of $\rm t_{LOW}$.

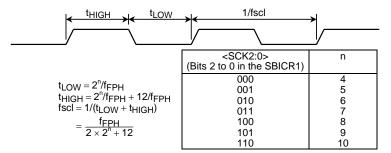


Figure 3.10.7 Clock Source

2. Clock synchronization

The I²C bus has a clock synchronization function to meet the transfer speed to a slow processing device when a transfer is performed between device which have different process speed.

The clock synchronization functions when the SCL pin is high level and the SCL line of the bus is low level in the serial bus interface circuit. The serial bus interface circuit waits counting a clock pulse in high level until the SCL line of the bus is high level. When the SCL line of the bus is high level, the serial bus interface circuit starts counting during high level. The clock synchronization function holds clocks which are output from the serial interface circuit to be high level.

The slave device can stop the clock output of the master device on one word or one bit basis.

Additionally, the transfer speed by the master device matches to the process speed of the slave device.

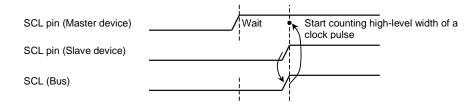


Figure 3.10.8 Clock Synchronization

(4) Slave address and address recognition mode specification

To operate the TMP93CS44/S45 in the addressing format which recognizes the slave address, set I2CAR<ALS> to 0 and set the slave address to the I2CAR<SA6:0>.

To operate the serial bus interface circuit in the free data format which does not recognize the slave address, set <ALS> to 1. When the TMP93CS44/S45 used in the free data format, the slave address and the direction bit are not recognized. They are handled as data just after generation of start conditions.

(5) Master/slave selection

Set SBICR2<MST> to 1 for operating the TMP93CS44/S45 as a master device. <MST> is cleared to 0 by the hardware after a stop condition on a bus is detected.

(6) Transmitter/receiver selection

Set SBICR2<TRX> to 1 for operating the TMP93CS44/S45 as a transmitter. Set <TRX> to 0 for operation as a receiver. When data with an addressing format is transferred in the slave mode, when a slave address with the same value that an I2CAR or the GENERAL CALL is received (All 8-bit data are 0 after the start condition), <TRX> is set to 1 by the hardware if the direction bit (R/W) sent from the master device is 1, and is set to 0 by the hardware if the bit is 0. In the master mode, after the acknowledge signal is returned from the slave device, <TRX> is set to 0 by the hardware if a transmitted direction bit is 1, and set to 1 by the hardware if it is 0. When the acknowledge signal is not returned, the current condition is maintained.

<TRX> is cleared to 0 by the hardware after the stop condition on the I²C bus is detected.

The following shows <TRX> change conditions in each mode and <TRX> after changing.

Mode	Direction Bit	Change Condition	<trx> after Changing</trx>
Slave Mode	0	A received slave address is the same as	0
Slave Mode	1	a value set to I2CAR.	1
Master Mode	0	ACK signal is returned	1
Master Mode	1	ACK signal is returned.	0

When the TMP93CS44/S45 operates in the free data format, the slave address and the direction bit are not recognized. They are handled as data just after generating a start condition. The TRX was not changed by the hardware.

(7) Start/stop condition generation

When SBICR2<BB> is 0, the start condition and slave address and direction bit are output by writing 1 to SBICR2<MST, TRX, BB, PIN>. It is necessary to set 1 to SBICR1<ACK> beforehand.

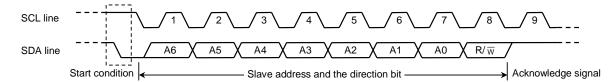


Figure 3.10.9 Start Condition Generation and Slave Address Generation

When SBICR2<BB> is 1, a sequence of generating the stop condition is started by writing 1 to <MST, TRX, PIN> and 0 to <BB>. Do not modify the contents of <MST, TRX, BB, PIN> until the stop condition is generated on a bus.

When a stop condition is generated and the SCL line on the bus is set to low level by another device, a stop condition is generated after releasing the SCL line.

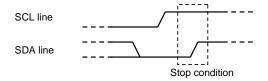


Figure 3.10.10 Stop Condition Generation

The bus condition can be indicated by reading the contents of <BB>. <BB> is set to 1 when the start condition on a bus is detected, and is set to 0 when the stop condition is detected.

(8) Cancel interrupt service request

When the TMP93CS44/S45 is the master mode and transferring a number of clocks set by the SBICR1<BC2:0> and the SBICR1<ACK> is complete, a serial bus interface interrupt request (INTS2) is generated.

In the slave mode, the INTS2 is generated when the received slave address is the same as the value set to the I2CAR and an acknowledge signal is output, when a GENERAL CALL is received and an acknowledge signal is output, or when transferring/receiving data is complete after the received slave address is the same as the value set to the I2CAR and a GENERAL CALL is received.

When the serial bus interface interrupt request occurs, the SBISR<PIN> is cleared to 0. During the time that the PIN is 0, the SCL pin is set to low level.

Either writing or reading data to or from the SBIDBR sets the <PIN> to 1.

The time from the <PIN> being set to 1 until the SCL pin is released takes tLow.

Although the <PIN> can be set to 1 by the program, the <PIN> is not cleared to 0 when it is written 0.

(9) Serial bus interface operation mode selection

SBICR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set <SBIM1:0> to 10 when used in the I²C bus mode after confirming that input signal via port is high level.

Switch a mode to port after making sure that a bus is free.

(10) Noise detection monitor

The I²C bus is easy to be affected by noise, because the bus is driven by the open drain and the pull-up resistor.

With the TMP93CS44/S45, the SDA pin output and the SDA line level are compared at a rise of the SCL line on the bus, and whether data are output correctly on the bus is detected only in the master transmitter mode.

When the SDA pin output differs from the SDA line level, the SBISR<AL> is set to 1.

When the AL is set to 1, the SDA pin is released and the MST and the TRX are cleared to 0 by the hardware. The TMP93CS44/S45 changes to the slave receiver mode, and continues outputting clocks unit transferring data when the AL was set to 1 is completed.

Either writing or reading data to or from the SBIDBR, or writing data to the SBICR2 clears to the AL to 0.

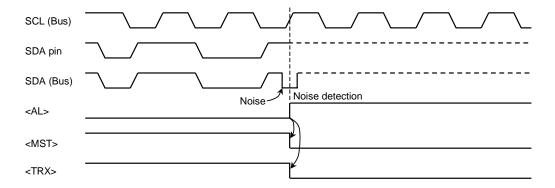


Figure 3.10.11 Noise Detection Monitor

(11) Slave address match detection monitor

SBISR<AAS> is set to 1 in the slave mode, in the address recognition mode (I2CAR <ALS> = 0) when receiving the GENERAL CALL or the slave address with the same value that is set to the I2CAR. When <ALS> is 1, <AAS> is set to 1 after receiving the first 1 word of data. <AAS> is set to 0 by writing/reading data to/from a data buffer register.

(12) GENERAL CALL detection monitor

SBISR<AD0> is set to 1 in the slave mode, when the GENERAL CALL is received (All 8-bit data are 0 after the start condition). <AD0> is set to 0 when the start or stop condition is detected on a bus.

(13) Last received bit monitor

The SDA line value stored at the rising edge of the SCL line is sent to SBISR<LRB>. In the acknowledge mode, immediately after the INTS2 interrupt request is generated, the acknowledge signal is read by reading the contents of <LRB>.

(14) Software reset function

Software reset function is used to initialize the SBI which is rocked by external noise, etc. When SBICR3<SWRST> is set to 1, the internal reset signal pulse is generated and inputted into the SBI circuit.

All command registers and state registers are initialized to initial values. <SWRST> is automatically set to 0 after the SBI circuit is initialized.

(15) Serial bus interface data buffer register (SBIDBR)

The SBIDBR register can read out the receiving data and write the sending data.

After the start condition generated in the master mode, set the slave address and the direction bit in this register.

(16) I2C bus address register (I2CAR)

I2CAR<SA6:0> sets the slave address when the TMP93CS44/S45 are operated as the slave devices. Setting I2CAR<ALS> = 0, the slave address output from master device is recognized, and the data format is changed to the addressing format. Setting I2CAR<ALS> = 1, the slave address is not recognized, and the data format is changed to the free data format.

3.10.5 Data Transfer in I2C Bus Mode

(1) Device initialization

First, set SBICR1<ACK, SCK2:0>. Specify 0 to bits 7 to 5 and 3 in the SBICR1.

Set the slave address <SA6:0> and <ALS> to I2CAR (<ALS> = 0 when the addressing format).

Subsequently, set 0 to <MST, TRX, BB>; 1 to <PIN>; 10 to <SBIM1:0>; and 0 to bits 0 and 1 in the SBICR2. The slave receiver mode is set.

Note: The initialization of the serial bus interface circuit must be complete within the time from all devices which are connected to the bus have initialized to any device does not generate a start condition. If not, there is a possibility that another device starts transferring before an end of the initialization of the serial bus interface circuit. Data can not be received correctly.

(2) Start condition and slave address generation

Confirm a bus free status (when SIBSR < BB > = 0).

Set the SBICR1<ACK> to 1 and specify a slave address and a direction bit to be transmitted to the SBIDBR.

When the SBISR<BB> is 0, the start condition are generated and the slave address and the direction bit which are set to the SBIDBR are output on a bus by wiring 1 to the SBICR2<MST, TRX, BB> and PIN. An INTS2 interrupt request occurs at the 9th falling edge of the SCL clock cycle, and the <PIN> is cleared to 0. The SCL pin is pulled down to the low-level while the <PIN> is 0. When an interrupt request occurs, the <TRX> changes by the hardware according to the direction bit only when an acknowledge signal is returned from the slave device.

Note: Do not write a slave address to be output to the SBIDBR while data are transferred. If data is written to the SBIDBR, data to been outputting may be destroyed.

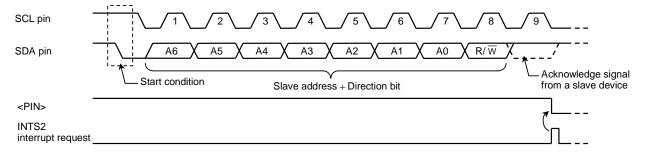


Figure 3.10.12 Start Condition Generation and Slave Address Transfer

(3) 1-word data transfer

Test SBISR<MST> by the INTS2 interrupt process after a 1-word data transfer is completed, and determine whether the mode is a master or slave.

1. When <MST> is "1" (Master mode)

Test SBISR<TRX> and determine whether the mode is a transmitter or receiver.

When <TRX> is "1" (Transmitter mode)

Check SBISR<LRB>. When <LRB> is 1, a receiver does not request data. Implement the process to generate the stop condition (Described later) and terminate data transfer.

When <LRB> is 0, the receiver requests new data. When the next transmitted data is 8 bits, write it to the SBIDBR. When the next transmitted data is other than 8 bits, set SBICR1<BC2:0>, set SBICR1<ACK> to 1, and write the transmitted data to the SBIDBR. After writing the data, SBISR<PIN> becomes 1, the serial clock pulse is generated for transferring a new 1 word of data from the SCL pin, and then the 1-word data is transmitted. After the data is transmitted, the INTS2 interrupt request occurs. <PIN> becomes 0 and the SCL pin is set to the low level. If the data to be transferred is more than one word in length, repeat the procedures from <LRB> test mentioned above.

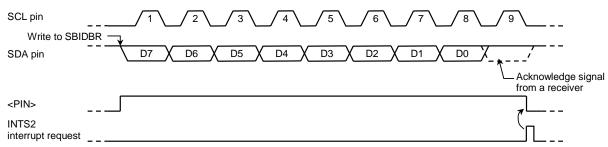


Figure 3.10.13 Example of when <BC2:0> = "000", <ACK> = "1" (Transmitter mode)

When <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set SBICR1<BC2:0> again. Set <ACK> to 1 and read the received data from the SBIDBR to release the SCL line. The read data is undefined immediately after the slave address is set. After the data is read, <PIN> becomes 1. Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

The INTS2 interrupt request then occurs and <PIN> becomes 0. The SCL pin is set to the low level. The TMP93CS44/S45 outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from the SBIDBR.

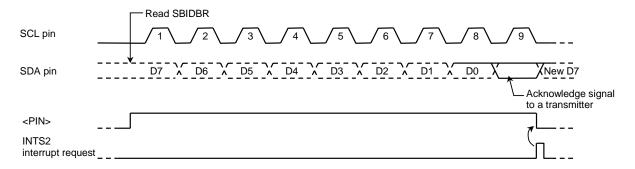


Figure 3.10.14 Example of when <BC2:0> = "000", <ACK> = "1" (Receiver mode)

In order to terminate the transmitting data to the transmitter, set <ACK> to 0 before reading data which is 1 word before the last data to be received. The last data does not generate a clock pulse for the acknowledge signal. After the data is transmitted and an interrupt request has occurred, set <BC2:0> to 001 and read the data. The TMP93CS44/S45 generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA line of the bus keeps the high level. The transmitter receives the high-level signal as the ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After 1-bit data is received and the interrupt request has occurred, the TMP93CS44/S45 generates the stop condition and terminates data transfer.

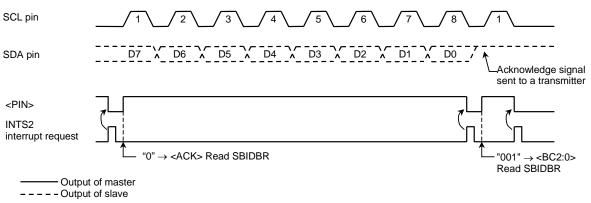


Figure 3.10.15 Termination of Data Transfer in Master Receiver Mode

2. When <MST> is "0" (Slave mode)

In the slave mode, the TMP93CS44/S45 operates either in normal slave mode or in recovery process after a noise detection.

In the slave mode, an INTS2 interrupt request occurs when the serial bus interface circuit receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is complete after matching a received slave address. In the master mode, the TMP93CS44/S45 operates in a slave mode if a noise is detected. An INTS2 interrupt request occurs when word data transfer terminates after a noise detection. When an INTS2 interrupt request occurs, the SBISR<PIN> is reset, and the SCL pin is set to low level. Either reading or writing from or to the SBIDBR or setting the <PIN> to 1 releases the SCL pin after taking tLOW time.

The TMP93CS44/S45 tests the SBISR<AL>, the SBISR<TRX>, the <AAS>, and the <AD0> and implements processes according to conditions listed in the next table.

<TRX> <AL> <AAS> <AD0> Conditions **Process** 0 In the slave receiver mode, the Set the number of bits in 1 word to <BC2:0> TMP93CS44/S45 receives a slave and write transmitted data to the SBIDBR. address of which the direction bit sent from the master is "1". In the slave transmitter mode, 1-word Check <LRB>. If <LRB> is set to "1", set <PIN> 0 0 data is transmitted. to "1" since the receiver does not request next data. Then, clear <TRX> to "0" release the bus. If <LRB> is set to "0", set the number of hits in a word to <BC2:0> and write transmitted data to the SBIDBR since the receiver requests next data. 0 0 1/0 Read the SBIDBR for setting <PIN> to "1" 1 In the slave receiver mode, the TMP93CS44/S45 receives a slave (Reading dummy data) or write "1" to <PIN>. address or GENERAL CALL of which

the direction bit sent from the master is

TMP93CS44/S45 terminates receiving

In the slave receiver mode, the

of 1-word data.

0

1/0

Table 3.10.1 Operation in the Slave Mode

Set the number of bits in a word to <BC2:0>

and read received data from the SBIDBR.

(4) Stop condition generation

When SBISR<BB> is 1, a sequence of generating a stop condition is started by writing 1 to SBICR2<MST, TRX, PIN>, and 0 to <BB>. Do not modify the contents of <MST, TRX, BB, PIN> until the stop condition is generated on the bus. When SBICR2<MST, TRX, PIN> are written "1" and <BB> is written "0" (generate stop condition in master mode), <BB> changes to "0" by internal SCL changes to "1", without waiting stop condition. To check whether SCL and SDA pin are "1" by sensing their ports is needed to detect bus free condition.

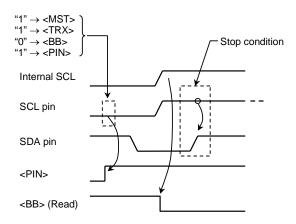


Figure 3.10.16 Stop Condition Generation

(5) Restart

Restart is used to change the direction of data transfer between a master device and a slave device during transferring data. The following explains how to restart the TMP93CS44/S45.

