
32-Bit TX System RISC
TX39 Family
TMPR3927

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products.
No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the
third parties which may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products.
Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the
standards of safety in making a safe design for the entire system, and to avoid situations in which
a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury
or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent TOSHIBA products specifications.
Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for
Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc..

The Toshiba products listed in this document are intended for usage in general electronics
applications (computer, personal equipment, office equipment, measuring equipment, industrial
robotics, domestic appliances, etc.).
These Toshiba products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss
of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy
control instruments, airplane or spaceship instruments, transportation instruments, traffic signal
instruments, combustion control instruments, medical instruments, all types of safety devices, etc..
Unintended Usage of Toshiba products listed in this document shall be made at the customer’s
own risk.

The products described in this document may include products subject to the foreign exchange
and foreign trade laws.

The products described in this document contain components made in the United States and
subject to export control of the U.S. authorities. Diversion contrary to the U.S. law is prohibited.

TOSHIBA products should not be embedded to the downstream products which are prohibited
to be produced and sold, under any law and regulations.

MIPS16, application Specific Extensions and R3000A are a trademark of MIPS Technologies,
Inc.

© 2003 TOSHIBA CORPORATION
All Rights Reserved

Table of Contents

i

Table of Contents
Handling precautions

1. Outline and Features..1-1
1.1 Outline ..1-1
1.2 Notation Used in This Manual..1-2

1.2.1 Numerical Notation..1-2
1.2.2 Data Notation ...1-2
1.2.3 Signal Notation ..1-2
1.2.4 Register Notation ...1-2

1.3 Features...1-3

2. Structure ...2-1
2.1 Block Diagram..2-1

3. Pins ...3-1
3.1 Pinout..3-1
3.2 Pin Description ...3-3
3.3 Pin Multiplexing ...3-9
3.4 Initial Setting Signals..3-12

4. Address Mapping ..4-1
4.1 Memory Mapping ...4-1
4.2 Register Mapping ...4-3

5. Configuration ..5-1
5.1 Chip Configuration Register (CCFG) 0xFFFE_E000 ..5-1

5.1.1 Chip Revision ID Register (CRIR) 0xFFFE_E004..5-3
5.1.2 Pin Configuration Register (PCFG) 0xFFFE_E008...5-4
5.1.3 Timeout Error Address Register (TEAR) 0xFFFE_E00C ...5-7

6. Clocks ...6-1
6.1 Clock Generator..6-1
6.2 System Control Clock (SYSCLK)..6-1
6.3 Power-Down Mode...6-2

6.3.1 Operation ...6-2
6.3.2 Register ..6-3

7. Bus Operation..7-1
7.1 Bus Mastership ...7-1

7.1.1 Snoop Function ..7-1
7.1.2 Relationship Between the Endian Mode and Data Bus..7-1

7.2 Bus Operation...7-3
7.2.1 Bus Error..7-4

8. SDRAM Controller ...8-1
8.1 Features...8-1
8.2 SDRAM Block Diagram...8-3
8.3 Memory Configuration ...8-4
8.4 Registers ...8-5

8.4.1 Register Mapping...8-5
8.4.2 SDRAM Channel Control Registers (SDCCR0-SDCCR7) 0xFFFE_8000 (ch.0)

0xFFFE_8004 (ch.1) 0xFFFE_8008 (ch.2) 0xFFFE_800C (ch.3) 0xFFFE_8010 (ch.4)
0xFFFE_8014 (ch.5) 0xFFFE_8018 (ch.6) 0xFFFE_801C (ch.7)...8-6

8.4.3 SDRAM Timing Register 1 (for SDRAM/SGRAM) (SDCTR1) 0xFFFE_8020...................................8-8
8.4.4 SDRAM Timing Register 2 (for DIMM Flash Memory) (SDCTR2) 0xFFFE_80248-10
8.4.5 SDRAM Timing Register 3 (for SMROM) (SDCTR3) 0xFFFE_8028 ...8-11

Table of Contents

ii

8.4.6 SDRAM Command Register (SDCCMD) 0xFFFE_802C ..8-12
8.4.7 SGRAM Load Mask Register (SDCSMRS1) 0xFFFE_8030 ..8-13
8.4.8 SGRAM Load Color Register (SDCSMRS2) 0xFFFE_8034 ...8-13

8.5 Operation ..8-14
8.5.1 TX3927 Signals for Different Memory Types ...8-14
8.5.2 SDRAM Operation ..8-15
8.5.3 DIMM Flash Memory Operation ...8-22
8.5.4 SMROM Operation..8-25
8.5.5 SGRAM Operation ..8-27
8.5.6 Notes on Programming ..8-28

8.6 Timing Diagrams ..8-29
8.6.1 SDRAM Single Read Operation in 32-bit Bus Mode ..8-29
8.6.2 SDRAM Single Write Operation in 32-bit Bus Mode ...8-30
8.6.3 SDRAM Burst Read Operation in 32-bit Bus Mode..8-32
8.6.4 SDRAM Burst Write Operation in 32-bit Bus Mode...8-33
8.6.5 SDRAM Read in 32-bit Bus Mode (Crossing Page Boundary) ...8-34
8.6.6 SDRAM Write in 32-bit Bus Mode (Crossing Page Boundary) ..8-35
8.6.7 SDRAM Slow Burst Write Operation in 32-bit Bus Mode..8-36
8.6.8 SDRAM Single Read Operation in 16-bit Bus Mode ..8-37
8.6.9 SDRAM Single Write Operation in 16-bit Bus Mode ...8-38
8.6.10 DIMM Flash Memory Single Read Operation in 32-bit Bus Mode...8-39
8.6.11 DIMM Flash Memory Single Write Operation in 32-bit Bus Mode ..8-40
8.6.12 SMROM Single Read Operation in 32-bit Bus Mode ...8-41
8.6.13 SMROM Burst Read Operation in 32-bit Bus Mode ...8-42
8.6.14 Low Power and Power-down Mode...8-43
8.6.15 SGRAM in 32-bit Bus Mode ...8-46
8.6.16 External DMA Operation (Big Endian) ...8-49
8.6.17 External DMA Operation (Little Endian) ..8-51

8.7 Examples of Using SDRAM ..8-53

9. External Bus Controller...9-1
9.1 Features...9-1
9.2 Block Diagram..9-2
9.3 Registers ...9-3

9.3.1 Register Map..9-3
9.3.2 ROM Channel Control Registers (RCCR0-RCCR7) 0xFFFE_9000 (ch.0) 0xFFFE_9004 (ch.1)

0xFFFE_9008 (ch.2) 0xFFFE_900C (ch.3) 0xFFFE_9010 (ch.4) 0xFFFE_9014 (ch.5)
0xFFFE_9018 (ch.6) 0xFFFE_901C (ch.7) ..9-4

9.4 Operation ..9-6
9.4.1 Bootup Options ..9-6
9.4.2 Global Options ...9-7
9.4.3 ROM Channel Control Registers ...9-7
9.4.4 Clock Options ..9-7
9.4.5 Base Address and Channel Size...9-8
9.4.6 Operating Modes..9-8
9.4.7 16-Bit Data Bus Operation...9-10
9.4.8 SHWT Option ..9-10
9.4.9 ACK*/READY Signal Timing...9-11
9.4.10 READY Input Timing..9-12
9.4.11 Addressing ...9-13
9.4.12 ACE* Operation...9-13

9.5 Timing Diagrams ..9-14
9.5.1 ACE* Signal Operation ...9-15
9.5.2 Normal Mode 32-bit Write Operation..9-16
9.5.3 Normal Mode 32-bit Operation..9-17
9.5.4 Normal Mode 16-bit Bus Operation ..9-20
9.5.5 Normal Mode 16-bit Burst Operation ..9-24
9.5.6 Page Mode 32-bit Burst Operation ..9-26
9.5.7 External ACK* Mode 32-bit Operation...9-28

Table of Contents

iii

9.5.8 External ACK* Mode 16-bit Operation...9-32
9.5.9 READY Mode 32-bit Operation ..9-34

9.6 Examples of Using Flash ROM and SRAM...9-36

10. DMA Controller ..10-1
10.1 Features...10-1
10.2 Block Diagram..10-2
10.3 Registers ...10-3

10.3.1 Register Map..10-3
10.3.2 Master Control Register (MCR) 0xFFFE_B0A4 ...10-4
10.3.3 Channel Control Registers (CCRn) 0xFFFE_B018 (ch. 0), 0xFFFE_B038 (ch. 1),

0xFFFE_B058 (ch. 2), 0xFFFE_B078 (ch. 3), ...10-6
10.3.4 Channel Status Registers (CSRn) 0xFFFE_B01C (ch. 0), 0xFFFE_B03C (ch. 1),

0xFFFE_B05C (ch. 2), 0xFFFE_B07C (ch. 3) ...10-9
10.3.5 Source Address Registers (SARn) 0xFFFE_B004 (ch. 0), 0xFFFE_B024 (ch. 1),

0xFFFE_B044 (ch. 2), 0xFFFE_B064 (ch. 3) ..10-11
10.3.6 Destination Address Registers (DARn) 0xFFFE_B008 (ch. 0), 0xFFFE_B028 (ch. 1),

0xFFFE_B048 (ch. 2), 0xFFFE_B068 (ch. 3) ..10-12
10.3.7 Chained Address Registers (CHARn) 0xFFFE_B000 (ch. 0), 0xFFFE_B020 (ch. 1),

0xFFFE_B040 (ch. 2), 0xFFFE_B060 (ch. 3) ..10-13
10.3.8 Source Address Increment Registers (SAIn) 0xFFFE_B010 (ch. 0), 0xFFFE_B030 (ch. 1),

0xFFFE_B050 (ch. 2), 0xFFFE_B070 (ch. 3) ..10-14
10.3.9 Destination Address Increment Registers (DAIn) 0xFFFE_B014 (ch. 0), 0xFFFE_B034 (ch. 1),

0xFFFE_B054 (ch. 2), 0xFFFE_B074 (ch. 3) ..10-15
10.3.10 Count Registers (CNTRn) 0xFFFE_B00C (ch. 0), 0xFFFE_B02C (ch. 1),

0xFFFE_B04C (ch. 2), 0xFFFE_B06C (ch. 3) ...10-16
10.4 Operation ..10-17

10.4.1 Dual-Address Transfers..10-17
10.4.2 Chaining Operations ..10-19
10.4.3 Single-Address Transfers ...10-20
10.4.4 DMA Channel Termination by the External DMADONE* Input..10-20
10.4.5 Restrictions on Non-standard Increment Values ..10-21
10.4.6 Restrictions on Dual-Address Burst Transfers ...10-22
10.4.7 DMA Transfers with On-Chip I/O Peripherals ..10-22
10.4.8 Timing for an External DMA Request (DMAREQ) ..10-23
10.4.9 Configuration Errors ..10-23
10.4.10 Notes on Using the DMAC FIFO ..10-24