Clear 0 to the <MST>, <TRX>, and <BB> and set 1 to the <PIN>. The SDA pin retains the high level and the SCL pin is released. Since a stop condition is not generated on the bus, the bus is assumed to be in a busy state from other devices. And confirm SCL pin, that SCL pin is released and become bus-free state by SBISR<BB> = "0" or signal level "1" of SCL pin in port mode. Test the <LRB> until it becomes 1 to check that the SCL line of the bus is not set to low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure (2).

In order to meet setup time when restarting, take at least $4.7 \,\mu s$ of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.

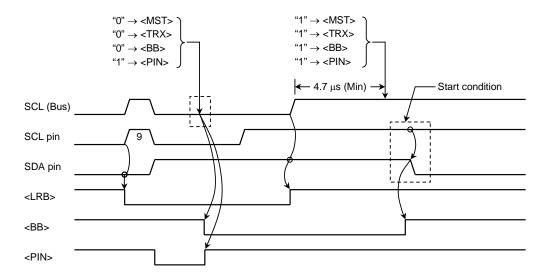
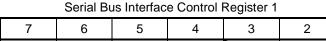
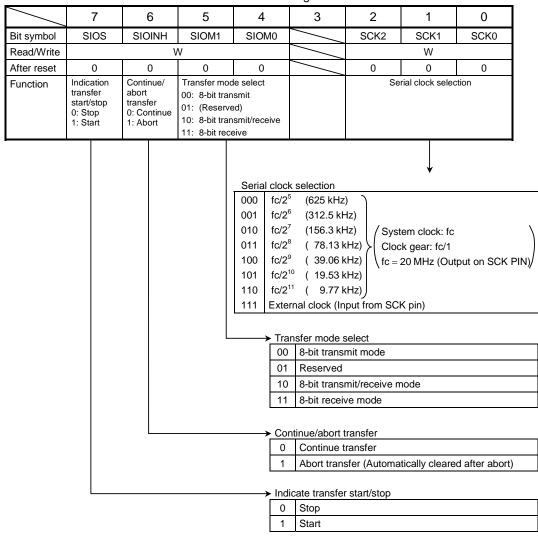



Figure 3.10.17 Timing Diagram when Restarting the TMP93CS44/S45

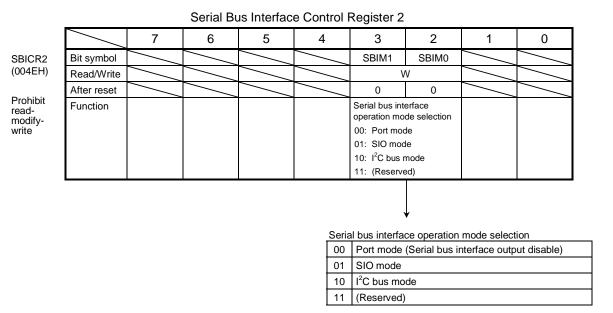
3.10.6 Clock Synchronous 8-Bit SIO Mode Control


The following registers are used for control and operation status monitoring when using the serial bus interface (SBI) in the clock synchronous 8-bit SIO mode.

(004BH) Prohibit readmodify-

write

SBICR1


Set <SIO> to 0 and <SIOINH> to 1 when setting the transfer mode and the serial clock. Note:

Serial Bus Interface Data Buffer Register

SBIDBR (004CH) **Prohibit** readmodify-

	•									
	7	6	5	4	3	2	1	0		
Bit symbol	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Read/Write	R (Receive)/W (Send)									
After reset	Undefined									

Figure 3.10.18 Registers for SIO Mode (1/2)

Note 1: Switch a mode to port after data transfer is complete.

Note 2: Switch a mode to SIO mode after confirming that input signals via port are high level.

Serial Bus Interface Status Register 7 5 2 0 6 4 3 1 SBISR Bit symbol SIOF SEF (004EH) Read/Write R After reset 0 0 Prohibit Function Serial Shift readtarnsfer operating modifyoperating status write status monitor monitor Shift operating status monitor Shift operation terminated Shift operation in process Serial transfer operating status monitor Transfer terminated

Figure 3.10.19 Registers for SIO Mode (2/2)

Transfer in process

(1) Serial clock

1. Clock source

SBICR1<SCK2:0> are used to select the following functions.

Internal clock

In the internal clock mode, any of seven frequencies can be selected. The serial clock is output to the outside on the SCK pin. The SCK pin becomes a high level when data transfer starts. When writing (in the transmit mode) or reading (in the receive mode) data cannot follow the serial clock rate, an automatic-wait function is executed to stop the serial clock automatically and hold the next shift operation until reading or writing is complete.

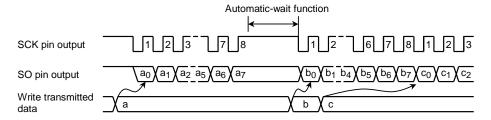


Figure 3.10.20 Automatic-wait Function

External clock ($\langle SCK2:0 \rangle = 111$)

An external clock supplied to the SCK pin is used as the serial clock. In order to ensure shift operation, a pulse width of at least 4 machine cycles is required for both high and low levels in the serial clock. The maximum data transfer frequency is $625~\mathrm{kHz}$. (fc = $20~\mathrm{MHz}$.)

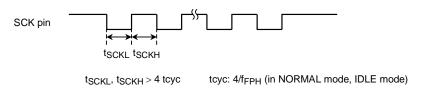


Figure 3.10.21 External Clock

TOSHIBA

2. Shift edge

The leading edge is used to transmit data, and the trailing edge is used to receive data.

Leading edge shift

Data is shifted on the leading edge of the serial clock (at the falling edge of the SCK pin input/output).

Trailing edge shift

Data is shifted on the trailing edge of the serial clock (at the rising edge of the SCK pin input/output).

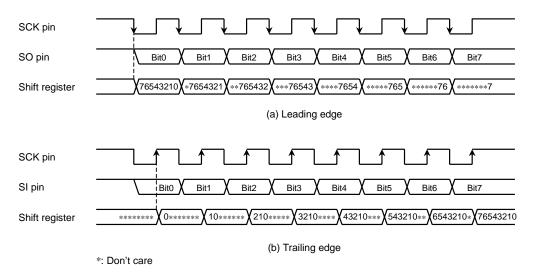


Figure 3.10.22 Shift Register

(2) Transfer mode

SBICR1<SIOM1:0> are used to select a transmit, receive, or transmit/receive mode.

1. 8-bit transmit mode

Set a control register to a transmit mode and write data to the SBIDBR.

After the data is written, set SBICR1<SIOS> to 1 to start data transfer. The transmitted data is transferred from the SBIDBR to the shift register and output to the SO pin in synchronous with the serial clock, starting from the least significant bit (LSB). When the data is transferred to the shift register, the SBIDBR becomes empty. The INTS2 (Buffer empty) interrupt request is generated to request new data.

When the internal clock is used, the serial clock will stop and automatic-wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new data is written, automatic-wait function is canceled.

When the external clock is used, data should be written to the SBIDBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to the SBIDBR by the interrupt service program.

When the transmit is started, after SBISR<SIOF> goes 1 the same value as the final bit of the last data is output until the falling edge of the SCK.

Transmitting data is ended by clearing <SIOS> to 0 with the buffer empty interrupt service program or setting SBICR1<SIOINH> to 1. When <SIOS> is cleared, the transmitted mode ends when all data is output. In order to confirm if data is surely transmitted by the program, set <SIOF> to be sensed. <SIOF> is cleared to 0 when transmitting is complete. When <SIOINH> is set to 1, transmitting data stops. <SIOF> turns 0.

When the external clock is used, it is also necessary to clear <SIOS> to 0 before new data is shifted; otherwise, dummy data is transmitted and operation ends.

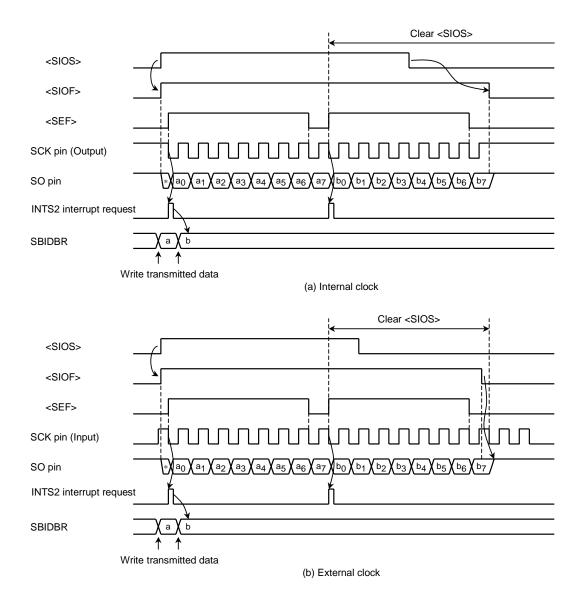


Figure 3.10.23 Transfer Mode

Example: Program to stop transmitting data (when external clock is used).

STEST1: BIT SEF, (SBISR) ; If $\langle SEF \rangle = 1$ then loop.

JR NZ, STEST1

STEST2: BIT 2, (P3) ; If SCK = 0 then loop.

JR Z, STEST2

LD (SBICR1), 00000111B ; $\langle SIOS \rangle \leftarrow 0$.

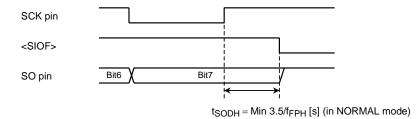


Figure 3.10.24 Transmitted Data Hold Time at End of Transmit

2. 8-bit receive mode

Set the control register to a receive mode and SBICR1<SIOS> to 1 for switching to the receive mode. Data is received from the SI pin to the shift register in synchronous with the serial clock, starting from the least significant bit (LSB). When the 8-bit data is received, the data is transferred from the shift register to the SBIDBR. The INTS2 (Buffer full) interrupt request is generated to request to read the received data. The data is then read from the SBIDBR by the interrupt service program.

When the internal clock is used, the serial clock will stop and automatic-wait function will be initiated until the received data is read from the SBIDBR.

When the external clock is used, since shift operation is synchronized with the clock pulse provided externally, the received data should be read from the SBIDBR before next serial clock input. If the received data is not read, further data to be received is canceled. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when received data is read.

Receiving data is ended by clearing <SIOS> to 0 with the buffer full interrupt service program or setting SBICR1<SIOINH> to 1. When <SIOS> is cleared, received data is transferred to the SBIDBR in complete blocks. The received mode ends when the transfer is complete. In order to confirm if data is surely received by the program, set SBISR<SIOF> to be sensed. <SIOF> is cleared to 0 when receiving is complete. After confirming that receiving has ended, the last data is read. When <SIOINH> is set to 1, receiving data stops. <SIOF> turns 0 (the received data becomes invalid, therefore no need to read it).

Note: When the transfer mode is switched, the SBIDBR contents are lost. In case that the mode needs to be switched, receiving data is concluded by clearing <SIOS> to 0, read the last data, and then switch the mode.

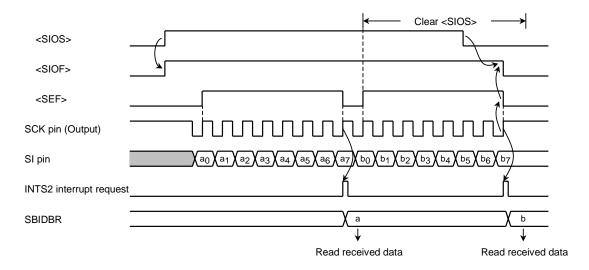


Figure 3.10.25 Receive Mode (Example: Internal clock)

8-bit transmit/receive mode

Set a control register to a transmit/receive mode and write data to the SBIDBR. After the data is written, set SBICR1<SIOS> to 1 to start transmitting/receiving. When transmitting, the data is output from the SO pin on the leading edges in synchronous with the serial clock, starting from the least significant bit (LSB). When receiving, the data is input to the SI pin on the trailing edges of the serial clock. The 8-bit data is transferred from the shift register to the SBIDBR, and the INTS2 interrupt request occurs. The interrupt service program reads the received data from the data buffer register and writes data to be transmitted. The SBIDBR is used for both transmitting and receiving. Transmitted data should always be written after received data is read.

When the internal clock is used, automatic-wait function is initiated until received data is read and next data is written.

When the external clock is used, since the shift operation is synchronized with the external clock, received data is read and transmitted data is written before new shift operation is executed. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when received data is read and transmitted data is written.

When the transmit is started, after SBISR<SIOF> = 1 output from the SO pin holds final bit of last data until falling edge of the SCK.

Transmitting/receiving data is ended by clearing <SIOS> to 0 by the INTS2 interrupt service program or setting SBICR1<SIOINH> to 1. When <SIOS> is cleared, received data is transferred to the SBIDBR in complete blocks. The transmit/receive mode ends when the transfer is complete. In order to confirm if data is surely transmitted/received by the program, set SBISR<SIOF> to be sensed. <SIOF> becomes 0 after transmitting/receiving is complete. When <SIOINH> is set, transmitting/receiving data stops. <SIOF> turns 0.

Note: When the transfer mode is switched, the SBIDBR contents are lost. In case that the mode needs to be switched, transmitting/receiving data is concluded by clearing <SIOS> to 0, read the last data, and then switch the transfer mode.

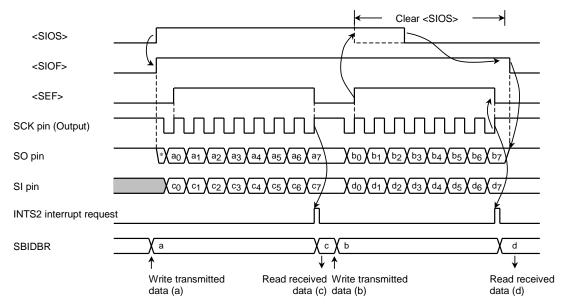


Figure 3.10.26 Transmit/Receive Mode (Example: Internal clock)

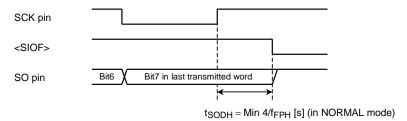


Figure 3.10.27 Transmitted Data Hold Time at End of Transmit/Receive

3.11 AD Converter

TMP93CS44/S45 incorporate a high-speed, high-precision 10-bit analog/digital converter (AD converter) with 8-channel analog input.

Figure 3.11.1 is a block diagram of the AD converter. The 8-channel analog input pins (AN0 to AN7) are also used as input-only port 5 and can be also used as input ports.

Figure 3.11.1 Block Diagram of AD Converter

- Note 1: When the power supply current is reduced in IDLE2, IDLE1, STOP mode, there is possible to set a standby enabling the internal comparator due to a timing. Stop operation of AD converter before execution of "HALT" instruction.
- Note 2: In regard to the lowest operation frequency. The operation of AD converter is guaranteed with clock of $f_{\text{FPH}} \ge 4 \, \text{MHz}$ (Used fc clock). Is not guaranteed with fs clock.

3.11.1 AD converter registers

AD converter is controlled by two AD mode control registers (ADMOD0 and ADMOD1). AD conversion result is stored in eight AD conversion result registers (ADREG04H/L, ADREG15H/L, ADREG26H/L, ADREG37H/L).

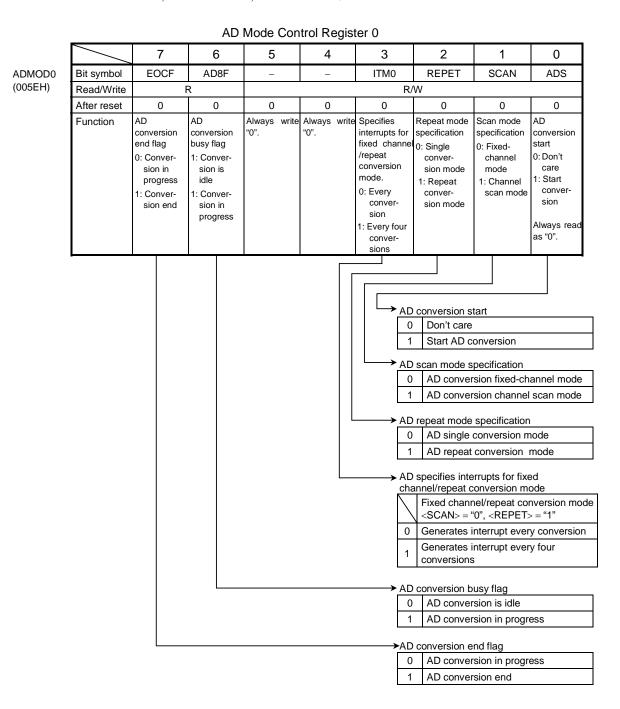
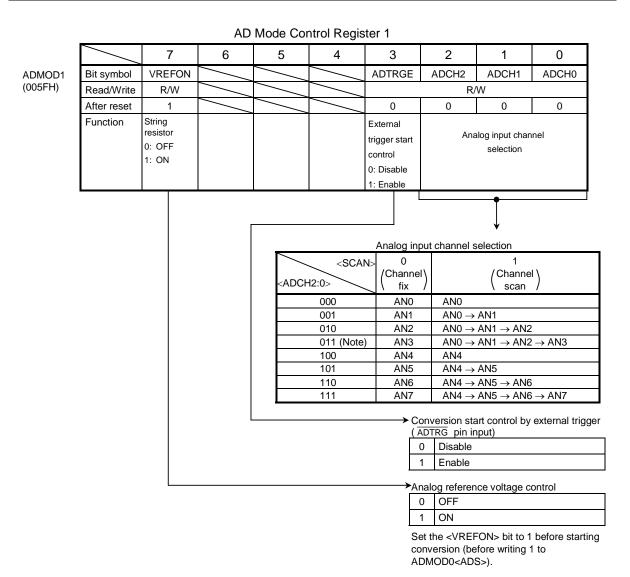



Figure 3.11.2 Register for AD Converter (1/4)

Note: As the AN3 and the \overline{ADTRG} are the same pin, <ADCH2:0> = 011 can't be set when <ADTRGE> is set to 1 and \overline{ADTRG} is used.

Figure 3.11.3 Register for AD Converter (2/4)

AD Conversion Result Register 0/4 Low 7 6 5 4 3 2 1 0 ADR01 ADR00 ADR0RF ADREG04L Bit symbol (0060H)Read/Write R R After reset Undefined 0 Stores lower 2 bits of Function Conversion AD conversion result. result tored flag 1: Exist result AD Conversion Result Register 0/4 High 7 2 5 3 1 6 4 0 ADR09 ADR08 ADR07 ADR06 ADR05 ADR04 ADR03 ADR02 ADREG04H Bit symbol (0061H)Read/Write After reset Undefined Stores upper 8 bits of AD conversion result. **Function** AD Conversion Result Register 1/5 Low 6 5 3 2 1 0 ADR1RF ADREG15L Bit symbol ADR11 ADR10 (0062H) Read/Write R R After reset Undefined 0 Stores lower 2 bits of AD Function Conversion conversion result. result stored 1: Exist result AD Conversion Result Register 1/5 High 5 7 6 4 3 2 1 0 ADR19 ADR18 ADR17 ADR16 ADR15 ADR13 ADR12 ADREG15H Bit symbol ADR14 (0063H) Read/Write Undefined After reset Stores upper 8 bits of AD conversion result. Function Channel x conversion result **ADREGxH** ADREGXL Bits 5 to 1 are always read as 1. Bit0 is conversion result stored flag bit <ADRxRF>. <ADRxRF> is set to 1 when the AD conversion result is stored. Reading either the ADREGxH or the ADREGxL

Figure 3.11.4 Register for AD Converter (3/4)

registers clears <ADRxRF> to 0.

AD Conversion Result Register 2/6 Low 7 6 5 2 4 1 0 ADREG26L ADR21 ADR20 ADR2RF Bit symbol (0064H)Read/Write R R After reset Undefined 0 Stores lower 2 bits of Function Conversion AD conversion result. result stored flag 1: Exist result AD Conversion Result Register 2/6 High 7 2 5 3 1 6 4 0 ADR29 ADR28 ADR27 ADR26 ADR25 ADR24 ADR23 ADR22 ADREG26H Bit symbol (0065H) Read/Write After reset Undefined Stores upper 8 bits of AD conversion result. **Function** AD Conversion Result Register 3/7 Low 7 6 5 3 2 1 0 ADR3RF ADREG37L Bit symbol ADR31 ADR30 (0066H) Read/Write R R After reset Undefined 0 Stores lower 2 bits of Function Conversion AD conversion result. esult stored flag 1: Exist result AD Conversion Result Register 3/7 High 5 7 6 4 3 2 1 0 ADR39 ADR38 ADR37 ADR36 ADR33 ADR32 ADREG37H Bit symbol ADR35 ADR34 (0067H) Read/Write Undefined After reset Stores upper 8 bits of AD conversion result. Function Channel x conversion result ADREGxH ADREGXL Bits 5 to 1 are always read as 1. Bit0 is conversion result stored flag bit <ADRxRF>. <ADRxRF> is set to 1 when the AD conversion result is stored. Reading either the ADREGxH or the ADREGxL

Figure 3.11.5 Register for AD Converter (4/4)

registers clears <ADRxRF> to 0.

3.11.2 Operation

(1) Analog reference voltage

High analog reference voltage is applied to the VREFH pin, and low analog reference voltage is applied to the VREFL pin. The voltage between VREFH and VREFL is divided into 1024 increments using a string resistor. AD conversion is based on comparing the analog input voltage with these reference voltage increments.

To turn the switch between VREFH and VREFL off, write 0 to the ADMOD1<VREFON> bit.

To start AD conversion when the switch is off, first write 1 to <VREFON>. After that, wait at 3 µs long enough to get the stabilized oscillation, write 1 to ADMODO<ADS>.

(2) Selecting analog input channels

to AN7.

The procedure for selecting analog input channels depends on the operating mode of the AD converter.

When analog input channel is used to fix (ADMOD0<SCAN> = 0)
 To set ADMOD1<ADCH2:0>, selecting one channel from analog input pins AN0

• When analog input channel is used to scan (ADMOD0<SCAN> = 1)

To set ADMOD1<ADCH2:0>, selecting one channel from 8 scan mode.

Table 3.11.1 shows the analog input channel selection each operating mode.

A reset initializes ADMOD0<SCAN> to 0 and ADMOD1<ADCH2:0> to 000, selecting pin AN0 for the AD converter input.

The pins not used as analog input channels can be used as general-purpose input ports (P5).

<adch2:0></adch2:0>	Fixed channel <scan> = 0</scan>	Channel scan <scan> = 1</scan>
000	AN0	AN0
001	AN1	$AN0 \rightarrow AN1$
010	AN2	$AN0 \rightarrow AN1 \rightarrow AN2$
011	AN3	$AN0 \to AN1 \to AN2 \to AN3$
100	AN4	AN4
101	AN5	AN4 → AN5
110	AN6	$AN4 \rightarrow AN5 \rightarrow AN6$
111	AN7	$AN4 \rightarrow AN5 \rightarrow AN6 \rightarrow AN7$

Table 3.11.1 Analog Input Channel Selection

(3) Starting AD conversion

AD conversion starts when ADMOD0<ADS> to 1, or ADMOD1<ADTRGE> is set to 1 and the falling edge is input through ADTRG pin.

When AD conversion starts, AD conversion busy flag ADMOD0<ADBF> is set to 1, indicating AD conversion is in progress.

Writing 1 to <ADS> while conversion is in progress restarts the conversion. Check the conversion result stored flag ADREGxL<ADRxRF> to determine whether the AD conversion data are valid at this time.

Inputting the falling edge to the ADTRG pin while conversion is in progress is invalid.

(4) AD conversion modes and completion interrupt

Follow the four AD conversion modes are supported.

- Fixed channel single conversion mode
- Channel scan single conversion mode
- Fixed channel repeat conversion mode
- Channel scan repeat conversion mode

AD conversion mode can selected by setting AD mode control register ADMOD0

REPET. SCAN>.

When AD conversion end, AD conversion completion interrupt INTAD request occurs. And the ADMOD0<EOCF> flag is set to 1 to indicate that AD conversion has completed.

1. Fixed channel single conversion mode

Fixed channel single conversion mode can be specified by setting ADMOD0<REPET, SCAN> to 00.

In this mode, conversion of the specified single channel is executed once only. After conversion is completed, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0 and occurs INTAD interrupt request.

2. Channel scan single conversion mode

Channel scan single conversion mode can be specified by setting ADMOD0<REPET, SCAN> to 01.

In this mode, conversion of the specified channel are executed once only. After conversion is completed, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0 and occurs INTAD interrupt request.

3. Fixed channel repeat conversion mode

Fixed channel repeat conversion mode can be specified by setting ADMOD0<REPET, SCAN> to 10.

In this mode, conversion of the specified single channel is executed repeatedly. After conversion is completed, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> remains 1 not changed to 0. The timing of INTAD interrupt request can selected by setting of ADMOD0<ITM0>.

When <ITM0> is set to 0, interrupt request occurs after every conversion.

When <ITM0> is set to 1, interrupt request occurs after every fourth conversion.

4. Channel scan repeat conversion mode

Channel scan repeat conversion mode can be specified by setting ADMOD0<REPET, SCAN> to 11.

In this mode, specified channels are converted repeatedly. After every scan convert completion, ADMOD0<EOCF> is set to 1 and INTAD interrupt request occurs. ADMOD0<ADBF> remains 1, not changed to 0.

To stop the repeat conversion mode (3. and 4.), write 0 to ADMOD0<REPET>. After the current conversion is completed, repeat conversion mode is terminated, and ADMOD0<ADBF> is cleared to 0.

If the device enters the IDLE2, IDLE1 or STOP modes during AD conversion, the conversion halt immediately. After the halt mode is released, AD conversion restarts from the beginning in repeat conversion mode (3. and 4.), it does not restart in single conversion mode (1. and 2.).

Table 3.11.2 Relation between AD Conversion Modes and Interrupt Request

Table 3.11.2 shows the relations between AD conversion modes and interrupt request.

Mode	Interrupt Request		ADMOD0		
Mode	Timing	<itm0></itm0>	<repet></repet>	<scan></scan>	
Fixed channel single conversion mode	After conversion	Х	0	0	
Channel scan single conversion mode	After conversion	Х	0	1	
Fixed channel repeat	After every conversion	0			
Fixed channel repeat conversion mode	After every fourth conversion	1	1	0	
Channel scan repeat conversion mode	After every scan conversion	Х	1	1	

X: Don't Care

(5) AD conversion time

140 states (14 μ s at fc = 20 MHz) are required for AD conversion of one channel.

(6) Storing and reading the AD conversion result

AD conversion results are stored in AD conversion result registers high/low (ADREG04H/L to ADREG37H/L). These registers are read only.

In fixed channel repeat conversion mode, AD conversion results are stored in order from ADREG04H/L to ADREG37H/L. Except in this mode, AD conversion results for channel AN0 and AN4, AN1 and AN5, AN2 and AN6, AN3 and AN7 are stored severally ADREG04H/L, ADREG15H/L, ADREG26H/L, ADREG37H/L.

Table 3.11.3 shows correspondence between analog input channels and AD conversion result registers.

Table 3.11.3 Correspondence between Analog Input Channels and AD Conversion Result Registers

	3	
	AD Conversion	Result Registers
Analog Input Channel (port 5)	Conversion Modes except Right	Fixed Channel Repeat Conversion Mode (Every fourth conversion)
AN0	ADREG04H/L	A D D E C 0 41.11
AN1	ADREG15H/L	ADREG04H/L ←
AN2	ADREG26H/L	V ADREG15H/L
AN3	ADREG37H/L	ADREGISH/L
AN4	ADREG04H/L	₩ ADREG26H/L
AN5	ADREG15H/L	\\ \dagger{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
AN6	ADREG26H/L	ADREG37H/L
AN7	ADREG37H/L	

AD conversion result registers bit0 is AD conversion result stored flag <ADRxRF>. The flag shows that whether those registers are read or not. When AD conversion results are stored in those registers (ADREGxH or ADREGxL), this flag is set to 1.

When each register is read, this flag is cleared to 0, and AD conversion end flag ADMOD0<EOCF> is also cleared to 0.

Setting example:

1. This example converts the analog input voltage at the AN3 pin. The INTAD interrupt routine writes the result to memory address 0800H.

Main routine setting:

```
      7
      6
      5
      4
      3
      2
      1
      0

      INTE0AD
      ← 1
      1
      0
      0
      -
      -
      -
      -
      Enables INTAD and sets level 4.

      ADMOD1
      ← 1
      X
      X
      X
      0
      0
      1
      1
      Sets analog input channel to AN3.

      ADMOD0
      ← X
      X
      0
      0
      0
      0
      1
      Starts AD conversion in fixed channel single conversion mode.
```

Example of interrupt routine processing:

WA	← ADREG37	Reads ADREG37L and ADREG37H values and writes them to WA (16 bits).
WA	> > 6	Shifts right WA six times and zero fills the upper bits.
(H0080)	← WA	Writes contents of WA to memory address 0800H.

2. This example repeatedly converts the analog input voltages at pins AN0 to AN2, using channel scan repeat conversion mode.

X: Don't care, -: No change

3.12 Watchdog Timer (Runaway detecting timer)

TMP93CS44/S45 contain a watchdog timer of runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (Runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

This watchdog timer consists of 7-stage and 15-stage binary counters.

These binary counters are also used as a warm-up timer for the internal oscillator stabilization. This is used for releasing the stop and before changing system clock.

3.12.1 Configuration

Figure 3.12.1 shows the block diagram of the watchdog timer (WDT).

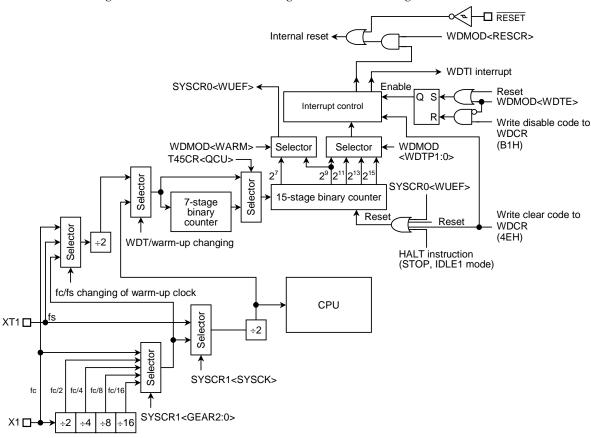


Figure 3.12.1 Block Diagram of Watchdog Timer/Warm-up Timer

The watchdog timer consists of 7-stage and 15-stage binary counters which use system clock (fsys) as the input clock. The 15-stage binary counter has fsys/2¹⁵, fsys/2¹⁷, fsys/2¹⁹ and fsys/2²¹ output. Selecting one of the outputs with the WDMOD<WDTP1:0> register generates a watchdog timer interrupt and outputs watchdog timer out when an overflow occurs. The binary counter for the watchdog timer should be cleared to 0 with runaway detecting result software (Instruction) before an interrupt occurs.

Example:

LDW (WDMOD), B100H ; Disable.

LD (WDCR), 4EH ; Write clear code.

SET 7, (WDMOD) ; Enable again.

The runaway detecting result can also be connected to the reset pin internally. In this case, the watchdog timer resets itself.

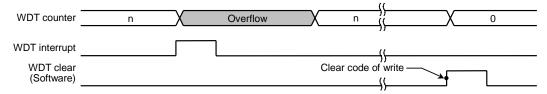


Figure 3.12.2 Normal Mode

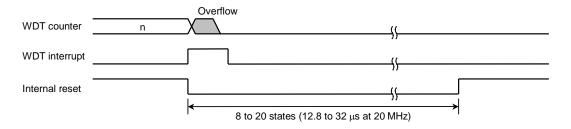


Figure 3.12.3 Reset Mode

For warm-up counter, 2^7 and 2^9 output of 15-stage binary counter can be selected using WDMOD<WARM> register. When a stable-external oscillator is used, shorter warm-up time is available using T45CR<QCU> register. When <QCU> = 1, counting value 2^7 is selected. When the watchdog timer is in operation, this shorter warm-up time function cannot be available. This function can be available by setting <QCU> = 0.

3.12.2 Control Registers

Watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
 - 1. Setting the detecting time of watchdog timer <WDTP>

This 2-bit register is used to set the watchdog timer interrupt time for detecting the runaway. This register is initialized to WDMOD<WDTP1:0> = 00 when reset.

The defecting time of WDT is shown Table 3.12.1.

2. Watchdog timer enable/disable control register <WDTE>

When reset, WDMOD<WDTE> is initialized to 1 enable the watchdog timer.

To disable, it is necessary to set this bit to 0 and write the disable code (B1H) in the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return from the disable state to enable state by merely setting <WDTE> to 1.

3. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with $\overline{\text{RESET}}$ terminal, internally. Since WDMOD<RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear of binary counter the watchdog timer function.