10.5 Timing Diagrams ..10-26
10.5.1 Single-Address Mode, 32-bit Read Operation (ROM) ..10-26
10.5.2 Single-Address Mode, 32-bit Write Operation (SRAM)..10-28
10.5.3 Single-Address Mode, 32-bit Burst-Read Operation (ROM)...10-29
10.5.4 Single-Address Mode, 32-bit Burst-Write Operation (SRAM)..10-30
10.5.5 Single-Address Mode, 16-bit Read Operation (ROM) ..10-32
10.5.6 Single-Address Mode, 16-bit Write Operation (SRAM)..10-33
10.5.7 Single-Address, Half-speed Mode, 32-bit Read Operation (ROM) ...10-34
10.5.8 Single-Address, Half-speed Mode, 32-bit Write Operation (SRAM) ..10-35
10.5.9 Single-Address Mode, 32-bit Read Operation (SDRAM) ...10-36
10.5.10 Single-Address Mode, 32-bit Write Operation (SDRAM)...10-37
10.5.11 Single-Address Mode, 16-bit Burst-Read Operation (SDRAM)..10-38
10.5.12 Single-Address Mode, 32-bit Burst-Read Operation (SDRAM)..10-39
10.5.13 Single-Address Mode, 32-bit Burst-Write Operation (SDRAM)...10-40
10.5.14 Single-Address Mode, 32-bit Last Single-Read Operation (SDRAM) ..10-41
10.5.15 Single-Address Mode, 16-bit Read Operation (SDRAM) ...10-42
10.5.16 Single-Address Mode, 16-bit Write Operation (SDRAM)...10-43
10.5.17 Single-Address Mode, 32-bit Read Operation (SDRAM) ...10-44
10.5.18 Single-Address Mode, 32-bit Write Operation (SDRAM)...10-45
10.5.19 Single-Address Mode, 32-bit Burst-Write Operation (SDRAM)...10-46
10.5.20 Dual-Address Mode Burst Operation (SRAM to SRAM) ...10-47
10.5.21 Dual-Address Mode Burst Operation (SRAM to SDRAM)...10-48

Table of Contents

iv

10.5.22 Dual-Address Mode Burst Operation (SDRAM to SRAM)...10-49
10.5.23 Dual-Address Mode Burst Operation (SDRAM to SDRAM)..10-50
10.5.24 Dual-Address Mode Non-burst Operation (SDRAM to ROMC Device) ..10-51
10.5.25 Dual-Address Mode Non-burst Operation (ROMC Device to SDRAM) ..10-52

11. Interrupt Controller (IRC) ...11-1
11.1 Features...11-1
11.2 Block Diagram..11-1
11.3 Registers ...11-2

11.3.1 Register Map..11-2
11.3.2 Interrupt Control Enable Register (IRCER) 0xFFFE_C000 ..11-3
11.3.3 Interrupt Control Mode Register 0 (IRCR0) 0xFFFE_C004 ...11-4
11.3.4 Interrupt Control Mode Register 1 (IRCR1) 0xFFFE_C008 ...11-6
11.3.5 Interrupt Level Register 0 (IRILR0) 0xFFFE_C010..11-7
11.3.6 Interrupt Level Register 1 (IRILR1) 0xFFFE_C014..11-8
11.3.7 Interrupt Level Register 2 (IRILR2) 0xFFFE_C018..11-9
11.3.8 Interrupt Level Register 3 (IRILR3) 0xFFFE_C01C ...11-10
11.3.9 Interrupt Level Register 4 (IRILR4) 0xFFFE_C020..11-11
11.3.10 Interrupt Level Register 5 (IRILR5) 0xFFFE_C024..11-12
11.3.11 Interrupt Level Register 6 (IRILR6) 0xFFFE_C028..11-13
11.3.12 Interrupt Level Register 7 (IRILR7) 0xFFFE_C02C ...11-14
11.3.13 Interrupt Mask Register (IRIMR) 0xFFFE_C040..11-15
11.3.14 Interrupt Status/Control Register (IRSCR) 0xFFFE_C060..11-16
11.3.15 Interrupt Source Status Register (IRSSR) 0xFFFE_C080 ...11-17
11.3.16 Interrupt Current Status Register (IRCSR) 0xFFFE_C0A0...11-19

11.4 Operation ..11-20
11.4.1 Interrupt Sources ..11-20
11.4.2 Interrupt Detection ...11-20
11.4.3 Interrupt Priorities..11-21

12. PCI Controller (PCIC)...12-1
12.1 Features...12-1

12.1.1 PCI Interface Features..12-1
12.1.2 PCI Initiator Features ...12-2
12.1.3 PCI Target Features..12-2
12.1.4 PCI Arbiter and Bus Parking Features ...12-2

12.2 Block Diagram..12-3
12.3 Registers ...12-4

12.3.1 Register Map..12-5
12.3.2 PCI Configuration Header Space Registers ...12-7
12.3.3 Initiator Configuration Space Registers ...12-27
12.3.4 Target Configuration Space registers ...12-34
12.3.5 PCI Bus Arbiter/Parked Master Registers..12-55
12.3.6 Local Bus Special Registers...12-65

12.4 Operation ..12-81
12.4.1 Transfer Modes ..12-81
12.4.2 Configuration Cycles ...12-82
12.4.3 Address Translation ...12-82
12.4.4 PCIC Clock ..12-83
12.4.5 PCI Bus Arbitration ...12-84
12.4.6 FIFO Depth ..12-85
12.4.7 Accessing the PCIC Target Module ...12-85
12.4.8 PCIC Register Access ..12-85
12.4.9 Address Mapping Between the Local Bus and PCI Bus ..12-85
12.4.10 ACPI Power Management ...12-86
12.4.11 Byte Swapping ...12-87
12.4.12 Disabling Access to a Part of the PCI Configuration Space ..12-89

12.5 Timing Diagrams ..12-91
12.5.1 Initiator Configuration Read ..12-91

Table of Contents

v

12.5.2 Initiator Memory Read...12-91
12.5.3 Initiator Memory Write ..12-92
12.5.4 Initiator I/O Read ...12-92
12.5.5 Initiator I/O Write ..12-93
12.5.6 Special Cycle ...12-93
12.5.7 Target Configuration Read ...12-94
12.5.8 8-word Burst Transfer from SDRAM to PCI ...12-95
12.5.9 8-word Burst Transfer from PCI to SDRAM...12-96

13. Serial I/O Ports (SIO) ..13-1
13.1 Features...13-1
13.2 Block Diagram..13-2
13.3 Registers ...13-4

13.3.1 Register Map..13-4
13.3.2 Line Control Registers (SILCRn) 0xFFFE_F300 (Ch. 0) 0xFFFE_F400 (Ch. 1)...............................13-5
13.3.3 DMA/Interrupt Control Registers (SIDICRn) 0xFFFE_F304 (Ch. 0) 0xFFFE_F404 (Ch. 1)...........13-7
13.3.4 DMA/Interrupt Status Registers (SIDISRn) 0xFFFE_F308 (Ch. 0) 0xFFFE_F408 (Ch. 1)..............13-9
13.3.5 Status Change Interrupt Status Registers (SISCISRn) 0xFFFE_F30C (Ch. 0)

0xFFFE_F40C (Ch. 1) ...13-11
13.3.6 FIFO Control Registers (SIFCRn) 0xFFFE_F310 (Ch. 0) 0xFFFE_F410 (Ch. 1)13-12
13.3.7 Flow Control Registers (SIFLCRn) 0xFFFE_F314 (Ch. 0) 0xFFFE_F414 (Ch. 1)13-13
13.3.8 Baud Rate Control Registers (SIBGRn) 0xFFFE_F318 (Ch. 0) 0xFFFE_F418 (Ch. 1)...................13-14
13.3.9 Transmit FIFO Registers (SITFIFOn) 0xFFFE_F31C (Ch. 0) 0xFFFE_F41C (Ch. 1).....................13-15
13.3.10 Receive FIFO Registers (SIRFIFOn) 0xFFFE_F320 (Ch. 0) 0xFFFE_F420 (Ch. 1)13-16

13.4 Operation ..13-17
13.4.1 Overview..13-17
13.4.2 Data Format ...13-17
13.4.3 Serial Clock Generator...13-19
13.4.4 Baud Rate Generator..13-19
13.4.5 Receive Controller ...13-20
13.4.6 Receive Shift Register..13-21
13.4.7 Receive Read Buffer ..13-21
13.4.8 Transmit Controller..13-21
13.4.9 Transmit Shift Register ..13-21
13.4.10 Host Interface...13-21
13.4.11 Flow Controller ..13-22
13.4.12 Parity Controller...13-22
13.4.13 Error Flags ...13-22
13.4.14 Break Indication...13-23
13.4.15 Receive Timeout ..13-23
13.4.16 Receive Data Transfer and the Handling of Receive FIFO Status Bits..13-23
13.4.17 Multidrop System...13-24
13.4.18 Software Reset ...13-25
13.4.19 DMA Transfer Mode..13-25

13.5 Timing Diagrams ..13-26
13.5.1 Receiver Operation (7- and 8-bit Data Lengths) ..13-26
13.5.2 SITXDREQ*/SITXDACK and SIRXDREQ/SIRXDACK Timing for DMA Interface

(DMA Level 4) ..13-26
13.5.3 SITXDREQ*/SITXDACK and SIRXDREQ/SIRXDACK Timing for DMA Interface

(DMA Level 8) ..13-26
13.5.4 Receiver Operation (7- and 8-bit Lengths in Multidrop System Mode, RWUB = 1,

Waiting for an ID Frame)...13-27
13.5.5 Receiver Operation (7- and 8-bit Lengths in Multidrop System Mode, RWUB = 0,

Waiting for a Data Frame)..13-27
13.5.6 Receiver Operation (7- and 8-bit Lengths in Multidrop System Mode, RWEB = 1,

Skipping Data Read) ..13-27
13.5.7 Transmitter Operation ..13-28
13.5.8 Timing for Stopping Transmission by CTS* ...13-28

14. Timer/Counter ...14-1

Table of Contents

vi

14.1 Features...14-1
14.2 Block Diagram..14-2
14.3 Registers ...14-3

14.3.1 Register Map..14-3
14.3.2 Timer Control Registers (TMTCRn) 0xFFFE_F000 (Ch. 0) 0xFFFE_F100 (Ch. 1)

0xFFFE_F200 (Ch. 2) ..14-4
14.3.3 Timer Interrupt Status Registers (TMTISRn) 0xFFFE_F004 (Ch. 0) 0xFFFE_F104 (Ch. 1)

0xFFFE_F204 (Ch. 2) ..14-5
14.3.4 Compare Registers A (TMCPRAn) 0xFFFE_F008 (Ch. 0) 0xFFFE_F108 (Ch. 1)

0xFFFE_F208 (Ch. 2) ..14-7
14.3.5 Compare Registers B (TMCPRBn) 0xFFFE_F00C (Ch. 0) 0xFFFE_F10C (Ch. 1)...........................14-8
14.3.6 Interval Timer Mode Registers (TMITMRn) 0xFFFE_F010 (Ch. 0) 0xFFFE_F110 (Ch. 1)

0xFFFE_F210 (Ch. 2) ..14-9
14.3.7 Clock Divider Registers (TMCCDRn) 0xFFFE_F020 (Ch. 0) 0xFFFE_F120 (Ch. 1)