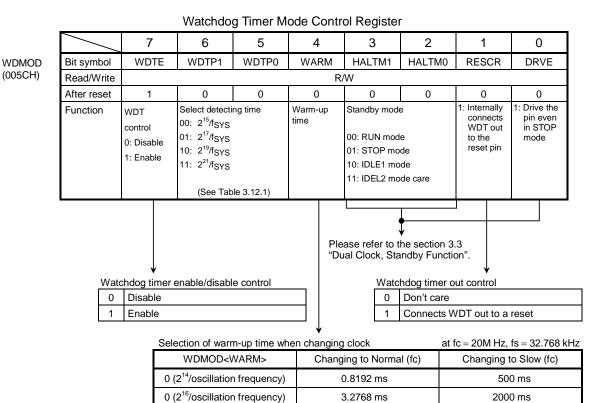
• Disable control

By writting the disable code (B1H) in this WDCR register after clearing WDMOD<WDTE> to 0, the watchdog timer can be disabled.

```
        WDMOD
        ← 0
        − − − − − X X
        Clear WDMOD<WDTE> to "0".

        WDCR
        ← 1
        0
        1
        1
        0
        0
        0
        1
        Write the disable code (B1H).
```

X: Don't care, -: No change


• Enable control

Set WDMOD<WDTE> to 1.

Watchdog timer clear control

The binary counter can be cleared and resume counting by writing clear code (4EH) into the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

Selection of warm-up time when returning from the stop mode at fc = 20M Hz, fs = 32.768 kHz

Selection of warm-up time when returning from the stop mode at it = 20M Fiz, is = 32.768 kF								
		Warm-up Time						
System Clock Selection <sysck></sysck>	Gear Value <gear2:0></gear2:0>	T45CR<0	QCU> = 0	T45CR <qcu> = 1</qcu>				
		<WARM $>$ $=$ 0	<warm> = 1</warm>	<WARM $>$ $=$ X				
1 (fs)	1 (fs) XXX (Don't care)		2.000 s	3.9 ms				
	000 (fc)	0.8192 ms	3.277 ms	6.4 μs				
	001 (fc/2)	1.638 ms	6.544 ms	12.8 µs				
0 (fc)	010 (fc/4)	3.277 ms	13.107 ms	25.6 μs				
	011 (fc/8)	6.554 ms	26.214 ms	51.2 μs				
	100 (fc/16)	13.107 ms	52.429 ms	102.4 μs				

Note: When the watchdog timer is in operation, T45CR<QCU> is set to 0.

Figure 3.12.4 Watchdog Timer Related Register (1/2)

Watchdog Timer Control Register

WDCR (005DH)

			- 3		- 3			
	7	6	5	4	3	2	1	0
Bit symbol				-	_			
Read/Write				V	٧			
After reset				-	_			
Function	B1H: WDT 4EH: WDT	disable code clear code)					

Disable/clear WDT

B1H Disable code

4EH Clear code

Others Don't care

Note: When the watchdog timer is in operation, T45CR<QCU> is set to 0.

Figure 3.12.5 Watchdog Timer Related Register (2/2)

Table 3.12.1 Watchdog Timer Detecting Time

at fc = 20M Hz, fs = 32.768 kHz

System Clock	Coor Value	Watchdog Timer Detecting Time						
Selection	Gear Value <gear2:0></gear2:0>		WDMOD <wdtp1:0></wdtp1:0>					
<sysck></sysck>	VOE/ (1 (2.0)	00	01	10	11			
1 (fs)	XXX (Don't care)	2.000 s	8.000 s	32.000 s	128.000 s			
	000 (fc)	3.277 ms	13.107 ms	52.429 ms	209.715 ms			
	001 (fc/2)	6.554 ms	26.214 ms	104.858 ms	419.430 ms			
0 (fc)	010 (fc/4)	13.107 ms	53.429 ms	209.715 ms	838.861 ms			
	011 (fc/8)	26.214 ms	104.858 ms	419.430 ms	1.678 s			
	100 (fc/16)	52.429 ms	209.715 ms	838.861 ms	3.355 s			

3.12.3 Operation

The watchdog timer generates interrupt INTWD after the detecting time set in the WDMOD<WDTP1:0>. The watchdog timer must be zero cleared by software before an INTWD interrupt is generated. If the CPU malfunctions (Runaway) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter overflows and an INTWD interrupt is generated. The CPU detects malfunction (Runaway) due to the INTWD interrupt and it is possible to return to normal operation by an anti-malfunction program. By connecting the watchdog timer out pin to peripheral devices' resets, a CPU malfunction can also be acknowledged to other devices.

The watchdog timer restarts operation immediately after resetting is released.

The watchdog timer stops its operation in the IDLE1 and STOP modes. In the RUN mode, the watchdog timer is enabled.

However, the function can be disabled when entering the RUN, IDLE2 mode.

Example:

```
1. Clear the binary counter  \mbox{WDCR} \qquad \leftarrow \mbox{ 0 } \mbox{ 1 } \mbox{ 0 } \mbox{ 1 } \mbox{ 1 } \mbox{ 1 } \mbox{ 0 } \mbox{ 1 } \mbox{ 1 } \mbox{ 0 } \mbox{ Write clear code (4EH)}.
```

2. Set the watchdog timer detecting time to $2^{17}/f_{\rm SYS}$ WDMOD \leftarrow 1 0 1 - - - X X

```
3. Disable the watchdog timer
```

4. Set IDLE1 mode

5. Set the STOP mode (Warm-up time: 216/fsys)

```
WDMOD \leftarrow - - - 1 0 1 X X Set the STOP mode. Executes halt command Execute HALT instruction. Set the HALT mode.
```

X: Don't care, -: No change

4. Electrical Characteristics

4.1 Maximum Ratings (TMP93CS44F, TMP93CS45F)

"X" used in an expression shows a cycle of clock f_{FPH} selected by SYSCR1<SYSCK>. If a clock gear or a low speed oscillator is selected, a value of "X" is different. The value as an example is calculated at fc, gear = 1/fc (SYSCR1<SYSCK, GEAR2:0> =

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 6.5	V
Input voltage	V _{IN}	-0.5 to $V_{CC} + 0.5$	V
Output current (Per 1 pin) P7	I _{OL1}	20	mA
Output current (Per 1 pin) except P7	I _{OL2}	2	mA
Output current (P7 total)	ΣI_{OL1}	80	mA
Output current (Total)	Σ lOL	120	mA
Output current (Total)	ΣΙΟΗ	-80	mA
Power dissipation (Ta = 85 °C)	P _D	350	mW
Soldering temperature (10 s)	T _{SOLDER}	260	°C
Storage temperature	T _{STG}	−65 to 150	°C
Operating temperature	T _{OPR}	-40 to 85	°C

Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value will ever be exceeded.

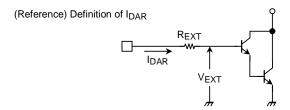
4.2 DC Characteristics (1/2)

 $Ta = -40 \text{ to } 85^{\circ}C$

Parameter		Symbol	Condition	on	Min	Typ. (Note)	Max	Unit
Power supply voltage		V _{CC}	fc = 4 to 20 MHz	fs = 30 to	4.5		5.5	V
1 OWEI 3	upply voltage	VCC	fc = 4 to 12.5 MHz	34 kHz	2.7		5.	V
Input	AD0 to AD15	V _{IL}	$V_{CC} \ge 4.5 \text{ V}$				0.8	
low	AD0 10 AD 13	V IL	V _{CC} < 4.5 V				0.6	
voltage	Port 2 to port 7 (except P35)	V _{IL1}			-0.3		0.3 V _{CC}	
	RESET, NMI, INTO	V_{IL2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$				0.25 V _{CC}	
	EA, AM8/AM16	V_{IL3}					0.3	
	X1	V_{IL4}					0.2 V _{CC}	V
Input	AD0 to AD 15		V _{CC} ≥ 4.5 V		2.2			· ·
high	AD0 10 AD 13	V _{IH}	V _{CC} < 4.5 V	2.0				
voltage	Port 2 to port 7 (except P35)	V _{IH1}			0.7 V _{CC}		V _{CC} + 0.3	
	RESET, NMI, INTO	V_{IH2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.75 V _{CC}			
	EA , AM8/ AM16	V _{IH3}			V _{CC} - 0.3			
	X1	V_{IH4}			0.8 V _{CC}			
Output le	ow voltage	V _{OL}	$I_{OL} = 1.6 \text{ mA}$ $(V_{CC} =$	2.7 to 5.5 V)			0.45	V
Outrout I	our oursent (DZ)	I _{OL7}	$V_{OL} = 1.0 \text{ V}$ $\frac{\text{(V_{CC})}}{\text{(V_{CC})}}$	= 5 V ± 10%)	16			mA
Output it	Output low current (P7)		VOL = 1.0 V (V _{CC}	= 3 V ± 10%)	7			IIIA
Output high voltage		V _{OH1}	$I_{OH} = -400 \mu A$ (V _{CC}	= 3 V ± 10%)	2.4			٧
Output r	iigii voltage	V _{OH2}	$I_{OH} = -400 \mu A$ (V _{CC}	= 5 V ± 10%)	4.2			٧

Note: Typical values are for $Ta = 25^{\circ}C$ and $V_{CC} = 5$ V unless otherwise noted.

DC Characteristics (2/2)


Parameter	Symbol	Condition	n	Min	Typ. (Note 1)	Max	Unit
Darlington drive current (8 output pins max)	I _{DAR} (Note 2)	$V_{EXT} = 1.5$ $R_{EXT} = 1.1 \text{ k}\Omega$ $(V_{CC} = 5 \text{ V} \pm 10\% \text{ onl})$	y)	-1.0		-3.5	mA
Input leakage current	ILI	$0.0 \leq V_{IN} \leq V_{CC}$			0.02	±5	
Output leakage current	I _{LO}	$0.2 \leq V_{IN} \leq V_{CC} - 0.2$			0.05	±10	μΑ
Power down voltage (at stop, RAM back up)	V _{STOP}	$V_{IL2} = 0.2V_{CC},$ $V_{IH2} = 0.8V_{CC}$		2.0		6.0	٧
		V _{CC} = 5.5 V		45		130	
RESET pull-up resistor	D	V _{CC} = 4.5 V		50		160	kΩ
RESET pull-up resistor	R _{RST}	$V_{CC} = 3.3 \text{ V}$		70		280	NS 2
		V _{CC} = 2.7 V		90		400	
Pin capacitance	C _{IO}	fc = 1 MHz				10	pF
Schmitt width RESET, NMI, INTO	V _{TH}			0.4	1.0		٧
		V _{CC} = 5.5 V		45		130	
Programmable		$V_{CC} = 4.5 \text{ V}$		50		160	kΩ
pull-up resistor	R _{KH}	V _{CC} = 3.3 V		70		280	KS2
		V _{CC} = 2.7 V		90		400	
NORMAL (Note 3)					19	25	
RUN		$V_{CC} = 5 V \pm 10\%$			17	25	
IDLE2		fc = 20 MHz			12	17	
IDLE1					3.5	5	mA
NORMAL (Note 3)					6.5	10	IIIA
RUN		$V_{CC} = 3 V \pm 10\%$ fc = 12.5 MHz			5.0	9	
IDLE2		$(Typ. V_{CC} = 3.0 V)$			4.5	6.5	
IDLE1	Icc	(1) p. 100 0.0 1)			0.8	1.5	
SLOW (Note 3)					20	45	
RUN		$V_{CC} = 3 \text{ V} \pm 10\%$ fs = 32.768 kHz (Typ. $V_{CC} = 3.0 \text{ V}$)			16	40	
IDLE2					15	25	μΑ
IDLE1		()[5	15	
		Ta ≤ 50°C	V _{CC} =			10	
STOP		Ta ≤ 70°C 2.7 V			0.2	20	μΑ
		Ta ≤ 85°C	to 5.5 V	_		50	

Note 1: Typical values are for $Ta = 25^{\circ}C$ and $V_{CC} = 5$ V unless otherwise noted.

Note 2: I_{DAR} is guranteed for total of up to 8 ports.

Note 3: I_{CC} measurement conditions (NORMAL, SLOW).

Only CPU is operational; output pins are open and input pins are fixed.

4.3 AC Characteristics

(1) $V_{CC} = 5 V \pm 10\%$

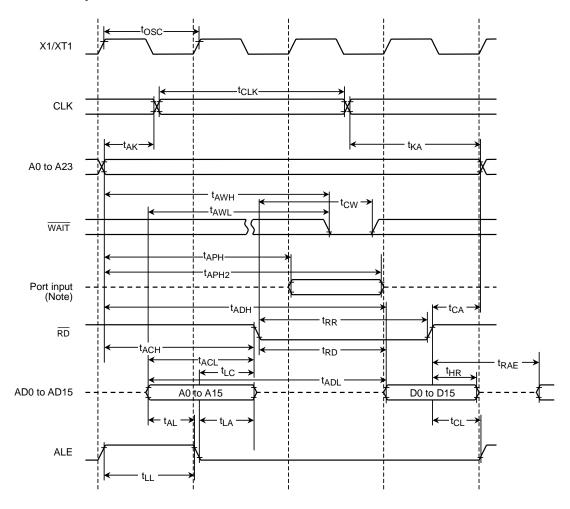
No.	p. Parameter		Vari	able	16 N	ЛHz	20 N	ИHz	Unit
NO.	i didilielei	Symbol	Min	Max	Min	Max	Min	Max	Offic
1	Oscillation period (= X)	tosc	50	31250	62.5		50		ns
2	CLK pulse width	tCLK	2X – 40		85		60		ns
3	A0 to A23 valid → CLK hold	t _{AK}	0.5X - 20		11		5		ns
4	CLK valid \rightarrow A0 to A23 hold	t _{KA}	1.5X - 70		24		5		ns
5	A0 to A15 valid \rightarrow ALE fall	t _{AL}	0.5X - 15		16		10		ns
6	ALE fall \rightarrow A0 to A15 hold	t _{LA}	0.5X - 20		11		5		ns
7	ALE high pulse width	t _{LL}	X – 40		23		10		ns
8	ALE fall $\rightarrow \overline{RD}$ / \overline{WR} fall	t _{LC}	0.5X - 25		6		0		ns
9	$\overline{RD} / \overline{WR} rise \to ALE rise$	t _{CL}	0.5X - 20		11		5		ns
10	A0 to A15 valid $\rightarrow \overline{RD} / \overline{WR}$ fall	t _{ACL}	X – 25		38		25		ns
11	A0 to A23 valid $\rightarrow \overline{RD}$ / \overline{WR} fall	t _{ACH}	1.5X - 50		44		25		ns
12	\overline{RD} / \overline{WR} rise \rightarrow A0 to A23 hold	t _{CA}	0.5X - 25		6		0		ns
13	A0 to A15 valid \rightarrow D0 to D15 input	t _{ADL}		3.0X - 55		133		95	ns
14	A0 to A23 valid \rightarrow D0 to D15 input	t _{ADH}		3.5X - 65		154		110	ns
15	\overline{RD} fall \rightarrow D0 to D15 input	t _{RD}		2.0X - 60		65		40	ns
16	RD low pulse width	t _{RR}	2.0X - 40		85		60		ns
17	\overline{RD} rise \rightarrow D0 to D15 hold	t _{HR}	0		0		0		ns
18	\overline{RD} rise \rightarrow A0 to A15 output	t _{RAE}	X – 15		48		35		ns
19	WR low pulse width	t _{WW}	2.0X - 40		85		60		ns
20	D0 to D15 valid $\rightarrow \overline{\text{WR}}$ rise	t _{DW}	2.0X - 55		70		45		ns
21	$\overline{\text{WR}}$ rise \rightarrow D0 to D15 hold	t _{WD}	0.5X - 15		16		10		ns
22	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input $ \begin{pmatrix} (1+N) \text{ WAIT} \\ \text{mode} \end{pmatrix} $	t _{AWH}		3.5X - 90		129		85	ns
23	A0 to A15 valid $\rightarrow \overline{\text{WAIT}}$ input $ \begin{pmatrix} (1+N) \text{ WAIT} \\ \text{mode} \end{pmatrix} $	t _{AWL}		3.0X - 80		108		70	ns
24	$\overline{RD} / \overline{WR} \text{ fall} \rightarrow \overline{WAIT} \text{ hold} $	t _{CW}	2.0X + 0		125		100		ns
25	A0 to A23 valid \rightarrow Port input	t _{APH}		2.5X - 120		36		5	ns
26	A0 to A23 valid \rightarrow Port hold	t _{APH2}	2.5X + 50		206		175		ns
27	\overline{WR} rise \rightarrow Port valid	t _{CP}		200		200		200	ns

AC measuring conditions

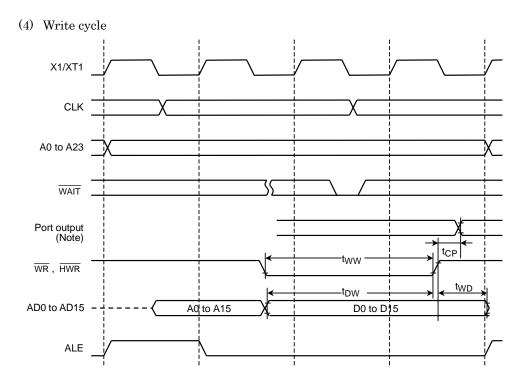
• Output level: High 2.2 V, low 0.8 V, CL = 50 pF $(However\ CL = 100\ pF\ for\ AD0\ to\ AD15,\ A0\ to\ A23,\ ALE,\ \overline{RD}\ ,\ \overline{WR}\ ,\ \overline{HWR}\ ,\ CLK)$

• Input level: High 2.4 V, low 0.45 V (AD0 to AD15)

High $0.8 \times V_{CC},$ low $0.2 \times V_{CC}$ (except for AD0 to AD15)


(2) $V_{CC} = 3 V \pm 10\%$

No.	o. Parameter		Vari	able	12.5	MHz	Unit
INO.	Faiailletei	Symbol	Min	Max	Min	Max	Offic
1	Oscillation period (= X)	tosc	80	31250	80		ns
2	CLK pulse width	tCLK	2X – 40		120		ns
3	A0 to A23 valid \rightarrow CLK hold	t _{AK}	0.5X - 30		10		ns
4	CLK valid \rightarrow A0 to A23 hold	t _{KA}	1.5X - 80		40		ns
5	A0 to A15 valid → ALE fall	t _{AL}	0.5X - 35		5		ns
6	ALE fall \rightarrow A0 to A15 hold	t_{LA}	0.5X - 35		5		ns
7	ALE high pulse width	t _{LL}	X – 60		20		ns
8	ALE fall $\rightarrow \overline{RD} / \overline{WR}$ fall	t _{LC}	0.5X - 35		5		ns
9	$\overline{RD}/\overline{WR}rise \to ALErise$	t _{CL}	0.5X - 40		0		ns
10	A0 to A15 valid $\rightarrow \overline{RD} / \overline{WR}$ fall	tACL	X – 50		30		ns
11	A0 to A23 valid $\rightarrow \overline{RD}$ / \overline{WR} fall	t _{ACH}	1.5X - 50		70		ns
12	\overline{RD} / \overline{WR} rise \rightarrow A0 to A23 hold	t _{CA}	0.5X - 40		0		ns
13	A0 to A15 valid \rightarrow D0 to D15 input	t _{ADL}		3.0X – 110		130	ns
14	A0 to A23 valid \rightarrow D0 to D15 input	t _{ADH}		3.5X - 125		155	ns
15	\overline{RD} fall \rightarrow D0 to D15 input	t _{RD}		2.0X – 115		45	ns
16	RD low pulse width	t _{RR}	2.0X - 40		120		ns
17	\overline{RD} rise \rightarrow D0 to D15 hold	tHR	0		0		ns
18	\overline{RD} rise \rightarrow A0 to A15 output	t _{RAE}	X – 25		55		ns
19	WR low pulse width	t_{WW}	2.0X - 40		120		ns
20	D0 to D15 valid $\rightarrow \overline{\text{WR}}$ rise	t _{DW}	2.0X – 120		40		ns
21	$\overline{\text{WR}}$ rise \rightarrow D0 to D15 hold	t_{WD}	0.5X – 40		0		ns
22	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input	J LAWH		3.5X - 130		150	ns
23	A0 to A15 valid $\rightarrow \overline{\text{WAIT}}$ input	t _{AWL}		3.0X – 100		140	ns
24	$\overline{RD} / \overline{WR} \text{ fall} \rightarrow \overline{WAIT} \text{ hold}$	t _{CW}	2.0X + 0		160		ns
25	A0 to A23 valid \rightarrow Port input	t _{APH}		2.5X - 195		5	ns
26	A0 to A23 valid \rightarrow Port hold	t _{APH2}	2.5X + 50		250		ns
27	\overline{WR} rise \rightarrow Port valid	t _{CP}		200		200	ns


AC measuring conditions

- Output level: High 0.7 \times VCC, low 0.3 \times VCC, CL = 50 pF
- Input level: High 0.9 \times VCC, low 0.1 \times VCC

(3) Read cycle

Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

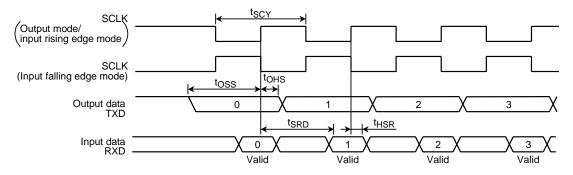
Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as \overline{WR} and \overline{CS} are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.4 Serial Channel Timing

(1) I/O interface mode

1. SCLK input mode

Parameter	Symbol Va		able	32.768	(Note 1) 3 MHz	12.5	MHz	20	MHz	Unit
	-	Min	Max	Min	Max	Min	Max	Min	Max	
SCLK cycke	tscy	16X		488 μs		1.28 µs		0.8 μs		ns
Output data → Falling edge of SCLK	toss	t _{SCY} /2 - 5X - 50		91.5 μs		190		100		ns
SCLK rising/falling edge → Output data hold	tons	5X – 100		152 μs		300		150		ns
SCLK rising/falling edge → Input data hold (Note 2)	t _{HSR}	0		0		0		0		ns
SCLK rising/falling edge → Effective data input (Note 2)	tSRD		t _{SCY} - 5X - 100		336 µs		780		450	ns


Note 1: When fs is used as system clock or fs divided by 4 is used as input clock to prescaler.

Note 2: SCLK rising/falling timing; SCLK rising in the rising mode of SCLK, SCLK falling in the falling mode of SCLK.

2. SCLK output mode

Parameter	Symbol	Variable		(Note) 32.768 MHz			5 MHz	20	MHz	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
SCLK cycle (Programmable)	tscy	16X	8192X	488 μs	250 ms	1.28 μs	655.36 μs	0.8 μs	409.6 μs	ns
Output data → SCLK rising edge	toss	t _{SCY} – 2X – 150		427 μs		970		550		ns
SCLK rising edge → Output data hold	t _{OHS}	2X - 80		60 μs		80		20		ns
SCLK rising edge → Input data hold	t _{HSR}	0		0		0		0		ns
SCLK rising edge → Effective data input	t _{SRD}		t _{SCY} - 2X - 150		428 μs		970		550	ns

Note: When fs is used as system clock or fs divided by 4 is used as input clock to prescaler.

(2) UART mode (SCLK0 and SCLK1 are external input)

Parameter	Symbol	Vari	able	32.76	(Note) 8 MHz		MHz	20 1	ИНz	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
SCLK cycle	tscy	4X + 20		122 μs		340		220		ns
SCLK low level pulse width	tSCYL	2X + 5		6 μs		165		105		ns
SCLK high level pulse width	tscyh	2X + 5		6 μs		165		105		ns

Note: When fs is used as system clock or fs divided by 4 is used as input clock to prescaler.

4.5 AD Conversion Characteristics

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

Parameter	Symbol	Power Supply	Min	Тур.	Max	Unit
Analog reference voltage (+)	V _{REFH}	$V_{CC} = 5 V \pm 10\%$	V _{CC} – 0.2 V	V _{CC}	V _{CC}	
Analog reference voltage (+)	VKEFH	$V_{CC}=3~V\pm10\%$	V _{CC} – 0.2 V	V _{CC}	V _{CC}	
Analog reference voltage (–)	V	$V_{CC}=5~V\pm10\%$	V _{SS}	V_{SS}	V _{SS} + 0.2 V	V
Arialog reference voltage (–)	V _{REFL}	$V_{CC}=3~V\pm10\%$	V _{SS}	V_{SS}	V _{SS} + 0.2 V	
Analog input voltage range	V_{AIN}		V_{REFL}		V_{REFH}	
Analog current for analog reference		$V_{CC}=5~V\pm10\%$		0.5	1.5	
voltage <vrefon> = 1</vrefon>	I _{REF} (V _{REFL} = 0 V)	$V_{CC} = 3 V \pm 10\%$		0.3	0.9	mA
<vrefon> = 0</vrefon>	0 0)	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.02	5.0	μА
Error		$V_{CC} = 5 V \pm 10\%$		±1.0	±3.0	LSB
(except quantization errors)		$V_{CC} = 3 V \pm 10\%$		±1.0	±5.0	LOD

Note 1: $1LSB = (V_{REFH} - V_{REFL})/2^{10} [V]$

Note 2: The operation above is guaranteed for $f_{\mbox{\scriptsize FPH}}\,{\ge}\,4$ MHz.

Note 3: The value $\ensuremath{I_{CC}}$ includes the current which flows through the AVCC pin.

4.6 Event Counter Input Clock (External input clock: TI0, TI4, TI5, TI6, TI7)

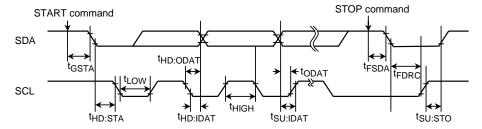
Parameter	Symbol	Variable		12.5	MHz	20 N	Unit	
Faiametei	Symbol	Min	Max	Min	Max	Min	Max	Offic
Clock cycle	t _{VCK}	8X + 100		740		500		ns
Low level clock pulse width	tvckl	4X + 40		360		240		ns
High level clock pulse width	tvckh	4X + 40		360		240		ns

4.7 Interrupt and Capture Operation

(1) $\overline{\text{NMI}}$ and INT0 interrupts

Parameter	Svmbol	Variable		12.5	MHz	20 N	Unit	
i arameter	Symbol	Min	Max	Min	Max	Min	Max	Offic
NMI, INTO low level pulse width	t _{INTAL}	4X		320		200		ns
NMI, INTO high level pulse width	tINTAH	4X		320		200		ns

(2) INT1, INT4 to INT7 interrupts and capture

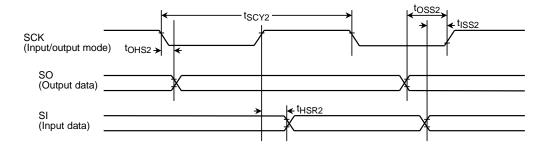

Parameter	Symbol	Variable		12.5 MHz		20 MHz		Unit
Falameter	Symbol	Min	Max	Min	Max	Min	Max	Offic
INT1, INT4 to INT7 low level pulse width	t _{INTBL}	4X + 100		420		300		ns
INT1, INT4 to INT7 high level pulse width	t _{INTBH}	4X + 100		420		300		ns

4.8 Serial Bus Interface Timing

(1) I²C bus mode

Parameter	Symbol		Variable		Unit
Falametei	Symbol	Min	Тур.	Max	Offic
START command \rightarrow SDA fall	tGSTA	3X			ns
Hold time START condition	t _{HD:STA}	2 ⁿ X			ns
SCL low level pulse width	t _{LOW}	2 ⁿ X			ns
SCL high level pulse width	tHIGH	$2^{n}X + 12X$			ns
Data hold time (Input)	t _{HD:IDAT}	0			ns
Data setup time (Input)	tsu:IDAT	250			ns
Data hold time (Output)	thd:ODAT	7X		11X	ns
Data output \rightarrow SCL rising edge	tODAT		2 ⁿ X – t _{HD:ODAT}		ns
STOP command \rightarrow SDA fall	tFSDA	3X			ns
SDA falling edge \rightarrow SCL rising edge	tFDRC	2 ⁿ X			ns
Setup time STOP condition	tsu:sto	2 ⁿ X + 16X			ns

Note: "n" value is set by SBICR1<SCK2:0>.


(2) Clock synchronous 8-bit SIO mode

1. SCK input mode

Parameter	Symbol	Varia	able	Unit
Farameter	Symbol	Min	Max	Offic
SCK cycle	t _{SCY2}	2 ⁵ X		ns
SCK falling edge → Output data hold	t _{OHS2}	6X		ns
Output data → SCK rising edge	t _{OSS2}	t _{SCY2} – 6X		ns
SCK rising edge \rightarrow Input data hold	t _{HSR2}	6X		ns
Input data \rightarrow SCK rising edge	t _{ISS2}	0		ns

2. SCK output mode

Parameter	Symbol	Vari	able	Unit
i alametei	Symbol	Min	Max	Offic
SCK cycle	t _{SCY2}	2 ⁵ X	2 ¹¹ X	ns
SCK falling edge → Output data hold	t _{OHS2}	2X		ns
Output data → SCK rising edge	toss2	t _{SCY2} – 2X		ns
SCK rising edge \rightarrow Input data hold	t _{HSR2}	2X		ns
Input data \rightarrow SCK rising edge	t _{ISS2}	0		ns

5. Table of Special Function Registers

The special function registers (SFRs) include the I/O ports and peripheral control registers allocated to the 128-byte addresses from 000000H to 00007FH.

- (1) I/O port
- (2) I/O port control
- (3) Clock control
- (4) Interrupt control
- (5) Bus width/wait control
- (6) Timer control
- (7) Serial channel control
- (8) Serial bus interface control
- (9) Watchdog timer control
- (10) AD converter control

Configuration of the table

Symbol	Name	Address	7	6			1	0	
					\ \	$\sqrt{}$			\rightarrow Bit symbol
						//			→ Read/Write
][\rightarrow Initial value after reset
					/				→ Remarks

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these registers.

(Example) When setting only bit0 of register POCR, "SET 0, (0002H)" cannot be used. The LD (Transfer) instruction must be used to write all 8 bits.

Table 5.1 I/O Register Address Map

Address	Name	Address	Name	Address	Name	Address	Name
000000H	P0	20H	TRUN	40H	TREG6L	60H	ADREG04L
1H	P1	21H	(Reserved)	41H	TREG6H	61H	ADREG04H
2H	P0CR	22H	TREG0	42H	TREG7L	62H	ADREG15L
3H	(Reserved)	23H	TREG1	43H	TREG7H	63H	ADREG15H
4H	P1CR	24H	T10MOD	44H	CAP3L	64H	ADREG26L
5H	P1FC	25H	TFFCR	45H	CAP3H	65H	ADREG26H
6H	P2	26H	TREG2	46H	CAP4L	66H	ADREG37L
7H	P3	27H	TREG3	47H	CAP4H	67H	ADREG37H
8H	P2CR	28H	T32MOD	48H	T5MOD	68H	WAITC0
9H	P2FC	29H	TRDC	49H	T5FFCR	69H	WAITC1
AH	P3CR	2AH)	4AH	(Reserved)	6AH	WAITC2
BH	P3FC	2BH		4BH	SBICR1	6BH	(Reserved)
CH	P4	2CH	(Reserved)	4CH	SBIDBR	6CH	(Reserved)
DH	P5	2DH	(Reserved)	4DH	I2CAR	6DH	CKOCR
EH	P4CR	2EH		4EH	SBICR2	6EH	SYSCR0
FH	(Reserved)	2FH	J	4FH	SBICR3	6FH	SYSCR1
10H	P4FC	30H	TREG4L	50H	SC0BUF	70H	INTE0AD
11H	(Reserved)	31H	TREG4H	51H	SC0CR	71H	INTE45
12H	P6	32H	TREG5L	52H	SC0MOD	72H	INTE67
13H	P7	33H	TREG5H	53H	BR0CR	73H	INTET10
14H	P6CR	34H	CAP1L	54H	SC1BUF	74H	INTET32
15H	P7CR	35H	CAP1H	55H	SC1CR	75H	INTET54
16H	P6FC	36H	CAP2L	56H	SC1MOD	76H	INTET76
17H)	37H	CAP2H	57H	BR1CR	77H	INTEO54
18H		38H	T4MOD	58H	ODE	78H	INTES0
19H		39H	T4FFCR	59H		79H	INTES1
1AH		3AH	T45CR	5AH	(Reserved)	7AH	INTE1S2
1BH	(Reserved)	3BH		5BH	J	7BH	IIMC
1CH		3CH		5CH	WDMOD	7CH	DMA0V
1DH		3DH	(Reserved)	5DH	WDCR	7DH	DMA1V
1EH		3EH		5EH	ADMOD0	7EH	DMA2V
1FH	J	3FH	<u> </u>	5FH	ADMOD1	7FH	DMA3V

Note: Do not access addresses which do not have register names allocated.