0xFFFE_F220 (Ch. 2) ..14-10
14.3.8 Pulse Generator Mode Registers (TMPGMRn) 0xFFFE_F030 (Ch. 0) 0xFFFE_F130 (Ch. 1)14-11
14.3.9 Timer Read Registers (TMTRRn) 0xFFFE_F0F0 (Ch. 0) 0xFFFE_F1F0 (Ch. 1)

0xFFFE_F2F0 (Ch. 2)..14-12
14.3.10 Watchdog Timer Mode Register (TMWTMR2) 0xFFFE_F240 (Ch. 2) ..14-13

14.4 Operation ..14-14
14.4.1 Interval Timer Mode ..14-14
14.4.2 Pulse Generator Mode..14-16
14.4.3 Watchdog Timer Mode...14-17

14.5 Timing Diagrams ..14-19
14.5.1 Interrupt Timing in Interval Timer Mode...14-19
14.5.2 Output Flip-Flop Timing in Pulse Generator Mode ...14-20
14.5.3 Interrupt Timing in Watchdog Timer Mode ..14-20

15. Parallel I/O Port (PIO)...15-1
15.1 Features...15-1
15.2 Registers ...15-1

15.2.1 Register Map..15-1
15.2.2 PIO Data Output Register (XPIODO) 0xFFFE_F500 ...15-2
15.2.3 PIO Data Input Register (XPIODI) 0xFFFE_F504..15-3
15.2.4 PIO Direction Control Register (XPIODIR) 0xFFFE_F508..15-4
15.2.5 PIO Open-Drain Control Register (XPIOOD) 0xFFFE_E50C..15-5
15.2.6 PIO Flag Register 0 (XPIOFLAG0) 0xFFFE_F510 ..15-6
15.2.7 PIO Flag Register 1 (XPIOFLAG1) 0xFFFE_F514 ..15-7
15.2.8 PIO Flag Polarity Control Register (XPIOPOL) 0xFFFE_F518 ...15-8
15.2.9 PIO Interrupt Control Register (XPIOINT) 0xFFFE_F51C ..15-9
15.2.10 CPU Interrupt Mask Register (XPIOMASKCPU) 0xFFFE_F520 ..15-10
15.2.11 External Interrupt Mask Register (XPIOMASKEXT) 0xFFFE_F524...15-11

15.3 Operation ..15-12
15.3.1 Assigning PIO Pin Functions ...15-12
15.3.2 General-Purpose Parallel Port ..15-12
15.3.3 Interrupt Requests ..15-12
15.3.4 Accessing PIO Pins..15-12

16. Power-On Sequence ..16-1

17. Electrical Characteristics ...17-1
17.1 Absolute Maximum Ratings (*1) ...17-1
17.2 Recommended Operating Conditions (*2) ...17-1
17.3 DC Characteristics..17-2

17.3.1 DC Characteristics – Non-PCI Interface Pins ..17-2
17.3.2 DC Characteristics – PCI Interface Pins ..17-2

17.4 Crystal Oscillator Characteristics ...17-3
17.4.1 Recommended Oscillator Conditions (with a PLL Multiplication Factor of 16).................................17-3
17.4.2 Recommended Input Clock Conditions (with a PLL Multiplication Factor of 2)................................17-3

Table of Contents

vii

17.4.3 Electrical Characteristics..17-3
17.5 PLL Filter Circuit ...17-4
17.6 AC Characteristics – Non-PCI Interface Pins...17-5

17.6.1 AC Characteristics ...17-5
17.6.2 SDRAM Interface AC Characteristics ...17-5

17.7 AC Characteristics – PCI Interface Pins...17-6
17.7.1 AC Characteristics ...17-6
17.7.2 Timing Diagram for SDRAMC and ROMC Interface Pins ...17-7
17.7.3 Timing Diagram for PCI Interface Pins ...17-7

17.8 Serial Input Clock...17-8

18. Package Dimensions..18-1

19. Known Problems and Limitations ...19-1
19.1 Programming Restrictions for the TMPR3927A ..19-1
19.2 ERT-TX3927-001...19-2
19.3 ERT-TX3927-002...19-2
19.4 ERT-TX3927-003...19-3
19.5 ERT-TX3927-004...19-3
19.6 ERT-TX3927-005...19-5
19.7 ERT-TX3927-006...19-7
19.8 ERT-TX3927-007...19-10
19.9 ERT-TX3927-008...19-14
19.10 ERT-TX3927-009...19-17
19.11 ERT-TX3927-010...19-20
19.12 ERT-TX3927-011 ...19-22
19.13 ERT-TX3927-012...19-23
19.14 ERT-TX3927-013...19-25
19.15 ERT-TX3927-014...19-26
19.16 ERT-TX3927-015...19-27
19.17 ERT-TX3927-016...19-29
19.18 ERT-TX3927-017...19-31

Appendix A. TX3927 Programming Samples..A-1
A.1 Programming Tips for Beginners...A-1

A.1.1 Memory-Mapped I/O ..A-1
A.1.2 Accessing Coprocessor 0 Registers...A-1

A.2 Basic Operation ...A-4
A.2.1 Header File..A-4
A.2.2 Start Routine ...A-15
A.2.3 Initializing the Memory Controller (SDRAMC)...A-19
A.2.4 Interrupt Handling Routines..A-21
A.2.5 Manipulating the Caches...A-27

A.3 Examples of Using On-Chip Peripherals...A-29
A.3.1 Timer/Counter ...A-29
A.3.2 SIO..A-30
A.3.3 DMA Controller..A-46
A.3.4 PIO..A-47

A.4 PCI Controller ...A-48
A.4.1 Initializing the PCI Controller...A-48

Appendix B. Thermal Characteristics ..B-1
B.1 Outline of Thermal Resistance of Packages with Fins ..B-1
B.2 Outline of Thermal Resistance Measurement..B-2
B.3 Example Calculations for Designing Fins ...B-6

Table of Contents

viii

Handling Precautions

 1 Using Toshiba Semiconductors Safely

1-1

1. Using Toshiba Semiconductors Safely
TOSHIBA are continually working to improve the quality and the reliability of their products.

Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer,
when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in
which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily
injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent products specifications. Also, please keep in mind
the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The TOSHIBA products listed in this document are intended for usage in general electronics
applications (computer, personal equipment, office equipment, measuring equipment, industrial
robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor
warranted for usage in equipment that requires extraordinarily high quality and/or reliability or
a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended
Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship
instruments, transportation instruments, traffic signal instruments, combustion control
instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of
TOSHIBA products listed in this document shall be made at the customer’s own risk.

 1 Using Toshiba Semiconductors Safely

1-2

2 Safety Precautions

2-1

2. Safety Precautions
This section lists important precautions which users of semiconductor devices (and anyone else)
should observe in order to avoid injury and damage to property, and to ensure safe and correct
use of devices.

Please be sure that you understand the meanings of the labels and the graphic symbol described
below before you move on to the detailed descriptions of the precautions.

[Explanation of labels]

Indicates an imminently hazardous situation which will result in death or
serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which could result in death or
serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which if not avoided, may
result in minor injury or moderate injury.

[Explanation of graphic symbol]

Graphic symbol Meaning

Indicates that caution is required (laser beam is dangerous to eyes).

2 Safety Precautions

2-2

2.1 General Precautions regarding Semiconductor Devices

Do not use devices under conditions exceeding their absolute maximum ratings (e.g. current, voltage, power dissipation or
temperature).
This may cause the device to break down, degrade its performance, or cause it to catch fire or explode resulting in injury.

Do not insert devices in the wrong orientation.
Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise the rated maximum
current or power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it
to catch fire or explode and resulting in injury.

When power to a device is on, do not touch the device’s heat sink.
Heat sinks become hot, so you may burn your hand.

Do not touch the tips of device leads.
Because some types of device have leads with pointed tips, you may prick your finger.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the pins of the device under test before powering it on.
Otherwise, you may receive an electric shock causing injury.

Before grounding an item of measuring equipment or a soldering iron, check that there is no electrical leakage from it.
Electrical leakage may cause the device which you are testing or soldering to break down, or could give you an electric shock.

Always wear protective glasses when cutting the leads of a device with clippers or a similar tool.
If you do not, small bits of metal flying off the cut ends may damage your eyes.

2 Safety Precautions

2-3

2.2 Precautions Specific to Each Product Group

2.2.1 Optical semiconductor devices

When a visible semiconductor laser is operating, do not look directly into the laser beam or look through the optical system.
This is highly likely to impair vision, and in the worst case may cause blindness.
If it is necessary to examine the laser apparatus, for example to inspect its optical characteristics, always wear the appropriate
type of laser protective glasses as stipulated by IEC standard IEC825-1.

Ensure that the current flowing in an LED device does not exceed the device’s maximum rated current.
This is particularly important for resin-packaged LED devices, as excessive current may cause the package resin to blow up,
scattering resin fragments and causing injury.

When testing the dielectric strength of a photocoupler, use testing equipment which can shut off the supply voltage to the
photocoupler. If you detect a leakage current of more than 100 µA, use the testing equipment to shut off the photocoupler’s
supply voltage; otherwise a large short-circuit current will flow continuously, and the device may break down or burst into
flames, resulting in fire or injury.

When incorporating a visible semiconductor laser into a design, use the device’s internal photodetector or a separate
photodetector to stabilize the laser’s radiant power so as to ensure that laser beams exceeding the laser’s rated radiant power
cannot be emitted.
If this stabilizing mechanism does not work and the rated radiant power is exceeded, the device may break down or the
excessively powerful laser beams may cause injury.

2.2.2 Power devices

Never touch a power device while it is powered on. Also, after turning off a power device, do not touch it until it has thoroughly
discharged all remaining electrical charge.
Touching a power device while it is powered on or still charged could cause a severe electric shock, resulting in death or serious
injury.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the device under test before powering it on.
When you have finished, discharge any electrical charge remaining in the device.
Connecting the electrodes or probes of testing equipment to a device while it is powered on may result in electric shock, causing
injury.

2 Safety Precautions

2-4

Do not use devices under conditions which exceed their absolute maximum ratings (current, voltage, power dissipation,
temperature etc.).
This may cause the device to break down, causing a large short-circuit current to flow, which may in turn cause it to catch fire or
explode, resulting in fire or injury.

Use a unit which can detect short-circuit currents and which will shut off the power supply if a short-circuit occurs.
If the power supply is not shut off, a large short-circuit current will flow continuously, which may in turn cause the device to catch
fire or explode, resulting in fire or injury.

When designing a case for enclosing your system, consider how best to protect the user from shrapnel in the event of the device
catching fire or exploding.
Flying shrapnel can cause injury.

When conducting any kind of evaluation, inspection or testing, always use protective safety tools such as a cover for the device.
Otherwise you may sustain injury caused by the device catching fire or exploding.

Make sure that all metal casings in your design are grounded to earth.
Even in modules where a device’s electrodes and metal casing are insulated, capacitance in the module may cause the
electrostatic potential in the casing to rise.
Dielectric breakdown may cause a high voltage to be applied to the casing, causing electric shock and injury to anyone touching
it.

When designing the heat radiation and safety features of a system incorporating high-speed rectifiers, remember to take the
device’s forward and reverse losses into account.
The leakage current in these devices is greater than that in ordinary rectifiers; as a result, if a high-speed rectifier is used in an
extreme environment (e.g. at high temperature or high voltage), its reverse loss may increase, causing thermal runaway to occur.
This may in turn cause the device to explode and scatter shrapnel, resulting in injury to the user.

A design should ensure that, except when the main circuit of the device is active, reverse bias is applied to the device gate while
electricity is conducted to control circuits, so that the main circuit will become inactive.
Malfunction of the device may cause serious accidents or injuries.

When conducting any kind of evaluation, inspection or testing, either wear protective gloves or wait until the device has cooled
properly before handling it.
Devices become hot when they are operated. Even after the power has been turned off, the device will retain residual heat which
may cause a burn to anyone touching it.

2.2.3 Bipolar ICs (for use in automobiles)

If your design includes an inductive load such as a motor coil, incorporate diodes or similar devices into the design to prevent
negative current from flowing in.
The load current generated by powering the device on and off may cause it to function erratically or to break down, which could in
turn cause injury.

Ensure that the power supply to any device which incorporates protective functions is stable.
If the power supply is unstable, the device may operate erratically, preventing the protective functions from working correctly. If
protective functions fail, the device may break down causing injury to the user.

3 General Safety Precautions and Usage Considerations

3-1

3. General Safety Precautions and Usage Considerations
This section is designed to help you gain a better understanding of semiconductor devices, so as
to ensure the safety, quality and reliability of the devices which you incorporate into your
designs.

3.1 From Incoming to Shipping

3.1.1 Electrostatic discharge (ESD)
When handling individual devices (which are not yet mounted on a printed
circuit board), be sure that the environment is protected against
electrostatic electricity. Operators should wear anti-static clothing, and
containers and other objects which come into direct contact with devices
should be made of anti-static materials and should be grounded to earth via
an 0.5- to 1.0-MΩ protective resistor.

Please follow the precautions described below; this is particularly important for devices which are
marked “Be careful of static.”.

(1) Work environment

• When humidity in the working environment decreases, the human body and other insulators
can easily become charged with static electricity due to friction. Maintain the recommended
humidity of 40% to 60% in the work environment, while also taking into account the fact that
moisture-proof-packed products may absorb moisture after unpacking.

• Be sure that all equipment, jigs and tools in the working area are grounded to earth.

• Place a conductive mat over the floor of the work area, or take other appropriate measures, so
that the floor surface is protected against static electricity and is grounded to earth. The
surface resistivity should be 104 to 108 Ω/sq and the resistance between surface and ground, 7.5
× 105 to 108 Ω

• Cover the workbench surface also with a conductive mat (with a surface resistivity of 104 to
108 Ω/sq, for a resistance between surface and ground of 7.5 × 105 to 108 Ω) . The purpose of this
is to disperse static electricity on the surface (through resistive components) and ground it to
earth. Workbench surfaces must not be constructed of low-resistance metallic materials that
allow rapid static discharge when a charged device touches them directly.

• Pay attention to the following points when using automatic equipment in your workplace:

(a) When picking up ICs with a vacuum unit, use a conductive rubber fitting on the end of the
pick-up wand to protect against electrostatic charge.

(b) Minimize friction on IC package surfaces. If some rubbing is unavoidable due to the
device’s mechanical structure, minimize the friction plane or use material with a small
friction coefficient and low electrical resistance. Also, consider the use of an ionizer.

(c) In sections which come into contact with device lead terminals, use a material which
dissipates static electricity.

(d) Ensure that no statically charged bodies (such as work clothes or the human body) touch
the devices.

3 General Safety Precautions and Usage Considerations

3-2

(e) Make sure that sections of the tape carrier which come into contact with installation
devices or other electrical machinery are made of a low-resistance material.

(f) Make sure that jigs and tools used in the assembly process do not touch devices.

(g) In processes in which packages may retain an electrostatic charge, use an ionizer to
neutralize the ions.

• Make sure that CRT displays in the working area are protected against static charge, for
example by a VDT filter. As much as possible, avoid turning displays on and off. Doing so can
cause electrostatic induction in devices.

• Keep track of charged potential in the working area by taking periodic measurements.

• Ensure that work chairs are protected by an anti-static textile cover and are grounded to the
floor surface by a grounding chain. (Suggested resistance between the seat surface and
grounding chain is 7.5 × 105 to 1012Ω.)

• Install anti-static mats on storage shelf surfaces. (Suggested surface resistivity is 104 to 108

Ω/sq; suggested resistance between surface and ground is 7.5 × 105 to 108 Ω.)

• For transport and temporary storage of devices, use containers (boxes, jigs or bags) that are
made of anti-static materials or materials which dissipate electrostatic charge.

• Make sure that cart surfaces which come into contact with device packaging are made of
materials which will conduct static electricity, and verify that they are grounded to the floor
surface via a grounding chain.

• In any location where the level of static electricity is to be closely controlled, the ground
resistance level should be Class 3 or above. Use different ground wires for all items of
equipment which may come into physical contact with devices.

(2) Operating environment

• Operators must wear anti-static clothing and conductive shoes
(or a leg or heel strap).

• Operators must wear a wrist strap grounded to earth via a
resistor of about 1 MΩ.

• Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages
(6 V to 24 V).

• If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in
particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid
discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip,
and connect it to a dedicated ground used especially for anti-static purposes (suggested
resistance value: 104 to 108 Ω).

• Do not place devices or their containers near sources of strong electrical fields (such as above a
CRT).

3 General Safety Precautions and Usage Considerations

3-3

• When storing printed circuit boards which have devices mounted on them, use a board
container or bag that is protected against static charge. To avoid the occurrence of static charge
or discharge due to friction, keep the boards separate from one other and do not stack them
directly on top of one another.

• Ensure, if possible, that any articles (such as clipboards) which are brought to any location
where the level of static electricity must be closely controlled are constructed of anti-static
materials.

• In cases where the human body comes into direct contact with a device, be sure to wear anti-
static finger covers or gloves (suggested resistance value: 108 Ω or less).

• Equipment safety covers installed near devices should have resistance ratings of 109 Ω or less.

• If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction
to devices, use an ionizer.

• The transport film used in TCP products is manufactured from materials in which static
charges tend to build up. When using these products, install an ionizer to prevent the film from
being charged with static electricity. Also, ensure that no static electricity will be applied to the
product’s copper foils by taking measures to prevent static occuring in the peripheral
equipment.

3.1.2 Vibration, impact and stress
Handle devices and packaging materials with care. To avoid damage
to devices, do not toss or drop packages. Ensure that devices are not
subjected to mechanical vibration or shock during transportation.
Ceramic package devices and devices in canister-type packages which
have empty space inside them are subject to damage from vibration
and shock because the bonding wires are secured only at their ends.

Plastic molded devices, on the other hand, have a relatively high level of resistance to vibration
and mechanical shock because their bonding wires are enveloped and fixed in resin. However,
when any device or package type is installed in target equipment, it is to some extent susceptible
to wiring disconnections and other damage from vibration, shock and stressed solder junctions.
Therefore when devices are incorporated into the design of equipment which will be subject to
vibration, the structural design of the equipment must be thought out carefully.

If a device is subjected to especially strong vibration, mechanical shock or stress, the package or
the chip itself may crack. In products such as CCDs which incorporate window glass, this could
cause surface flaws in the glass or cause the connection between the glass and the ceramic to
separate.

Furthermore, it is known that stress applied to a semiconductor device through the package
changes the resistance characteristics of the chip because of piezoelectric effects. In analog circuit
design attention must be paid to the problem of package stress as well as to the dangers of
vibration and shock as described above.

Vibration

3 General Safety Precautions and Usage Considerations

3-4

3.2 Storage

3.2.1 General storage
• Avoid storage locations where devices will be exposed to moisture or direct sunlight.

• Follow the instructions printed on the device cartons regarding
transportation and storage.

• The storage area temperature should be kept within a
temperature range of 5°C to 35°C, and relative humidity
should be maintained at between 45% and 75%.

• Do not store devices in the presence of harmful (especially
corrosive) gases, or in dusty conditions.

• Use storage areas where there is minimal temperature fluctuation. Rapid temperature changes
can cause moisture to form on stored devices, resulting in lead oxidation or corrosion. As a
result, the solderability of the leads will be degraded.

• When repacking devices, use anti-static containers.

• Do not allow external forces or loads to be applied to devices while they are in storage.

• If devices have been stored for more than two years, their electrical characteristics should be
tested and their leads should be tested for ease of soldering before they are used.

3.2.2 Moisture-proof packing
Moisture-proof packing should be handled with care. The handling
procedure specified for each packing type should be followed scrupulously.
If the proper procedures are not followed, the quality and reliability of
devices may be degraded. This section describes general precautions for
handling moisture-proof packing. Since the details may differ from device
to device, refer also to the relevant individual datasheets or databook.

(1) General precautions
Follow the instructions printed on the device cartons regarding transportation and storage.

• Do not drop or toss device packing. The laminated aluminum material in it can be rendered
ineffective by rough handling.

• The storage area temperature should be kept within a temperature range of 5°C to 30°C, and
relative humidity should be maintained at 90% (max). Use devices within 12 months of the
date marked on the package seal.

Humidity: Temperature:

3 General Safety Precautions and Usage Considerations

3-5

• If the 12-month storage period has expired, or if the 30% humidity indicator shown in Figure 1
is pink when the packing is opened, it may be advisable, depending on the device and packing
type, to back the devices at high temperature to remove any moisture. Please refer to the table
below. After the pack has been opened, use the devices in a 5°C to 30°C. 60% RH environment
and within the effective usage period listed on the moisture-proof package. If the effective
usage period has expired, or if the packing has been stored in a high-humidity environment,
bake the devices at high temperature.

Packing Moisture removal

Tray If the packing bears the “Heatproof” marking or indicates the maximum temperature which it can
withstand, bake at 125°C for 20 hours. (Some devices require a different procedure.)

Tube Transfer devices to trays bearing the “Heatproof” marking or indicating the temperature which
they can withstand, or to aluminum tubes before baking at 125°C for 20 hours.

Tape Deviced packed on tape cannot be baked and must be used within the effective usage period
after unpacking, as specified on the packing.

• When baking devices, protect the devices from static electricity.

• Moisture indicators can detect the approximate humidity level at a standard temperature of
25°C. 6-point indicators and 3-point indicators are currently in use, but eventually all
indicators will be 3-point indicators.

D
AN

G
ER

 IF
 P

IN
K

C
H

AN
G

E
 D

ES
IC

C
AN

T

READ AT LAVENDER
BETWEEN PINK & BLUE

10%

20%

30%

40%

50%

60%

HUMIDITY INDICATOR

D
AN

G
ER

 IF
 P

IN
K

READ AT LAVENDER
BETWEEN PINK & BLUE

20

30

40

HUMIDITY INDICATOR

(a) 6-point indicator (b) 3-point indicator

Figure 1 Humidity indicator

3 General Safety Precautions and Usage Considerations

3-6

3.3 Design
Care must be exercised in the design of electronic equipment to achieve the desired reliability. It
is important not only to adhere to specifications concerning absolute maximum ratings and
recommended operating conditions, it is also important to consider the overall environment in
which equipment will be used, including factors such as the ambient temperature, transient
noise and voltage and current surges, as well as mounting conditions which affect device
reliability. This section describes some general precautions which you should observe when
designing circuits and when mounting devices on printed circuit boards.