(1) I/O port

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P07	P06	P05	P04	P03	P02	P01	P00
P0	Port 0	00H				R	/W			
	1 011 0	0011				Unde	efined			
							mode			_
			P17	P16	P15	P14	P13	P12	P11	P10
P1	Port 1	01H				R/	W	11		
	1 011 1	0	0	0	0	0	0	0	0	0
				1	1		mode		1	1
		06H	P27	P26	P25	P24	P23	P22	P21	P20
P2	Port 2	(Prohibit		1	1		W		1	1
		RMW*)	1	1	1	1	1	1	1	1
		,			1		mode		1	•
		07H	\rightarrow		P35	P34	P33	P32	P31	P30 (Note1)
P3	Port 3	(Prohibit				1		W	1	1
		RMW*)			1	1	1	1	1	1
		,					mode			ut mode
			P47	P46	P45	P44	P43	P42	P41	P40
P4	Port 4	0CH		1	1		W			
			1	1	1	1	1	1	1	1
				1	1	1	mode		1	1
			P57	P56	P55	P54	P53	P52	P51	P50
P5	Port 5	0DH					R			
				1	1		mode		1	
		12H	P67	P66	P65	P64	P63	P62	P61	P60
P6	Port 6	(Prohibit		1	1		W		1	
		RMW*)	1	1	1	1	1	1	1	1
		,		ıt mode				mode	T ==.	1
			P77	P76	P75	P74	P73	P72	P71	P70
P7	P7 Port 7 13			1 .			W		1 .	1 .
			1	1	1	1	1	1	1	1
						Input	mode			

Note 1: When P30 pin is defined as \overline{RD} signal output mode (P30F = 1), clearing the output latch register P30 to 0 outputs the \overline{RD} strobe from P30 pin for PSRAM, even when the internal address is accessed. If the output latch register P30 remains 1, the \overline{RD} strobe is output only when the external address is accessed.

Note 2: Port 66 and 67 are also used as XT1, XT2. Therefore these pins are open drain output type.

Read/Write

R/W: Either read or write is possible.

R: Only read is possible.W: Only write is possible.

Prohibit RMW: Prohibit read-modify-write.

(Prohibit RES/SET/TSET/CHG/STCF/ANDCF/ORCF/XORCF instruction.)

Prohibit RMW*: Read-modify-write is prohibited when controlling the PU resistor.

(2) I/O port control

	Nome	Address	7		-	4	2	2	4	0
Symbol	Name	Address	7	6	5	4	3		1	0
	Port 0	02H	P07C	P06C	P05C	P04C	P03C W	P02C	P01C	P00C
P0CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	0: In		7	-	ss, set as AD			
			P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
	Port 1	04H	1 170	1 100	1 100		N	1 120	1 110	1 100
P1CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)				< <refer t<="" td="" to=""><td>he "P1FC">></td><td>•</td><td></td><td></td></refer>	he "P1FC">>	•		
	5		P17F	P16F	P15F	P14F	P13F	P12F	P11F	P10F
P1FC	Port 1 function	05H		·		1	N		•	
PIFC	register	(Prohibit RMW)	0	0	0	0	0	0	0	0
	register	KIVIVV)		P1FC/P1CF	R = 00: Input	01: Outpu	t 10: AD15	to AD8 1	1: A15 to A8	3
	Port 2		P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
P2CR	control	08H				\	N			
1 2010	register	(Prohibit RMW)	0	0	0	0	0	0	0	0
		,		ı			he "P2FC">>		1	
	Port 2	0011	P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
P2FC	function	09H (Prohibit		T .			N	T .		
	register	RMW)	0	0	0	0	0	0	0	0
		,		P2FC/P20	CR = 00: Inp				A23 to A16	_
	Port 3	0AH			P35C	P34C	P33C	P32C		
P3CR	control	(Prohibit			0		<i>N</i> 0	0		
	register	RMW)			0 0: Ir	0	0: O			
				P32M	0.11	P34F	P33F	P32F	P31F	P30F
	Port 3	0BH		W		1 341	F 331	W	F 311	F 301
P3FC	function	(Prohibit		0		0	0	0	0	0
	register	RMW)		0: HWR		0: Port	0: Port	0: Port	0: Port	0: Port
	3			1: SCK		1: SCL/SI	1: SDA/SO		1: WR	1: RD
			P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C
D.40D	Port 4	0EH		I		'	N	I		
P4CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)		·	0: Ir	put	0: O	utput	•	
			P47F			P44F			P41F	
	Port 4	10H	W			W			W	
P4FC	function	(Prohibit RMW)	0			0			0	
	register	TXIVIVV)	0: Port			0: Port			0: Port	
			1: TO6			1: TO4			1: TO3	
	Port 6	14H	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
P6CR	control	(Prohibit					N .			
	register	RMW)	1	1	0	0	0	0	0	0
			D7=0	D700	0: Ir		0: O		D=+0	D7.0
	Port 7	15H	P77C	P76C	P75C	P74C	P73C	P72C	P71C	P70C
P7CR	control	(Prohibit			0	\ 0	N 0	0		
	register	RMW)	0	0			l		0	0
					0: lr	iput	0: O			DEAL
	Port 6	16H			P65F W		P63F	P62F V		P60F W
P6FC	function	(Prohibit			0		0	0		0
. 0, 0	register	`RMW)			0: Port		0: Port	0: Port		0: Port
	. 09.0101				1: SCLK1		1: TXD1	1: SCLK0		1: TXD0
		I	l	l	5551(1	I	17.01	552110	<u> </u>	17,00

Note: With the TMP93CS45, which requires an external ROM, port 0 functions as AD0 to AD7; port 1, AD8 to AD15 or A8 to A15; P30, the $\overline{\text{RD}}$ signal; P31, the $\overline{\text{WR}}$ signal, regardless of the values set in P0CR, P1CR, P1FC, P30F and P31F.

(3) Clock control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	-					ALEEN	CLKEN
			R/	W					R/	W
	Clock		0	0					0/1	0/1
CKOCR	output control	006DH	Always write	"0".					ALE pin control	CLK pin control
	register								0: High-Z output	0: High-Z output
									1: ALE output	1: CLK output
			XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
				•	1	R/		ı	ı	
			1	0	1	0	0	0	0	0
SYSCR0	System clock control register 0	006EH	High-frequency oscillator (fc) 0: Stop 1: Oscillation	Low-frequency oscillator (fs) 0: Stop 1: Oscillation	High-frequency oscillator (fc) after released STOP mode 0: Stop 1: Oscillation	Low-frequency oscillator (fs) after released STOP mode 0: Stop 1: Oscillation	Select clock after released STOP mode 0: fc 1: fs	Warm-up timer (Write) 0: Don't care 1: Start timer (Read) 0: End warm up 1: Not end warm up	Select prescale 00: fppH 01: fs 10: fc/16 11: (Reserved)	r clock
							SYSCK	GEAR2	GEAR1	GEAR0
									W	
SYSCR1	System clock control register 1	006FH					O Select system clock 0: fc 1: fs (Note 2)	1 Select gear val 000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: (Reserv 110: (Reserv 111: (Reserv	ed)	O ency (fc)

Note 1: The value after reset of <CLKEN>, <ALEEN> is following:

TMP93CS44: 0 (High-impedance output)

TMP93CS45: 1 (CLK or ALE output)

But during reset, CLK pin is pulled up internally regardless of the products.

Note 2: The high-frequency oscillator will be enabled regardless the value of SYSCR0<XEN> when SYSCR1<SYSCK> is clear to 0.

On the other hand, the low-frequency oscillator will be enabled regardless the value of SYSCR0<XTEN> when SYSCR1<SYSCK> is set to 1.

(4) Interrupt control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INT	ΓAD			IN	T0	
INTE0AD	INT0/AD enable	0070H	IADC	IADM2	IADM1	IADM0	I0C	I0M2	I0M1	IOMO
INTLUAD	register	(Prohibit RMW)	R/W		W		R/W		W	
		IXIVIVV)	0	0	0	0	0	0	0	0
	INIT 4/F			IN	T5			IN	T4	
INTE45	INT4/5 enable	0071H (Prohibit	I5C	15M2	I5M1	I5M0	I4C	I4M2	I4M1	I4M0
	register	RMW)	R/W		W		R/W		W	
		,	0	0	0	0	0	0	0	0
	INT6/7	0072H			T7	1			T6	
INTE67	enable	(Prohibit	I7C	I7M2	I7M1	17M0	I6C	I6M2	I6M1	I6M0
	register	RMW)	R/W	_	W	_	R/W	_	W	
		,	0	0	0	0	0	0	0	0
	INTT1/0	0073H	17.40		Timer 1)	174140	ITOO	INTTO (170140
INTET10	enable	(Prohibit	IT1C	IT1M2	IT1M1	IT1M0	IT0C	IT0M2	ITOM1	IT0M0
	register	RMW)	R/W	0	W O		R/W	0	W	
			0	0		0	0	0	0 Time on 0)	0
	INTT3/2	0074H	IT3C	INTT3 (IT3M1	IT3M0	IT2C	INTT2 (IT2M1	IT2M0
INTET32	enable	(Prohibit	R/W	1131012	W	1131010	R/W	I I ZIVIZ	W	11ZIVIU
	register	`RMW)	0	0	0	0	0	0	0	0
			0	INTTR5	· ·	U	U	INTTR4	-	0
	INTT5/4	0075H	IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4M0
INTET54	enable	(Prohibit	R/W	TTOWLE	W	11000	R/W	11 11412	W	11 11110
	register	RMW)	0	0	0	0	0	0	0	0
				INTTR7	_			INTTR6	_	
	INTT7/6	0076H	IT7C	IT7M2	IT7M1	IT7M0	IT6C	IT6M2	IT6M1	IT6M0
INTET76	enable	(Prohibit	R/W		W		R/W		W	1
	register	RMW)	0	0	0	0	0	0	0	0
	INTTO			INT	TO5			INT	TO4	
INTEO54	5/4	0077H	ITO5C	ITO5M2	ITO5M1	ITO5M0	ITO4C	ITO4M2	ITO4M1	ITO4M0
INTEO34	enable	(Prohibit RMW)	R/W		W	•	R/W		W	
	register	KIVIVV)	0	0	0	0	0	0	0	0
	INTRX0/			INT	TX0			INT	RX0	
INTES0	TX0	0078H	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTESO	enable	(Prohibit RMW)	R/W		W		R/W		W	
	register	TXIVIVV)	0	0	0	0	0	0	0	0
	INTRX1/			INT	TX1			INT	RX1	_
INTES1	TX1	0079H	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
	enable register	(Prohibit RMW)	R/W		W	T	R/W		W	
	register	,	0	0	0	0	0	0	0	0
	INT1/	007AH			T1	1			rS2	1
INTE1S2	INTS2	(Prohibit	I1C	I1M2	I1M1	I1M0	IS2C	IS2M2	IS2M1	IS2M0
	enable register	RMW)	R/W		W	1	R/W		W	1
	109,0101	,	0	0	0	0	0	0	0	0
			\Box				L			

				•
\rightarrow	lxxM2	IxxM1	IxxM0	Function (Write)
	0	0	0	Prohibits interrupt request.
	0	0	1	Sets interrupt request level to 1.
	0	1	0	Sets interrupt request level to 2.
	0	1	1	Sets interrupt request level to 3.
	1	0	0	Sets interrupt request level to 4.
	1	0	1	Sets interrupt request level to 5.
	1	1	0	Sets interrupt request level to 6.
	1	1	1	Prohibits interrupt request.

➤L	IXXC	Function (Read)	Function (Write)
	0	Indicates no interrupt request.	Clears interrupt request flag.
	1	Indicates interrupt request.	Don't care
			-

Interrupt control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
						DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA 0 request	7CH						W		
DIVIAOV	vector	(Prohibit RMW)				0	0	0	0	0
		IXIVIVV)					Micro	DMA0 start	vector	
	D144					DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA 1 request	7DH						W		
DIVIATV	vector	(Prohibit RMW)				0	0	0	0	0
		IXIVIVV)					Micro	DMA1 start	vector	
	D144.0					DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA 2 request	7EH						W		
DIVITAL	vector	(Prohibit RMW)				0	0	0	0	0
		TXIVIV)					Micro	DMA2 start	vector	
	D144.0					DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	DMA 3 request	7FH						W		
DIVINOV	vector	(Prohibit RMW)				0	0	0	0	0
		TXIVIV)					Micro	DMA3 start	vector	
					-			IOIE	IOLE	NMIREE
					W				W	
		7BH			0			0	0	0
IIMC	Interrupt input mode control	(Prohibit RMW)			Always write "0".			1: INT0 input enable	0: INT0 edge mode 1: INT0 level mode	1: Operation even at NMI rising edge

(5) Bus width/wait control

Symbol	Name	Address	7	6	5	4	3	2	1	0
						B0BUS	B0W1	B0W0	B0C1	B0C0
								W		
	Block 0 WAIT	68H				0	0	0	0	0
WAITC0	control	(Prohibit				0: 16-bit	00: 2 waits		00: 7F00H	to 7FFFH
	register	RMW)				bus	01: 1 wait		01: 400000	H to
						1: 8-bit	10: (1 + N)	waits	10: 800000	H to
						bus	11: 0 waits		11: C00000)H to
						B1BUS	B1W1	B1W0	B1C1	B1C0
								W		
	Block 1 WAIT	69H				0	0	0	0	0
WAITC1	control	(Prohibit				0: 16-bit	00: 2 waits		00: 880H to	7FFFH
	register	`RMW)				bus	01: 1 wait		01: 400000H to	
						1: 8-bit	10: (1 + N)	waits	10: 800000H to	
						bus	11: 0 waits		11: C00000)H to
						B2BUS	B2W1	B2W0	B2C1	B2C0
								W		
	Block 2 WAIT	6AH				0	0	0	1	1
WAITC2	control	(Prohibit				0: 16-bit	00: 2 waits		00: 8000H	to
	register	RMW)				bus	01: 1 wait		01: 400000	H to
	rogiotor runtry				1: 8-bit	10: (1 + N) waits		10: 800000H to		
						bus	11: 0 waits		11: C00000)H to

(6) Timer control (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PRRUN		T5RUN	T4RUN	T3RUN	T2RUN	T1RUN	T0RUN
			R/W				R/	W		
TRUN	Timer control	20H	0		0	0	0	0	0	0
IKUN	register	2011			Presc	aler and tim	er run/stop o	ontrol	ı	l .
	. og.oto.				0:	Stop and cl	lear .			
					1:	Run (Coun	t up)			
	8-bit	22H				-	_			
TREG0	timer	(Prohibit				V	٧			
	register 0	RMW)				Unde	efined			
	8-bit	23H				-	-			
TREG1	timer	(Prohibit				V	٧			
	register 1	RMW)				Unde	efined			
	8-bit		T10M1	T10M0			T1CLK1	T1CLK0	T0CLK1	T0CLK0
	timer 0		R/	W				R	W	
T10	and 1 source		0	0			0	0	0	0
MOD	CLK and	24H	00: 8-bit tin	ner			00: TO0TF	RG	00: TI0 INF	PUT
	mode		01: 16-bit t	imer			01: φT1		01: φT1	
	control		10: –				10: _φ T16		10: _φ T4	
	register		11: –				11: φT256	ı	11: φT16	1
			TFF3C1	TFF3C0	TFF3IE	TFF3IS	TFF1C1	TFF1C0	TFF1IE	TFF1IS
	8-bit		V			W		V		W
	timer		1	1	0	0	1	1	0	0
TFFCR	flip-flop	25H	00: Invert		1: TFF3	TFF3	00: Invert		1: TFF1	TFF1
	control		01: Set TF		invert enable	inversion select	01: Set TF		invert enable	inversion select
	register		10: Clear T		onabio	0: Timer 2	10: Clear 1		oriabio	0: Timer 0
			11: Don't d	are		1: Timer 3	11: Don't d	are		1: Timer 1
	8-bit	26H				-	_			I
TREG2	timer	(Prohibit				V	٧			
	register 2	`RMW)				Unde	efined			
	8-bit	27H				-	-			
TREG3	timer	(Prohibit				V	٧			
	register 3	`RMW)				Unde	efined			
	8-bit		T32M1	T32M0	PWM21	PWM20	T3CLK1	T3CLK0	T2CLK1	T2CLK0
	timer 2				•	R/	W	•	•	•
T32	and 3 source		0	0	0	0	0	0	0	0
MOD	CLK and	28H	00: 8-bit tim	er	00: -		00: TO2TR	G	00: -	
	mode		01: 16-bit ti	mer	01: 2 ⁶ – 1 F		01: φΤ1		01: φΤ1	
	control		10: 8-bit PF		10: $2^7 - 1$ c	ycle	10: φT16		10: φT4	
	register		11: 8-bit PV	VM	11: 2 ⁸ – 1		11: φT256		11: φT16	T
									TR2DE	_
	Timer									W
	register								0	0
TRDC	double	29H							0: Double	Always
	buffer								buffer disable	write "0".
	register	control							1: Double	
	_								buffer	
									enable	