For more detailed information about each product family, refer to the relevant individual
technical datasheets available from Toshiba.

3.3.1 Absolute maximum ratings
Do not use devices under conditions in which their absolute maximum
ratings (e.g. current, voltage, power dissipation or temperature) will be
exceeded. A device may break down or its performance may be degraded,
causing it to catch fire or explode resulting in injury to the user.

The absolute maximum ratings are rated values which must not be
exceeded during operation, even for an instant. Although absolute
maximum ratings differ from product to product, they essentially
concern the voltage and current at each pin, the allowable power
dissipation, and the junction and storage temperatures.

If the voltage or current on any pin exceeds the absolute maximum
rating, the device’s internal circuitry can become degraded. In the worst case, heat generated in
internal circuitry can fuse wiring or cause the semiconductor chip to break down.

If storage or operating temperatures exceed rated values, the package seal can deteriorate or the
wires can become disconnected due to the differences between the thermal expansion coefficients
of the materials from which the device is constructed.

3.3.2 Recommended operating conditions
The recommended operating conditions for each device are those necessary to guarantee that the
device will operate as specified in the datasheet.
If greater reliability is required, derate the device’s absolute maximum ratings for voltage,
current, power and temperature before using it.

3.3.3 Derating
When incorporating a device into your design, reduce its rated absolute maximum voltage,
current, power dissipation and operating temperature in order to ensure high reliability.
Since derating differs from application to application, refer to the technical datasheets available
for the various devices used in your design.

3.3.4 Unused pins
If unused pins are left open, some devices can exhibit input instability problems, resulting in
malfunctions such as abrupt increase in current flow. Similarly, if the unused output pins on a
device are connected to the power supply pin, the ground pin or to other output pins, the IC may
malfunction or break down.

Since the details regarding the handling of unused pins differ from device to device and from pin

3 General Safety Precautions and Usage Considerations

3-7

to pin, please follow the instructions given in the relevant individual datasheets or databook.

CMOS logic IC inputs, for example, have extremely high impedance. If an input pin is left open,
it can easily pick up extraneous noise and become unstable. In this case, if the input voltage level
reaches an intermediate level, it is possible that both the P-channel and N-channel transistors
will be turned on, allowing unwanted supply current to flow. Therefore, ensure that the unused
input pins of a device are connected to the power supply (Vcc) pin or ground (GND) pin of the
same device. For details of what to do with the pins of heat sinks, refer to the relevant technical
datasheet and databook.

3.3.5 Latch-up
Latch-up is an abnormal condition inherent in CMOS devices, in which Vcc gets shorted to
ground. This happens when a parasitic PN-PN junction (thyristor structure) internal to the
CMOS chip is turned on, causing a large current of the order of several hundred mA or more to
flow between Vcc and GND, eventually causing the device to break down.

Latch-up occurs when the input or output voltage exceeds the rated value, causing a large
current to flow in the internal chip, or when the voltage on the Vcc (Vdd) pin exceeds its rated
value, forcing the internal chip into a breakdown condition. Once the chip falls into the latch-up
state, even though the excess voltage may have been applied only for an instant, the large
current continues to flow between Vcc (Vdd) and GND (Vss). This causes the device to heat up
and, in extreme cases, to emit gas fumes as well. To avoid this problem, observe the following
precautions:

(1) Do not allow voltage levels on the input and output pins either to rise above Vcc (Vdd) or to
fall below GND (Vss). Also, follow any prescribed power-on sequence, so that power is applied
gradually or in steps rather than abruptly.

(2) Do not allow any abnormal noise signals to be applied to the device.

(3) Set the voltage levels of unused input pins to Vcc (Vdd) or GND (Vss).

(4) Do not connect output pins to one another.

3.3.6 Input/Output protection
Wired-AND configurations, in which outputs are connected together, cannot be used, since this
short-circuits the outputs. Outputs should, of course, never be connected to Vcc (Vdd) or GND
(Vss).

Furthermore, ICs with tri-state outputs can undergo performance degradation if a shorted output
current is allowed to flow for an extended period of time. Therefore, when designing circuits,
make sure that tri-state outputs will not be enabled simultaneously.

3.3.7 Load capacitance
Some devices display increased delay times if the load capacitance is large. Also, large charging
and discharging currents will flow in the device, causing noise. Furthermore, since outputs are
shorted for a relatively long time, wiring can become fused.

Consult the technical information for the device being used to determine the recommended load
capacitance.

3 General Safety Precautions and Usage Considerations

3-8

3.3.8 Thermal design
The failure rate of semiconductor devices is greatly increased as operating temperatures
increase. As shown in Figure 2, the internal thermal stress on a device is the sum of the ambient
temperature and the temperature rise due to power dissipation in the device. Therefore, to
achieve optimum reliability, observe the following precautions concerning thermal design:

(1) Keep the ambient temperature (Ta) as low as possible.

(2) If the device’s dynamic power dissipation is relatively large, select the most appropriate
circuit board material, and consider the use of heat sinks or of forced air cooling. Such
measures will help lower the thermal resistance of the package.

(3) Derate the device’s absolute maximum ratings to minimize thermal stress from power
dissipation.
θja = θjc + θca
θja = (Tj–Ta) / P
θjc = (Tj–Tc) / P
θca = (Tc–Ta) / P
in which θja = thermal resistance between junction and surrounding air (°C/W)

θjc = thermal resistance between junction and package surface, or internal thermal
resistance (°C/W)

θca = thermal resistance between package surface and surrounding air, or external
 thermal resistance (°C/W)

Tj = junction temperature or chip temperature (°C)
Tc = package surface temperature or case temperature (°C)
Ta = ambient temperature (°C)
P = power dissipation (W)

Tc

θca

Ta

Tj
θjc

Figure 2 Thermal resistance of package

3.3.9 Interfacing
When connecting inputs and outputs between devices, make sure input voltage (VIL/VIH) and
output voltage (VOL/VOH) levels are matched. Otherwise, the devices may malfunction. When
connecting devices operating at different supply voltages, such as in a dual-power-supply system,
be aware that erroneous power-on and power-off sequences can result in device breakdown. For
details of how to interface particular devices, consult the relevant technical datasheets and
databooks. If you have any questions or doubts about interfacing, contact your nearest Toshiba
office or distributor.

3 General Safety Precautions and Usage Considerations

3-9

3.3.10 Decoupling
Spike currents generated during switching can cause Vcc (Vdd) and GND (Vss) voltage levels to
fluctuate, causing ringing in the output waveform or a delay in response speed. (The power
supply and GND wiring impedance is normally 50 Ω to 100 Ω.) For this reason, the impedance of
power supply lines with respect to high frequencies must be kept low. This can be accomplished
by using thick and short wiring for the Vcc (Vdd) and GND (Vss) lines and by installing
decoupling capacitors (of approximately 0.01 µF to 1 µF capacitance) as high-frequency filters
between Vcc (Vdd) and GND (Vss) at strategic locations on the printed circuit board.

For low-frequency filtering, it is a good idea to install a 10- to 100-µF capacitor on the printed
circuit board (one capacitor will suffice). If the capacitance is excessively large, however, (e.g.
several thousand µF) latch-up can be a problem. Be sure to choose an appropriate capacitance
value.

An important point about wiring is that, in the case of high-speed logic ICs, noise is caused
mainly by reflection and crosstalk, or by the power supply impedance. Reflections cause
increased signal delay, ringing, overshoot and undershoot, thereby reducing the device’s safety
margins with respect to noise. To prevent reflections, reduce the wiring length by increasing the
device mounting density so as to lower the inductance (L) and capacitance (C) in the wiring.
Extreme care must be taken, however, when taking this corrective measure, since it tends to
cause crosstalk between the wires. In practice, there must be a trade-off between these two
factors.

3.3.11 External noise
Printed circuit boards with long I/O or signal pattern lines
are vulnerable to induced noise or surges from outside
sources. Consequently, malfunctions or breakdowns can
result from overcurrent or overvoltage, depending on the
types of device used. To protect against noise, lower the
impedance of the pattern line or insert a noise-canceling
circuit. Protective measures must also be taken against
surges.

For details of the appropriate protective measures for a particular device, consult the relevant
databook.

3.3.12 Electromagnetic interference
Widespread use of electrical and electronic equipment in recent years has brought with it radio
and TV reception problems due to electromagnetic interference. To use the radio spectrum
effectively and to maintain radio communications quality, each country has formulated
regulations limiting the amount of electromagnetic interference which can be generated by
individual products.

Electromagnetic interference includes conduction noise propagated through power supply and
telephone lines, and noise from direct electromagnetic waves radiated by equipment. Different
measurement methods and corrective measures are used to assess and counteract each specific
type of noise.

Difficulties in controlling electromagnetic interference derive from the fact that there is no
method available which allows designers to calculate, at the design stage, the strength of the
electromagnetic waves which will emanate from each component in a piece of equipment. For this
reason, it is only after the prototype equipment has been completed that the designer can take
measurements using a dedicated instrument to determine the strength of electromagnetic
interference waves. Yet it is possible during system design to incorporate some measures for the

Input/Output
Signals

3 General Safety Precautions and Usage Considerations

3-10

prevention of electromagnetic interference, which can facilitate taking corrective measures once
the design has been completed. These include installing shields and noise filters, and increasing
the thickness of the power supply wiring patterns on the printed circuit board. One effective
method, for example, is to devise several shielding options during design, and then select the
most suitable shielding method based on the results of measurements taken after the prototype
has been completed.

3.3.13 Peripheral circuits
In most cases semiconductor devices are used with peripheral circuits and components. The input
and output signal voltages and currents in these circuits must be chosen to match the
semiconductor device’s specifications. The following factors must be taken into account.

(1) Inappropriate voltages or currents applied to a device’s input pins may cause it to operate
erratically. Some devices contain pull-up or pull-down resistors. When designing your
system, remember to take the effect of this on the voltage and current levels into account.

(2) The output pins on a device have a predetermined external circuit drive capability. If this
drive capability is greater than that required, either incorporate a compensating circuit into
your design or carefully select suitable components for use in external circuits.

3.3.14 Safety standards
Each country has safety standards which must be observed. These safety standards include
requirements for quality assurance systems and design of device insulation. Such requirements
must be fully taken into account to ensure that your design conforms to the applicable safety
standards.

3.3.15 Other precautions
(1) When designing a system, be sure to incorporate fail-safe and other appropriate measures

according to the intended purpose of your system. Also, be sure to debug your system under
actual board-mounted conditions.

(2) If a plastic-package device is placed in a strong electric field, surface leakage may occur due
to the charge-up phenomenon, resulting in device malfunction. In such cases take
appropriate measures to prevent this problem, for example by protecting the package surface
with a conductive shield.