Timer control (2/3)

TREG4L 16-bit timer flow TREG4H 16-bit timer flow TREG5H T					I	1					
TREG4L finer register 4 low	Symbol	Name	Address	7	6	5	4	3	2	1	0
TREGSL register 4 register 5 register 6 register 7 register 7 register 6 register 7 register 7 register 5 register 5 register 6 register 7 register 6 register 7 register 6 register 1 register 7 register 6 register 1 register 6 register 1 register 7 register 6 register 1 register 6 register 1 register 7 register 6 register 1 register 6 register 1 register 7 register 6 register 1 register 6 register 1 register 7 register 6 register 1 register 2 registe			30H				-	_			
TREGSH 16-bit timer register 5 16-bit timer register 1 16-bit timer register 2 16-bit timer register 3 38H	TREG4L							•			
TREG4H fight high high high high high high high			RMW)				Unde	efined			
TREGSH register 4 high register 5 low Prohibit RMW RMW		16-bit	31H				-	_			
TREGSL 16-bit timer register 5 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer register 1 low 16-bit timer 4 source CLK and mode control register 16-bit timer 4 source CLK and mode control register 16-bit timer 4 source CLK and mode control register 16-bit timer 4 low 16-bit limer 16-bit limer 4 low 16-bit limer 16-bit limer 4 low 16-bit limer 1	TREG4H						V	٧			
TREGSL T							Unde	efined			
TREGSL timer register 5 (Prohibit RMW)			0011								
TREGSH TREGSH Table Ta	TDEGSI	timer					V	V			
TREGSH TREGSH Tregister 5 Tregister 6 Tregister 1 Tregister 1 Tregister 1 Tregister 1 Tregister 1 Tregister 2 Tregister 3 Tregister 4 Tregister 4 Tregister 5 Tregister 4 Tregister 6 Tregister 6 Tregister 7 Tregister 7 Tregister 6 Tregister 7 Tregister 7 Tregister 7 Tregister 7 Tregister 8 Tregister 8 Tregister 8 Tregister 8 Tregister 8 Tregister 8 Tregister 9 Tregister	INEGGE										
TREGSH Tegister 5 RMW Tegister 1 RMW Tegister 2 RMM Tegister 2 Tegister 3 Tegister 2 Tegister 3			,					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Profibit RMW Profibit RMW							-				
CAP1L register 1 low 34H	TREG5H										
CAP1L register 1 low 34H R Undefined		high	RIVIVV)				Unde	etinea			
Capture register 1 high 35H											
CAP1H register 1 high 35H R CAP2L Capture register 2 low 36H CAP1H Register 2 low Undefined CAP2H register 2 high 37H Register 2 high 2 low Undefined CAP2H register 2 high 37H Register 2 high 2 low Undefined CAP2H Register 2 high 37H Register 2 low Undefined CAP1H CAP1M CAP12M	CAP1L		34H								
CAP1H register 1 night		IOW					Unde	efined			
CAP2L Capture register 2 low SaH Capture register 2 low Capture timer 4 low Capt											
CAP2L Capture register 2 low	CAP1H		35H								
CAP2L register 2 low		riigri					Unde	efined			
CAP2H CAP1Ure register 2 high 37H	0.4.001										
Capture register 2 high 37H	CAP2L		36H								
CAP2H register 2 high 37H							Unde	etinea			
T4MOD	CADOL		0711								
16-bit timer 4 38H 38H	CAPZH		3/П								
T4MOD						CADAIN			CLE	T4CLK4	T4CLK0
T4MOD 38H 0:Software capture of capture timing of capture timi		40 hit		$\overline{}$			CAPTZIVIT	CAPTZIVIU		14CLN1	14CLN0
T4MOD Source CLK and mode control register Source Class Source Class Source Class Source Class Capture Captur							0	0		0	0
Capture Cap											
1: Don't 01: TI4 ↑ TI5 ↑ enable 01: \$\psi T1 \\ \text{care} \] 1: Don't 01: TI4 ↑ TI5 ↑ enable 01: \$\psi T1 \\ \text{10: \$\psi T4 \\ \text{11: TTF1} ↑ TTF1\$ \\ \ \text{11: \$\psi T16 \\ \text{Dit} \\ \text{timer 4} \\ \text{16-bit} \\ \text{timer 4} \\ \text{17-care} \\ 11: \$\psi T16 \\ \text{11: \$\psi T16	T4MOD		38H					•			;K
register											
11: TTF1 ↑ TTF1 ↓ 11: ∳T16 CAP2T4 CAP1T4 EQ5T4 EQ4T4 TFF4C1 TFF4C0 R/W W 16-bit timer 4 TFF4 invert trigger O0: Invert TFF4						care					
CAP2T4		-									
16-bit timer 4 R/W W 0 0 0 0 1 1 1 TFF4 invert trigger 00: Invert TFF4						CAP2T4			EQ4T4		TFF4C0
16-bit timer 4 0 0 0 0 1 1 1 TFF4 invert trigger 00: Invert TFF4									1		
16-bit timer 4 TFF4 invert trigger 00: Invert TFF4		40.1.				0			0	1	1
							TFF4 inve	ert trigger	1	00: Invert T	FF4
T4FFCR flip-flop 39H 0: Disable trigger 01: Set TFF4	T4FFCR flip-flop	39H							01: Set TFI	- 4	
control 1: Enable trigger 10: Clear TFF4		control		1: Enable trigger 10: Clea					10: Clear T	FF4	
invert when privert		register								11: Don't c	are
						the UC value the UC value the UC the UC					
CAP2 CAP1 TREG5 TREG4							s loaded to is loaded to matches matches CAP2 CAP1 TREG5 TREG4				

Timer control (3/3)

T4 and T5 control register 6 (Prohibit register 6 (Prohibit register 7 (Prohibit 100w) TREGEL 16-bit 100w TREGEL 16-bit 100	Symbol	Name	Address	7	6	5	4	3	2	1	0		
Table	-			QCU						DB6EN	DB4EN		
T4 and T5 SAH Warm-up timer control register According to the property of the property													
TASCR				0						0	0		
TREGEL 16-bit timer 16-bit tim				Warm-up						Double b	ouffer		
TREGE 16-bit timer register 6 16-bit timer register 7 16-bit timer register 7 16-bit timer register 8 16-bit timer register 8 16-bit timer register 9 16-bit timer register 7 16-bit timer register 8 16-bit timer 1 16-bit ti	T45CR		3AH	timer						0: Disab	le		
16-bit timer register 6 high 16-bit timer register 7 16-bit time		register		control						1: Enab	le		
16-bit timer register 6 low													
16-bit timer register 6 low 16-bit timer fegister 6 high 16-bit timer fegister 7 low 16-bit timer register 8 low 16-bit timer register 9 low 16-bit timer register 3 low 16-bit timer register 3 low 16-bit timer register 3 low 16-bit timer register 4 low 16-bit timer register 4 low 16-bit timer register 4 low 16-bit timer register 4 low 16-bit timer register 4 low 16-bit timer 1 low 16-bit lo													
TREGEL Common C		16-bit	4011					_		TINEGO	INLO4		
TREGH	TREG6I	timer	_										
16-bit timer register 6 high 41H (Prohibit RMW) 16-bit timer register 7 low 42H (Prohibit RMW) 16-bit timer register 7 low 42H (Prohibit RMW) 16-bit timer register 7 low 43H 16-bit timer register 8 low 16-bit timer register 9 low 16-bit timer register 9 low 16-bit timer register 9 low 16-bit timer register 9 low 16-bit timer register 9 low 16-bit timer register 9 low 16-bit timer register 9 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit timer 1 low 16-bit limer 1 limer 1 low 16-bit limer 1 lime	1112002												
TREG6H climer c							Onac	JIII 10 G					
TREGTL 16-bit timer register 4	TDECCH						٠						
16-bit timer 5 16-b	IKEGON												
TREG7L timer register 7 (Prohibit RMW)			TXIVIV				Unae	etinea					
TREGY							-						
16-bit timer 5 source CAP4H CAP4H CAP3H CAP3	TREG7L												
TREGTH timer register 7 (Prohibit RMW)			KIVIVV)				Unde	efined					
REGYN register 7 high RMW			43H				-	_					
CAP3L Capture register 3 A4H CAP3H CAP4H Tegister 4 A6H CAP4H Tegister 4 A6H CAP4H CAP4H CAP4H CAP5H CAP	TREG7H												
CAP3L register 3			RMW)				Unde	efined					
Capture register 3 45H R		Capture											
Capture register 3 high 45H	CAP3L		44H										
CAP3H register 3 high A5H R Undefined		IOW											
Capture register 4 Variety Va	0.4.004.4												
Capture register 4 10w 46H	САРЗН		45H										
CAP4L register 4 low							Unde	etinea					
Capture register 4 high	САРЛ		46H				-	- -					
CAP4H Capture register 4 high A7H R Undefined CAP3IN CAP34M0 CLE T5CLK1 T5CLK0	OAF 4L		4011										
CAP4H register 4 high		Conturo					Undefined						
T5MOD	CAP4H	register 4	47H										
16-bit timer 5 source CLK and mode control register													
T5MOD						CAP3IN			CLE	T5CLK1	T5CLK0		
Source CLK and mode Capture Capture timing O: Disable O: Disable Capture timing O: Disable O: Disable O: TI6		16-bit				W			R/W	1			
T5MOD CLK and mode control register 48H						1	0	0	0	0	0		
Capture O0: Disable Clear enable O1: ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	T5MOD		48H								ck		
16-bit timer 5 16 16 17 17 17 17 17 17		mode											
16-bit timer 5 T5FFCR flip-flop control register 16-bit timer 5 T5FFCR flip-flop control register 16-bit timer 5 T5FFCR flip-flop control register 16-bit timer 5 T5FFCR flip-flop control register 16-bit timer 5 T5FFCR flip-flop control register 16-bit timer 5 T5FFCR flip-flop control register 17-bit care tripger 18-bit timer 5 T5FFCR flip-flop control register 18-bit timer 5 T5FFCR flip-flop control register 19-bit timer 5 T5FFCR flip-flop control register 10: 0									CHADIC				
16-bit timer 5 16-b		register				53.0							
16-bit timer 5 16-b						CADATE			EO7T6		TEESCO		
16-bit timer 5 16-b						CAP410			EWIID				
T5FFCR flip-flop control register													
T5FFCR flip-flop control register													
control register	T5FFCR	T5FFCR flip-flop 49H											
register Invert when Invert when Invert when Invert when the UC value the UC value the UC the UC the UC is loaded to is loaded to matches matches		control											
is loaded to is loaded to matches matches		register				Invert when Invert when Invert when Invert when 11: Don't care							
						CAP4	CAP3	matches TREG7	matches TREG6				

(7) Serial channel control

Symbol	Name	Address	7	6	5	4	3	2	1	0
0,		7.00.000	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
	Serial channel 0	50H	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
SC0BUF	buffer	(Prohibit RMW)					/ (Transmiss			
	register	KIVIVV)				- 0,	efined	,		
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
			R	R/	W	R (Clear	ed to "0" by	reading.)	R/	W
	Serial channel 0		Undefined	0	0	0	0	0	0	0
SC0CR	control	51H	Receiving	Parity	1: Parity		1: Error		0: SCLK0	1: Input
	register		data bit8	0: Odd	enable	Overrun	Parity	Framing	(SCLK0 pin
				1: Even					1: SCLK0	
			TB8	CTSE0	RXE	WU	SM1	SM0	SC1	SC0
	0 1		.20	0.020			W	00		
	Serial channel 0		Undefined	0	0	0	0	0	0	0
SC0MOD	mode	52H	Transmission	1: CTS0	1: Receive	1: Wakeup	00: I/O inte	rface	00: TO2 trigger	
	control register		data bit8	enable	enable	enable	01: UART 7-bit		01: Baud rate g	enerator
	register						10: UART 8		10: Internal clos	ck ¢1
					DD001//	DD001/0	11: UART 9	1	11: External clo	
			R/W		BR0CK1	BR0CK0	BR0S3	BR0S2 W	BR0S1	BR0S0
			0		0	0	0	0	0	0
	Baud rate 0		Fix at		00: _φ T0	U	_	-		U
BR0CR	control	53H	"0".		00: φ10 01: φT2		Set frequency divisor 0000: 16 divisions			
	register				10: φT8		0001	<i>a.v.</i>		
					11: φT32		to > 1	to 15 divisio	ons	
							ر 1111			
	Serial	54H	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
SC1BUF	channel 1	(Prohibit	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
	buffer register	`RMW)		R (Receiving)/W (Transmission)				sion)		
			RB8	EVEN	PE	OERR	efined PERR	FERR	SCLKS	IOC
			R		W		ed to "0" by		SCLRS R/	
	Serial		Undefined	0	0	0	0	0	0	0
SC1CR	channel 1 control	55H	Receiving	Parity	1: Parity		1: Error		0: SCLK1	1: Input
	register		data bit8	0: Odd	enable	Overrun	Parity	Framing	(<u> </u>	SCLK1 pin
				1: Even					1: SCLK1	
									(\(\(\) \)	
			TB8	CTSE1	RXE	WU	SM1	SM0	SC1	SC0
	Serial						W		1 0	
	channel 1		Undefined	0 1: CTS1	0 1: Possivo	0 1: Wakaup	0 00: I/O inte	o rface	0	0
SC1MOD	mode control	56H	Transmission data bit8	enable	enable	1: vvakeup enable	01: UART 7		00: TO2 trigger 01: Baud rate	
	register						10: UART 8		generator	
							11: UART 9		10: Internal clo	ck ¢1
								T	11: External clo	
					BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
			R/W		_	^		W	1 0	
	Baud rate 1		0 Fix at		0 00: 4T0	0	0 Set frequer	0	0	0
BR1CR	control	57H	Fix at "0".		00: φT0 01: φT2		Set frequer 0000: 16	divisions		
	register				10: φT8		00001			
					11: φT32		1	to 15 divisio	ons	
							ر 1111			
							ODE34	ODE33	ODE63	ODE60
	Serial								W	
ODE	open-drain	58H					0	0	0	0
	enable	5011					1: P34 open	1: P33 open	1: P63	1: P60 open
							drain	drain	open drain	drain
							•		•	

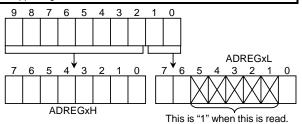
(8) Serial bus interface control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0
				W		R/W			W	
		4BH	0	0	0	0		0	0	0
		(I ² C bus	Number of tr	ansfer hits	1	Acknowledge		Setting of the	e divide value	_
		mode)	000: 8	100: 4	l.	mode		000: 4	100: 8	
			001: 1	101: 5		specification		001: 5	101: 9	
	Serial bus	(Prohibit	010: 2	110: 6		0: Disable		010: 6	110: 1	
001001	interface	RMW)	011: 3	111: 7		1: Enable		011: 7		Reserved)
SBICR1	control	,	SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0
	register 1			V	N				W	
		4BH	0	0	0	0		0	0	0
		(SIO	Indicate	Continue/	Transfer mod			Serial clock :		
		mode)	transfer	abort	00: 8-bit tran			000: f _{FPH} /2 ⁵	100: f _{FPH} /2 ⁹	
			start/stop	transfer	01: (Reserve			000: fFPH/2 001: fFPH/2 6	100: IFPH/2 101: fFPH/2 ¹⁰	
		(Prohibit	0: Stop	0: Continue	10: 8-bit tran	*		010: f _{FPH} /2 ⁷	110: PH/2 ¹¹	
		RMW)	1: Start	1: Abort	11: 8-bit rece			011: fFPH/2 ⁸	111: External cl	ock (SCK nin)
		,	MST	TRX	BB	PIN	SBIM1	SBIM0		(331. pill)
				1.177		V	CONVIT	CENVIO		
		4EH	0	0	T 0	1 1	0	0		
		(I ² C bus	Master/	Transmitter/	Start/stop	Cancel	Serial bus int			
		mode)	slave	receiver	generation	INTS2	operating mo			
			selection	selection	(when the	request	selection			
			0: Slave	0: Receiver	MST, TRX,	0: Don't	00: Port mod	de		
		(Prohibit	1: Master	1: Transmitter	PIN are "1")	care	01: SIO mod	de		
	Serial bus	`RMW)			0: Stop	1: Cancel	10: I ² C bus i			
SBICR2	interface				1: Start		11: (Reserve	ed)		
OBIONE	control						SBIM1	SBIM0		
	register 2	4EH					V	N		
		(SIO					0	0		
		mode)					Serial bus int			
							operating mo selection	ode		
							00: Port mod	da		
		(Drobibit					01: SIO mod			
		(Prohibit RMW)					10: I ² C bus i			
		T CIVIVV)					11: (Reserve			
			MST	TRX	BB	PIN	AL	AAS	AD0	LRB
						R	·	1		
		4EH	0	0	0	1	0	0	0	0
		(I ² C bus mode)	Master/	Transmitter/	I ² C bus	INTS2	Noise	Slave	GENERAL	Last
		mode)	slave	receiver	status	request	detection	address	CALL	received
			selection	selection	monitor	status	monitor	much	detection	bit monitor
		(Prohibit	status monitor	status monitor	0: Bus free		1: detect	detection monitor	monitor 1: Detect	0: "0"
		RMW)	0: Slave	0: Receiver	1: Bus	0: Request		1: Detect	i. Detect	1: "1"
	Serial bus		1: Master	1: Transmitter	busy	1: Cancel				
SBISR	interface						SIOF	SEF		
SDISK	status							R		
	register	4EH					0	0		
		(SIO					Serial	Shift		
		mode)					transfer	operating		
							operating	status		
		(Prohibit					status	monitor		
		RMW)					monitor 0: Termi-	0: Termi- nated		
		,					nated	1: In		
							1: In	process		
							process			
			1	ı	1			ı	ı	