(3) With some microcomputers and MOS memory devices, caution is required when powering on
or resetting the device. To ensure that your design does not violate device specifications,
consult the relevant databook for each constituent device.

(4) Ensure that no conductive material or object (such as a metal pin) can drop onto and short
the leads of a device mounted on a printed circuit board.

3.4 Inspection, Testing and Evaluation

3.4.1 Grounding
Ground all measuring instruments, jigs, tools and soldering irons to earth.
Electrical leakage may cause a device to break down or may result in electric
shock.

3 General Safety Precautions and Usage Considerations

3-11

3.4.2 Inspection Sequence
 Do not insert devices in the wrong orientation. Make sure that the positive
and negative electrodes of the power supply are correctly connected.
Otherwise, the rated maximum current or maximum power dissipation
may be exceeded and the device may break down or undergo performance
degradation, causing it to catch fire or explode, resulting in injury to the
user.

 When conducting any kind of evaluation, inspection or testing using AC
power with a peak voltage of 42.4 V or DC power exceeding 60 V, be sure
to connect the electrodes or probes of the testing equipment to the device
under test before powering it on. Connecting the electrodes or probes of
testing equipment to a device while it is powered on may result in electric
shock, causing injury.

(1) Apply voltage to the test jig only after inserting the device securely into it. When applying or
removing power, observe the relevant precautions, if any.

(2) Make sure that the voltage applied to the device is off before removing the device from the
test jig. Otherwise, the device may undergo performance degradation or be destroyed.

(3) Make sure that no surge voltages from the measuring equipment are applied to the device.

(4) The chips housed in tape carrier packages (TCPs) are bare chips and are therefore exposed.
During inspection take care not to crack the chip or cause any flaws in it.
Electrical contact may also cause a chip to become faulty. Therefore make sure that nothing
comes into electrical contact with the chip.

3.5 Mounting
There are essentially two main types of semiconductor device package: lead insertion and surface
mount. During mounting on printed circuit boards, devices can become contaminated by flux or
damaged by thermal stress from the soldering process. With surface-mount devices in particular,
the most significant problem is thermal stress from solder reflow, when the entire package is
subjected to heat. This section describes a recommended temperature profile for each mounting
method, as well as general precautions which you should take when mounting devices on printed
circuit boards. Note, however, that even for devices with the same package type, the appropriate
mounting method varies according to the size of the chip and the size and shape of the lead
frame. Therefore, please consult the relevant technical datasheet and databook.

3.5.1 Lead forming
 Always wear protective glasses when cutting the leads of a device with
clippers or a similar tool. If you do not, small bits of metal flying off the cut
ends may damage your eyes.

 Do not touch the tips of device leads. Because some types of device have
leads with pointed tips, you may prick your finger.

Semiconductor devices must undergo a process in which the leads are cut and formed before the
devices can be mounted on a printed circuit board. If undue stress is applied to the interior of a
device during this process, mechanical breakdown or performance degradation can result. This is
attributable primarily to differences between the stress on the device’s external leads and the
stress on the internal leads. If the relative difference is great enough, the device’s internal leads,
adhesive properties or sealant can be damaged. Observe these precautions during the lead-
forming process (this does not apply to surface-mount devices):

3 General Safety Precautions and Usage Considerations

3-12

(1) Lead insertion hole intervals on the printed circuit board should match the lead pitch of the
device precisely.

(2) If lead insertion hole intervals on the printed circuit board do not precisely match the lead
pitch of the device, do not attempt to forcibly insert devices by pressing on them or by pulling
on their leads.

(3) For the minimum clearance specification between a device and a
printed circuit board, refer to the relevant device’s datasheet and
databook. If necessary, achieve the required clearance by forming
the device’s leads appropriately. Do not use the spacers which are
used to raise devices above the surface of the printed circuit board
during soldering to achieve clearance. These spacers normally
continue to expand due to heat, even after the solder has begun to solidify; this applies
severe stress to the device.

(4) Observe the following precautions when forming the leads of a device prior to mounting.

• Use a tool or jig to secure the lead at its base (where the lead meets the device package) while
bending so as to avoid mechanical stress to the device. Also avoid bending or stretching device
leads repeatedly.

• Be careful not to damage the lead during lead forming.

• Follow any other precautions described in the individual datasheets and databooks for each
device and package type.

3.5.2 Socket mounting
(1) When socket mounting devices on a printed circuit board, use sockets which match the

inserted device’s package.

(2) Use sockets whose contacts have the appropriate contact pressure. If the contact pressure is
insufficient, the socket may not make a perfect contact when the device is repeatedly
inserted and removed; if the pressure is excessively high, the device leads may be bent or
damaged when they are inserted into or removed from the socket.

(3) When soldering sockets to the printed circuit board, use sockets whose construction prevents
flux from penetrating into the contacts or which allows flux to be completely cleaned off.

(4) Make sure the coating agent applied to the printed circuit board for moisture-proofing
purposes does not stick to the socket contacts.

(5) If the device leads are severely bent by a socket as it is inserted or removed and you wish to
repair the leads so as to continue using the device, make sure that this lead correction is only
performed once. Do not use devices whose leads have been corrected more than once.

(6) If the printed circuit board with the devices mounted on it will be subjected to vibration from
external sources, use sockets which have a strong contact pressure so as to prevent the
sockets and devices from vibrating relative to one another.

3.5.3 Soldering temperature profile
The soldering temperature and heating time vary from device to device. Therefore, when
specifying the mounting conditions, refer to the individual datasheets and databooks for the
devices used.

3 General Safety Precautions and Usage Considerations

3-13

(1) Using a soldering iron

Complete soldering within ten seconds for lead temperatures of up to 260°C, or within three
seconds for lead temperatures of up to 350°C.

(2) Using medium infrared ray reflow

• Heating top and bottom with long or medium infrared rays is recommended (see Figure 3).

Long infrared ray heater (preheating)

Medium infrared ray heater
(reflow)

Product flow

Figure 3 Heating top and bottom with long or medium infrared rays

• Complete the infrared ray reflow process within 30 seconds at a package surface temperature
of between 210°C and 240°C.

• Refer to Figure 4 for an example of a good temperature profile for infrared or hot air reflow.

210

30-50 s

Time (s)

60-120 s

(°C)
240

160

140

Pa
ck

ag
e

su
rfa

ce
 te

m
pe

ra
tu

re

Figure 4 Sample temperature profile for infrared or hot air reflow

(3) Using hot air reflow

• Complete hot air reflow within 30 to 50 seconds at a package surface temperature of between
210°C and 240°C.

• For an example of a recommended temperature profile, refer to Figure 4 above.

(4) Using solder flow

• Apply preheating for 60 to 120 seconds at a temperature of 150°C.

• For lead insertion-type packages, complete solder flow within 10 seconds with the
temperature at the stopper (or, if there is no stopper, at a location more than 1.5 mm from
the body) which does not exceed 260°C.

• For surface-mount packages, complete soldering within 5 seconds at a temperature of 250°C or

3 General Safety Precautions and Usage Considerations

3-14

less in order to prevent thermal stress in the device.

• Figure 5 shows an example of a recommended temperature profile for surface-mount packages
using solder flow.

5 s
or less

60-120 s

(°C)
250

160

140

Pa
ck

ag
e

su
rfa

ce
 te

m
pe

ra
tu

re

Time (s)

Figure 5 Sample temperature profile for solder flow

3.5.4 Flux cleaning and ultrasonic cleaning
(1) When cleaning circuit boards to remove flux, make sure that no residual reactive ions such

as Na or Cl remain. Note that organic solvents react with water to generate hydrogen
chloride and other corrosive gases which can degrade device performance.

(2) Washing devices with water will not cause any problems. However, make sure that no
reactive ions such as sodium and chlorine are left as a residue. Also, be sure to dry devices
sufficiently after washing.

(3) Do not rub device markings with a brush or with your hand during cleaning or while the
devices are still wet from the cleaning agent. Doing so can rub off the markings.

(4) The dip cleaning, shower cleaning and steam cleaning processes all involve the chemical
action of a solvent. Use only recommended solvents for these cleaning methods. When
immersing devices in a solvent or steam bath, make sure that the temperature of the liquid
is 50°C or below, and that the circuit board is removed from the bath within one minute.

(5) Ultrasonic cleaning should not be used with hermetically-sealed ceramic packages such as a
leadless chip carrier (LCC), pin grid array (PGA) or charge-coupled device (CCD), because
the bonding wires can become disconnected due to resonance during the cleaning process.
Even if a device package allows ultrasonic cleaning, limit the duration of ultrasonic cleaning
to as short a time as possible, since long hours of ultrasonic cleaning degrade the adhesion
between the mold resin and the frame material. The following ultrasonic cleaning conditions
are recommended:

Frequency: 27 kHz ∼ 29 kHz

Ultrasonic output power: 300 W or less (0.25 W/cm2 or less)

Cleaning time: 30 seconds or less

Suspend the circuit board in the solvent bath during ultrasonic cleaning in such a way that
the ultrasonic vibrator does not come into direct contact with the circuit board or the device.

3 General Safety Precautions and Usage Considerations

3-15

3.5.5 No cleaning
If analog devices or high-speed devices are used without being cleaned, flux residues may cause
minute amounts of leakage between pins. Similarly, dew condensation, which occurs in
environments containing residual chlorine when power to the device is on, may cause between-
lead leakage or migration. Therefore, Toshiba recommends that these devices be cleaned.
However, if the flux used contains only a small amount of halogen (0.05W% or less), the devices
may be used without cleaning without any problems.

3.5.6 Mounting tape carrier packages (TCPs)
(1) When tape carrier packages (TCPs) are mounted, measures must be taken to prevent

electrostatic breakdown of the devices.

(2) If devices are being picked up from tape, or outer lead bonding (OLB) mounting is being
carried out, consult the manufacturer of the insertion machine which is being used, in order
to establish the optimum mounting conditions in advance and to avoid any possible hazards.

(3) The base film, which is made of polyimide, is hard and thin. Be careful not to cut or scratch
your hands or any objects while handling the tape.

(4) When punching tape, try not to scatter broken pieces of tape too much.

(5) Treat the extra film, reels and spacers left after punching as industrial waste, taking care
not to destroy or pollute the environment.

(6) Chips housed in tape carrier packages (TCPs) are bare chips and therefore have their reverse
side exposed. To ensure that the chip will not be cracked during mounting, ensure that no
mechanical shock is applied to the reverse side of the chip. Electrical contact may also cause
a chip to fail. Therefore, when mounting devices, make sure that nothing comes into
electrical contact with the reverse side of the chip.
If your design requires connecting the reverse side of the chip to the circuit board, please
consult Toshiba or a Toshiba distributor beforehand.

3.5.7 Mounting chips
Devices delivered in chip form tend to degrade or break under external forces much more easily
than plastic-packaged devices. Therefore, caution is required when handling this type of device.

(1) Mount devices in a properly prepared environment so that chip surfaces will not be exposed
to polluted ambient air or other polluted substances.