Serial bus interface control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
										SWRST	
										R/W	
	Serial bus									0	
SBICR3	interface status register 3	4FH								Software reset	
	register o									0: –	
										1: Initialize SBI	
	Serial bus		DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
SBIDBR	interface data	4CH (Prohibit				R (Receive	e)/W (Send)	W (Send)			
ODIDDIN	buffer register	RMW)				Unde	efined				
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS	
				•	•	V	V	•			
	I ² C bus	4DH	0	0	0	0	0	0	0	0	
I2CAR	address register	(Prohibit RMW)			Slave	ave address selection					
										0: Enable	
										1: Disable	

(9) Watchdog timer


Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE
						R/	W			
	Watchdog		1	0	0	0	0	0	0	0
WDMOD	timer mode control register	5CH	1: WDT enable	00: 2 ¹⁵ /f _{SYS} 01: 2 ¹⁷ /f _{SYS} 10: 2 ¹⁹ /f _{SYS} 11: 2 ²¹ /f _{SYS}	S S	Warm-up timer 0: 2 ¹⁴ /inputted frequency 1: 2 ¹⁶ /inputted frequency	10: IDLE1	node mode mode	1: Connect internally WDT out to reset pin	1: Drive the pin in STOP mode
	Watchdog					-	-			
WDCR	timer control	5DH				V	V			
	register			B1H:	WDT disab	le code	- 4EH:	WDT clear	code	

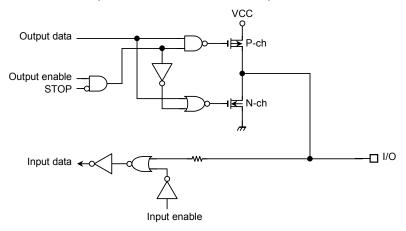
(10) AD converter control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			EOCF	AD8F	_	-	ITM0	REPET	SCAN	ADS
			F	₹			R/	W		
	AD mode		0	0	0	0	0	0	0	0
ADMOD 0	control register 0	5EH	1: End	1: Busy	Always write "0".	Always write "0".	0: Every conversion	0: Single 1: Repeat	0: fixed- channel 1: Scan	1: START
							1: Every four conversion			
			VREFON				ADTRGE	ADCH2	ADCH1	ADCH0
			R/W						W	1
ADMOD	AD mode		1				0	0	0	0
1	control register 1	5FH	0: OFF 1: ON				External trigger start control 0: Disable 1: Enable		Analog inpu annel select	
	4.5		ADR01	ADR00						ADR0RF
*1)	AD conversion			? ?						R
AD	result	60H		efined						0
REG04L	register 0/4 low		Stores lowe	er two bits of rsion result						Conversion result stored flag
	AD		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
AD	conversion	0.111		ı			R	ı	I	I
REG04H	result register	61H				Unde	efined			
	0/4 high				Stores upp	er eight bits	of AD conve	ersion result		
	-		ADR11	ADR10						ADR1RF
*1)	AD conversion		F	₹						R
AD REG15L	result	62H	Unde	efined						0
KEG 13E	register 1/5 low			er two bits of rsion result						Conversion result stored flag
	AD		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
AD	conversion	COLL		•			?	•	•	
REG15H	result register	63H				Unde	efined			
	1/5 high				Stores upp	er eight bits	of AD conve	ersion result		
	AD		ADR21	ADR20						ADR2RF
*1) AD	conversion		F	₹						R
REG26L	result	64H	Unde	efined						0
	register 2/6 low			er two bits of rsion result						Conversion result stored flag
	AD .		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
AD	conversion result	65H					₹			
REG26H	register	0311				Unde	efined			
	2/6 high				Stores upp	er eight bits	of AD conve	ersion result		
	AD		ADR31	ADR30						ADR3RF
*1)	conversion		F	₹						R
AD REG37L	result	66H	Unde	efined						0
1,200,2	register 3/7 low			er two bits of rsion result						Conversion result stored flag
	AD		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
AD	conversion	0711			1		R			
REG37H	result register	67H				Unde	efined			
	3/7 high				Stores upp	er eight bits	of AD conve	ersion result		

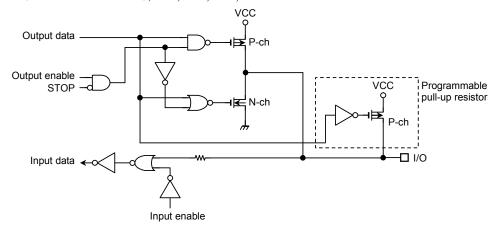
Converted data of channel x

^{*1:} Data to be stored in AD conversion result register low are the lower 2 bits of the conversion result. The contents of the 5 to 1 bits of this register are always read as 1. Bit0 conversion result stored flag bit <ADRxRF>, <ADRxRF> is set to 1 when the AD conversion result is stored. Reading either the ADREGxH or the ADREGxL registers clears <ADRxRF> to 0.

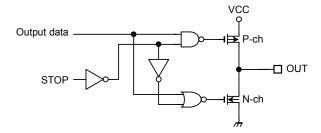
6. Port Section Equivalent Circuit Diagram

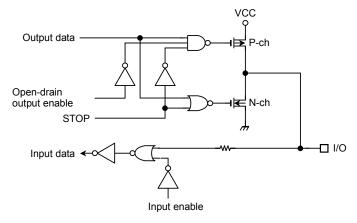

Reading the circuit diagram

Basically, the gate symbols written are the same as those used for the standard CMOS logic IC [74HCXX] series.

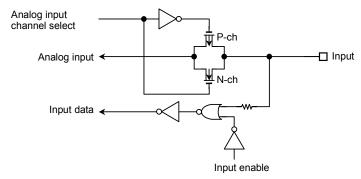

The dedicated signal is described below.

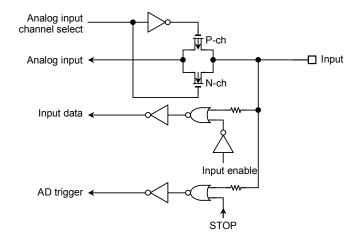
STOP: This signal becomes active 1 when the HALT mode setting register is set to the STOP mode (WDMOD<HALTM1:0> = 0, 1) and the CPU executes the HALT instruction. When the drive enable bit WDMOD<DRVE> is set to 1, however, STOP remains at 0.

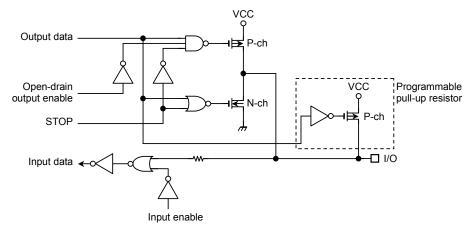

- The input protection resistance ranges from several tens of ohms to several hundreds of ohms.
 - P0 (AD0 to AD7), P1 (AD8 to AD15/A8 to A15), P4 and P7

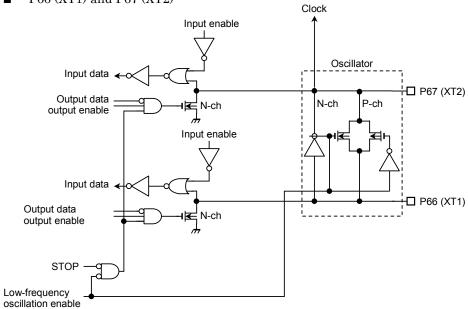

■ P2 (A16 to A23/A0 to A7), P32, P61, P62, P64 and P65

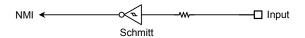

■ $P30(\overline{RD})$ and $P31(\overline{WR})$

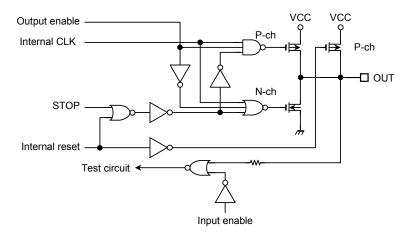

■ P33 (SO/SDA) and P34 (SI/SCL)


■ P35 (INT0)


 \blacksquare P50 to P52 (AN0 to AN2), P54 to P57 (AN4 to AN7)

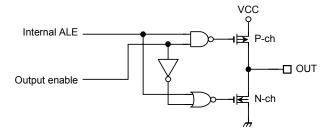

■ P53 (AN3 / ADTRG)

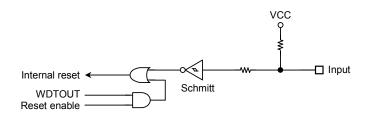

■ P60 (TXD0) and P63 (TXD1)

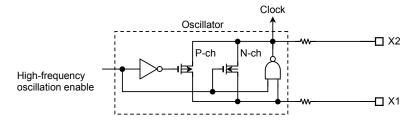

■ P66 (XT1) and P67 (XT2)

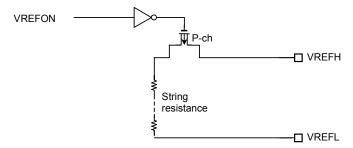
■ NMI

■ CLK




■ AM8/ AM16


■ ALE


\blacksquare RESET

■ X1 and X2

■ VREFH and VREFL

7. Points of Note and Restriction

- (1) Notation
 - 1. Explanation of a built-in I/O register: Register symbol<Bit symbol> Example: TRUN<TORUN> ... Bit TORUN of register TRUN
 - 2. Read-modify-write instruction

An instruction in which the CPU executes following by one instruction.

- 1. CPU reads data of the memory.
- 2. CPU modifies the data.
- 3. CPU writes the data to the same memory.

```
Example 1: SET 3, (TRUN) ... Set bit3 of TRUN
Example 2: INC 1, (100H) ... Increment the data of 100H
```

• A sample read-modify-write instructions using the TLCS-900

Exchange

```
EX
            (mem), R
Arithmetic operation
     ADD
            (mem), R/#
                            ADC
                                   (mem), R/#
     SUB
            (mem), R/#
                            SBC
                                   (mem), R/#
     INC
                            DEC
                                  #3, (mem)
            #3, (mem)
Logical operation
     AND
            (mem), R/#
                            OR
                                   (mem), R/#
     XOR (mem), R/#
Bit manipulation
     STCF #3/A, (mem)
                                  #3, (mem)
                            SET
     RES
           #3, (mem)
                            TSET #3, (mem)
     CHG #3, (mem)
Rotate and shift
     RLC
                            RRC
                                   (mem)
            (mem)
     RL
            (mem)
                            RR
                                   (mem)
     SLA
            (mem)
                            SRA
                                   (mem)
     SLL
            (mem)
                            SRL
                                   (mem)
     RLD
            (mem)
                            RRD
                                   (mem)
```

3. fc, fs, fppH, fsys, 1 state

The clock frequency input from pins X1 and X2 pin is called fc, and the clock frequency input from XT1, XT2 pin is called fs. The clock frequency selected by SYSCR1<SYSCK, GEAR2:0>is called system clock fFPH, and the clock frequency given by fFPH divided by 2 is called fSYS. One cycle of fSYS is called 1 state.

(2) Care points

1. The operation voltage

The operation voltage of TMP93PW44A is $V_{CC} = 4.5$ to 5.5 V though the operation voltage of TMP93CS44/45, TMP93PS44, TMP93CU44, and TMP93CW44 is $V_{CC} = 2.7$ to 5.5V.

Especially, be careful when TMP93CU44, TMP93CW44, and TMP93PW44A are used.

Please refer to the section 4 "Electric Characteristic" for details of each product.

2. EA, AM8/AM16 pin

Fix these pins VCC or VSS unless changing voltage.

3. TEST1, TEST2 pin

Connect TEST1 pin with TEST2 pin.

4. HALT mode (IDLE1)

When IDLE1 mode (Oscillator operation only) is used, set TRUN<PRRUN> to 0 to stop prescaler before "HALT" instruction is executed.

5. Warm-up counter

The warm-up counter operates when STOP mode is released even if the system is using an external oscillator. As a result, it takes warm-up time from inputting the releasing request to outputting the system clock.

6. Programmable pull-up resistor

The programmable pull-up resistors can be turned ON/OFF by the program when the ports are used as input ports. When the ports are used as the output ports, they can not be selected ON/OFF by the program.

The data registers (e.g., P6 register) are used for the pull-up resistors ON/OFF. Consequently, read-modify-write instructions are prohibited.

7. Watchdog timer

The watchdog timer starts operation immediately after the reset is released. When the watchdog timer is not used, disable it.

8. AD Converter

The string register between VREFH and VREFL pins can be cut by a program to reduce power consumption. When the standby mode is used, disable the resistor using the program before the "HALT" instruction is executed.

9. CPU (Micro DMA)

Only the "LDC cr, r", "LDC r, cr" instructions can be used to access the control registers in the CPU (like the transfer source address register (DMASn)).

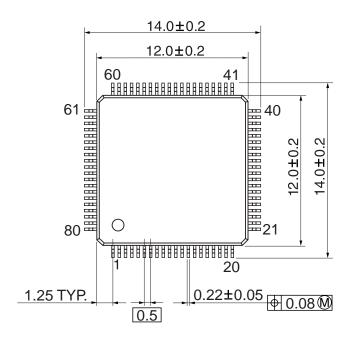
10. POP SR instruction

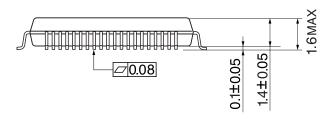
Please execute POP SR instruction during DI condition.

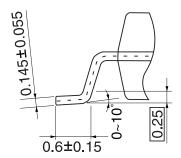
11. Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts = $(\overline{\text{NMI}}, \text{INTO})$ which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of fFPH) with IDLE1 or STOP mode (RUN and IDLE2 are not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt are generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.


8. TMP93XX44/45 Different Points


ITEM	TMP93CS44	TMP93CS45	TMP93PS44	TMP93CU44	TMP93CW44	TMP93PW44A
Built-in ROM	64-Kbyte mask ROM (FF0000H to FFFFFH)	None	64-Kbyte OTP (FF0000H to FFFFFFH)	96-Kbyte mask ROM (FE8000H to FFFFFH)	128-Kbyte mask ROM (FE0000H to FFFFFH)	128-Kbyte OTP (FE0000H to FFFFFH)
Built-in ROM		2 Kbytes (80H to 87FH)		3 Kbytes (80H to C7FH)	4 Kbytes (80H to 107FH)	H to 107FH)
CS1 Mapping Area (WAITC1 <b1c1:0> = 00)</b1c1:0>		880H to 7FFFH		C80H to 7FFFH	1080H to 7FFFH	, 7FFFН
CS2 Mapping Area (WAITC2 <b2c1:0> = 11)</b2c1:0>	C00000H to FEFFFH	С00000Н to FFFFFH	С00000Н to FEFFFH	C00000H to FE7FFH	C00000H to FDFFFFH	ГОЕГЕН
Operation Voltage			2.7 to 5.5 V			4.5 to 5.5 V
Package		P-LQFP80-1212-0.50E			P-QFP80-1420-0.80B	


9. Package Dimensions

P-LQFP80-1212-0.50E

Unit: mm