(2) When handling chips, be careful not to expose them to static electricity.
In particular, measures must be taken to prevent static damage during the mounting of
chips. With this in mind, Toshiba recommend mounting all peripheral parts first and then
mounting chips last (after all other components have been mounted).

(3) Make sure that PCBs (or any other kind of circuit board) on which chips are being mounted
do not have any chemical residues on them (such as the chemicals which were used for
etching the PCBs).

(4) When mounting chips on a board, use the method of assembly that is most suitable for
maintaining the appropriate electrical, thermal and mechanical properties of the
semiconductor devices used.

* For details of devices in chip form, refer to the relevant device’s individual datasheets.

3 General Safety Precautions and Usage Considerations

3-16

3.5.8 Circuit board coating
When devices are to be used in equipment requiring a high degree of reliability or in extreme
environments (where moisture, corrosive gas or dust is present), circuit boards may be coated for
protection. However, before doing so, you must carefully consider the possible stress and
contamination effects that may result and then choose the coating resin which results in the
minimum level of stress to the device.

3.5.9 Heat sinks
(1) When attaching a heat sink to a device, be careful not to apply excessive force to the device in

the process.

(2) When attaching a device to a heat sink by fixing it at two or more locations, evenly tighten
all the screws in stages (i.e. do not fully tighten one screw while the rest are still only loosely
tightened). Finally, fully tighten all the screws up to the specified torque.

(3) Drill holes for screws in the heat sink exactly as specified. Smooth the
surface by removing burrs and protrusions or indentations which might
interfere with the installation of any part of the device.

(4) A coating of silicone compound can be applied between the heat sink and
the device to improve heat conductivity. Be sure to apply the coating
thinly and evenly; do not use too much. Also, be sure to use a non-volatile
compound, as volatile compounds can crack after a time, causing the
heat radiation properties of the heat sink to deteriorate.

(5) If the device is housed in a plastic package, use caution when selecting the type of silicone
compound to be applied between the heat sink and the device. With some types, the base oil
separates and penetrates the plastic package, significantly reducing the useful life of the
device.
Two recommended silicone compounds in which base oil separation is not a problem are
YG6260 from Toshiba Silicone.

(6) Heat-sink-equipped devices can become very hot during operation. Do not touch them, or you
may sustain a burn.

3.5.10 Tightening torque
(1) Make sure the screws are tightened with fastening torques not exceeding the torque values

stipulated in individual datasheets and databooks for the devices used.

(2) Do not allow a power screwdriver (electrical or air-driven) to touch devices.

3.5.11 Repeated device mounting and usage
Do not remount or re-use devices which fall into the categories listed below; these devices may
cause significant problems relating to performance and reliability.

(1) Devices which have been removed from the board after soldering

(2) Devices which have been inserted in the wrong orientation or which have had reverse
current applied

(3) Devices which have undergone lead forming more than once

3 General Safety Precautions and Usage Considerations

3-17

3.6 Protecting Devices in the Field

3.6.1 Temperature
Semiconductor devices are generally more sensitive to temperature than are other electronic
components. The various electrical characteristics of a semiconductor device are dependent on the
ambient temperature at which the device is used. It is therefore necessary to understand the
temperature characteristics of a device and to incorporate device derating into circuit design.
Note also that if a device is used above its maximum temperature rating, device deterioration is
more rapid and it will reach the end of its usable life sooner than expected.

3.6.2 Humidity
Resin-molded devices are sometimes improperly sealed. When these devices are used for an
extended period of time in a high-humidity environment, moisture can penetrate into the device
and cause chip degradation or malfunction. Furthermore, when devices are mounted on a regular
printed circuit board, the impedance between wiring components can decrease under high-
humidity conditions. In systems which require a high signal-source impedance, circuit board
leakage or leakage between device lead pins can cause malfunctions. The application of a
moisture-proof treatment to the device surface should be considered in this case. On the other
hand, operation under low-humidity conditions can damage a device due to the occurrence of
electrostatic discharge. Unless damp-proofing measures have been specifically taken, use devices
only in environments with appropriate ambient moisture levels (i.e. within a relative humidity
range of 40% to 60%).

3.6.3 Corrosive gases
Corrosive gases can cause chemical reactions in devices, degrading device characteristics.
For example, sulphur-bearing corrosive gases emanating from rubber placed near a device
(accompanied by condensation under high-humidity conditions) can corrode a device’s leads. The
resulting chemical reaction between leads forms foreign particles which can cause electrical
leakage.

3.6.4 Radioactive and cosmic rays
Most industrial and consumer semiconductor devices are not designed with protection against
radioactive and cosmic rays. Devices used in aerospace equipment or in radioactive environments
must therefore be shielded.

3.6.5 Strong electrical and magnetic fields
Devices exposed to strong magnetic fields can undergo a polarization phenomenon in their plastic
material, or within the chip, which gives rise to abnormal symptoms such as impedance changes
or increased leakage current. Failures have been reported in LSIs mounted near malfunctioning
deflection yokes in TV sets. In such cases the device’s installation location must be changed or
the device must be shielded against the electrical or magnetic field. Shielding against magnetism
is especially necessary for devices used in an alternating magnetic field because of the
electromotive forces generated in this type of environment.

3 General Safety Precautions and Usage Considerations

3-18

3.6.6 Interference from light (ultraviolet rays, sunlight, fluorescent lamps and
incandescent lamps)

Light striking a semiconductor device generates electromotive force due to photoelectric effects.
In some cases the device can malfunction. This is especially true for devices in which the internal
chip is exposed. When designing circuits, make sure that devices are protected against incident
light from external sources. This problem is not limited to optical semiconductors and EPROMs.
All types of device can be affected by light.

3.6.7 Dust and oil
Just like corrosive gases, dust and oil can cause chemical reactions in devices, which will
adversely affect a device’s electrical characteristics. To avoid this problem, do not use devices in
dusty or oily environments. This is especially important for optical devices because dust and oil
can affect a device’s optical characteristics as well as its physical integrity and the electrical
performance factors mentioned above.

3.6.8 Fire
Semiconductor devices are combustible; they can emit smoke and catch fire if heated sufficiently.
When this happens, some devices may generate poisonous gases. Devices should therefore never
be used in close proximity to an open flame or a heat-generating body, or near flammable or
combustible materials.

3.7 Disposal of Devices and Packing Materials
When discarding unused devices and packing materials, follow all procedures specified by local
regulations in order to protect the environment against contamination.

4 Precautions and Usage Considerations

4-1

4. Precautions and Usage Considerations
This section describes matters specific to each product group which need to be taken into
consideration when using devices. If the same item is described in Sections 3 and 4, the
description in Section 4 takes precedence.

4.1 Microcontrollers

4.1.1 Design
(1) Using resonators which are not specifically recommended for use

Resonators recommended for use with Toshiba products in microcontroller oscillator applications
are listed in Toshiba databooks along with information about oscillation conditions. If you use a
resonator not included in this list, please consult Toshiba or the resonator manufacturer
concerning the suitability of the device for your application.

(2) Undefined functions

In some microcontrollers certain instruction code values do not constitute valid processor
instructions. Also, it is possible that the values of bits in registers will become undefined. Take
care in your applications not to use invalid instructions or to let register bit values become
undefined.

4 Precautions and Usage Considerations

4-2

TMPR3927

Chapter 1 Outline and Features

1-1

1. Outline and Features

1.1 Outline
The TMPR3927C (hereinafter called “TX3927”) is a standard microcontroller of the TX39 family, which

is one of Toshiba’s 32-bit TX System RISC families.

The TX3927 uses the TX39/H2 processor core as the CPU. The TX39/H2 processor core is a 32-bit RISC
CPU core Toshiba developed based on the R3000A architecture of MIPS Technologies, Inc. (“MIPS”).

The TX3927 is designed for embedded applications. In addition to its TX39/H2 processor core, the
TX3927 also incorporates peripheral circuits such as memory controllers, PCI and DMA controllers, serial
and parallel ports, and timers/counters.

For information on the architecture of the TX39/H2 processor core, including the instruction set, refer to
the following document:

32-bit TX System RISC, TX39/H2 Family Processor Core Architecture: Databook

R3000A is a trademark of MIPS Technologies, Inc.

Chapter 1 Outline and Features

1-2

1.2 Notation Used in This Manual

1.2.1 Numerical Notation

• Hexadecimal numbers are expressed as follows (example shown for decimal number 42):
0x2A

• KB (kilobyte): 210 = 1,024 bytes
MB (megabyte): 220 = 1,024 × 1,024 = 1,048,576 bytes
GB (gigabyte): 230 = 1,024 × 1,024 × 1,024 = 1,073,741,824 bytes

1.2.2 Data Notation

• Byte: 8 bits

• Half word: 2 contiguous bytes (16 bits)

• Word: 4 contiguous bytes (32 bits)

• Double word: 8 contiguous bytes (64 bits)

Note: Chapter 12, “PCI Controller (PCIC)” uses notation based on the PCI specifications.
Refer to the note given on page 12-1.

1.2.3 Signal Notation

• Active-low signals are indicated by adding an asterisk (*) at the end of the signal name.
(Example: RESET*)

• A signal is “asserted” when it is driven to the active voltage level. A signal is “deasserted” when it
is driven to an inactive voltage level.

1.2.4 Register Notation

• The bits of registers have any of the following attributes:

R Read-only. The bit cannot be written.

W Write-only. The value of the bit is undefined if read.

R/W Read/Write

R/WC Read/Write Clear. The bit can be read and written. However, a write of a 1 clears (resets to
0) the bit and a write of a 0 has no effect.

R/WL Read/Write Local. The bit can be read from either the PCI bus or the TX39/H2 core.
However, only the TX39/H2 core can write data to the bit.

• The notation <register name>.<bit/field name> is used to indicate a specific bit/field of a register.

Example: CCFG. TOE

CCFG.TOE refers to the Timeout Enable for Bus Error (TOE) field, located at bit 14 of the Chip
Configuration Register (CCFG).

Chapter 1 Outline and Features

1-3

1.3 Features
(1) TX39/H2 processor core

• The TX39/H2 is a high-performance 32-bit microprocessor core Toshiba developed based on the
R3000A architecture.

• 8K bytes of instruction cache (2-way set associative)

• 4K bytes of data cache (2-way set associative)

• Supports burst refill and cache locking functions

• Supports critical word first mode

• MMU containing transition lookaside buffer (TLB)

• Built-in hardware MAC unit for single-cycle DSP operation (throughput)

• Built-in debug support unit (DSU)

(2) SDRAM controller

• 8 channels (6 channels shared with ROMC)

• Supports SDRAM, DIMM flash, SGRAM, or SMROM memory

• Supports 16M/64M/128M/256M-bit SDRAM with 2/4 bank size availability

• Supports 16/32-bit data bus sizing on a per channel basis

• Supports single data rate (SDR) SDRAM

• Supports JEDEC standard 100-pin or 168-pin DIMM sockets for SDRAM

• Supports JEDEC standard 100-pin DIMM sockets for flash memory

• CKE-based timing control

• Refresh control

• Self-refreshing

• 66 MHz clock

(3) ROM Controller

• 8 channels (6 channels shared with SDRAMC)

• Supports ROM, page mode ROM, mask ROM, EPROM, E2PROM, SRAM, and flash memory and
I/O devices

• Supports memory sizes of 1M byte to 1G byte in 32-bit mode, and sizes of 1M byte to 512M bytes
in 16-bit mode.

• Supports 16/32-bit data bus sizing on a per channel basis

• Supports full speed (66 MHz max.)/half speed (33 MHz max.) bus mode

• Supports selection between internal and external wait modes (ACK*/RDY)

(4) Timers/Counters

• 3-channel 24-bit up-counter

• Supports interval timer mode, pulse generator mode, and watchdog timer mode (only for timer 2).

• 2 timer output pins

• Supports external input clock

Chapter 1 Outline and Features

1-4

(5) Interrupt Controller

• Non-maskable interrupts (NMI)

• Maskable interrupts: 8 internal sources and 6 external sources

• Supports selection between edge- and level-triggered interrupts

(6) PCI Controller

• Full compliance with PCI Local Bus Specification Revision 2.1

• 32-bit PCI interface at 33 MHz

• Supports target mode (with streaming function) and initiator mode (without streaming function)

• Supports zero-wait-state read and write burst transfer for target mode

• FIFO to minimize memory controller latency

• Automatic mapping of PCI bus memory space to local bus (G-Bus) address space

• Supports enabling/disabling of internal arbiter function (for up to 4 external masters)

• External interrupt function

• Supports selection between internal and external clocks

(7) Direct memory access controller (DMAC)

• 4 channels

• Supports memory-to-memory and memory-to-I/O transfer

• Supports 8/16/32-bit wide I/O devices

• Supports internal/external transfer requests

• Supports dual address and single address transfer modes

• Supports word aligned memory-to-memory transfer using 4-word/8-word burst read/write

• Configurable address increments for both source and destination addresses

(8) Serial I/O ports

• 2-channel UART

• Built-in baud rate generator

• Modem flow control function

• 8-bit × 8 transmitter FIFO

• 13-bit (8 data bits and 5 status bits) × 16 receiver FIFO

• Supports selection between internal and external clocks

(9) Parallel I/O ports

• Up to 16 bi-directional I/O pins that can be read regardless of direction or mode (including one
dedicated parallel port pin)

• Independent selection of direction of pins and choice between totem-pole and open-drain outputs

• 16-bit flag register

(10) Power Supply: 2.5 V (internal), 3.3 V (I/O)

(11) Maximum operating frequency: 133 MHz

(12) Package type: 240-pin QFP

MIPS is a registered trademark of MIPS Technologies, Inc.

Chapter 2 Structure

2-1

2. Structure

2.1 Block Diagram

Figure 2.1.1 TX3927 block diagram

DMAC
(4ch.)

ROMC

EBIF

PLL

CG
SD RAMC

SIO1

G to IM Bridge

G
 B

us

WBU DSU

TX39/H2 core

TX39
I-Cache

D-Cache

G-Bus I/F

IM
 B

us

TMR2

PCIC

TMR1

TMR0

IRC

SIO0

XIN
XOUT

SYSCLK

PCIAD [31:0]
C_BE [3:0]

PAR
FRAME*
TREDY*

IRDY*
STOP*

DEVSEL*
REQ [3:0] *

PCICLK [0]
PCICLK [3:1]

PERR*
SERR*
IDSEL

GNT [3:0] *

TIMER [1]

TIMER [0]
TCLK

CLKEN

DATA [31:0]
ACK*

RESET*

NMI*
INT [5:0]

SDCLK [4:0]
RAS*
CAS*

SDCS [1:0] *
SDCS_CE [7:2] *
CE [1:0] *

DQM [3:0]
WE*
CKE

ADDR [19:2]

ACE*
SWE*
OE*

BWE [3:0] *
DSF

DMAREQ [3:0]
DMAACK [3:0]
DMADONE*

CTS [1:0]*
RTS [1:0]*
RXD [1:0]
TXD [1:0]
SCLK

TEST*
SCAN_ENB*

GDCLK
GSDAO [1:0]
GPCST [3:0]
GDRESET*
GDBGE*
GSDI*

PIO [15:0]

PCI3*
SDRCLKEN
PCICLKEN

SYSCLKEN
PCIXARB*

BBC
TLBOFF*
BME [1:0]
BOOT16*
CHANHS*

BAI*
ENDIAN

PLLM [1:0]

Note: Some pins are multiplexed with other functions.
For more information on multiplexed pins, refer to “3.3 Pin Multiplexing.”

Chapter 2 Structure

2-2

Chapter 3 Pins

3-1

3. Pins

3.1 Pinout

Table 3.1.1 TX3927 Pinout (1/2)

Pin No. Signal Pin No. Signal Pin No. Signal Pin No. Signal
1 VSS2 31 VSS2 61 VSS 91 VSS2
2 DATA [30] 32 VSS 62 PCIAD [29] 92 DEVSEL*
3 DATA [23] 33 VDDS 63 PCIAD [28] 93 STOP*
4 DATA [31] 34 RTS [1] * 64 PCIAD [27] 94 PERR*
5 CE [1] 35 GPCST [2] 65 VSS 95 SERR*
6 VSS 36 GPCST [1] 66 PCIAD [26] 96 PAR
7 CE [0] 37 GPCST [0] 67 PCIAD [25] 97 C_BE [1]
8 ACE* 38 GDCLK 68 PCIAD [24] 98 VSS
9 ADDR [4] 39 GSDI 69 VSS 99 PCIAD [15]
10 ADDR [3] 40 GDRESET* 70 C_BE [3] 100 VDDS
11 ADDR [2] 41 GDBGE* 71 VDDS 101 PCIAD [14]
12 SYSCLK 42 PCICLK [3] 72 IDSEL 102 PCIAD [13]
13 VDD2 43 VDDS 73 PCIAD [23] 103 VSS
14 BWE [3] * 44 VSS 74 PCIAD [22] 104 PCIAD [12]
15 BWE [2] * 45 PCICLK [2] 75 VSS 105 PCIAD [11]
16 VSS 46 PCICLK [1] 76 PCIAD [21] 106 PCIAD [10]
17 BWE [1] * 47 PCICLK [0] 77 PCIAD [20] 107 VSS
18 BWE [0] * 48 VSS 78 PCIAD [19] 108 PCIAD [9]
19 OE* 49 GNT [3] * 79 VSS 109 PCIAD [8]
20 SWE* 50 GNT [2] * 80 PCIAD [18] 110 VDDS
21 SCLK 51 GNT [1] * 81 PCIAD [17] 111 C_BE [0]
22 RXD [0] 52 GNT [0] * 82 VDDS 112 VSS
23 TXD [0] 53 REQ [3] * 83 PCIAD [16] 113 PCIAD [7]
24 RTS [0] * 54 REQ [2] * 84 VSS 114 PCIAD [6]
25 CTS [0] * 55 REQ [1] * 85 C_BE [2] 115 PCIAD [5]
26 RXD [1] 56 REQ [0] * 86 FRAME* 116 VSS
27 TXD [1] 57 PCIAD [31] 87 IRDY* 117 PCIAD [4]
28 CTS [1] * 58 PCIAD [30] 88 VSS 118 PCIAD [3]
29 GSDAO [0] 59 VSS2 89 TRDY* 119 PCIAD [2]
30 VDD2 60 VDDS 90 VDD2 120 VDDS

Chapter 3 Pins

3-2

Table 3.1.1 TX3927 Pinout (2/2)

Pin No. Signal Pin No. Signal Pin No. Signal Pin No. Signal
121 VSS 151 VSS2 181 VSS2 211 VSS2
122 PCIAD [1] 152 DATA [12] 182 XIN 212 SDCS [0] *
123 PCIAD [0] 153 VSS 183 XOUT 213 SDCS [1] *
124 ACK* 154 DATA [5] 184 VDD2 214 SDCS_CE [2] *
125 DMAREQ [3] 155 DATA [13] 185 VDD2 215 SDCS_CE [3] *
126 DMAACK [3] 156 DATA [6] 186 PLLVDD 216 SDCS_CE [4] *
127 DMAREQ [2] 157 DATA [14] 187 FILTER [0] 217 SDCS_CE [5] *
128 DMAACK [2] 158 DATA [7] 188 FILTER [1] 218 VDDS
129 DMAREQ [0] 159 VDDS 189 PLLVSS 219 DMAACK [1]
130 VSS 160 DATA [15] 190 VSS2 220 DMAREQ [1]
131 VDDS 161 VSS 191 NMI* 221 DQM [2]
132 DMAACK [0] 162 DQM [0] 192 SCANENB* 222 VSS
133 DMADONE* 163 DQM [1] 193 CLKEN 223 DQM [3]
134 INT [3] 164 ADDR [5] 194 RESET* 224 DATA [16]
135 INT [2] 165 ADDR [6] 195 TEST* 225 DATA [24]
136 INT [1] 166 ADDR [7] 196 ADDR [18] 226 DATA [17]
137 INT [0] 167 ADDR [8] 197 ADDR [19] 227 DATA [25]
138 PIO [0] 168 VSS 198 RAS* 228 DATA [18]
139 DATA [0] 169 ADDR [9] 199 VSS 229 VSS
140 DATA [8] 170 VDDS 200 CAS* 230 VDDS
141 DATA [1] 171 ADDR [10] 201 SDCLK [0] 231 DATA [26]
142 DATA [9] 172 ADDR [11] 202 SDCLK [1] 232 DATA [19]
143 VSS 173 ADDR [12] 203 SDCLK [2] 233 DATA [27]
144 DATA [2] 174 ADDR [13] 204 VDDS 234 DATA [20]
145 DATA [10] 175 ADDR [14] 205 SDCLK [3] 235 DATA [28]
146 DATA [3] 176 VSS 206 SDCLK [4] 236 DATA [21]
147 VDDS 177 ADDR [15] 207 VSS 237 VSS
148 DATA [11] 178 ADDR [16] 208 CKE 238 DATA [29]
149 DATA [4] 179 ADDR [17] 209 WE* 239 DATA [22]
150 VDD2 180 VDDS 210 VDD2 240 VDDS

Chapter 3 Pins

3-3

3.2 Pin Description

Signal Name I/O Description
System interface

SYSCLK O System Clock
Outputs a system clock in full speed mode (at one half the frequency of the TX39/H2
core) or half speed mode (at one quarter the frequency of the TX39/H2 core).
The mode depends on the settings of boot signals CHANHS* (ADDR[15] pin) and
BME[1:0] (ADDR[9:8] pins). Half speed mode is selected when CHANHS* is set to “0”
or BME[1:0] are set to “10”.

DATA [31:0] I/O Data
Data bus signals.
In 16-bit bus mode, the DATA[15:0] pins are used.
The pins are equipped with internal pull-up resistors.

ACK* I/O Acknowledge
In external ACK* mode, this pin is used for an input signal for terminating bus
operation. It can also be used as an RDY input (which can be set on a per channel
basis). In internal ACK* mode, the pin is used to output a signal for notifying external
devices of the termination of bus operation.
The pin is equipped with an internal pull-up resistor.

RESET* I Reset
Initializes the TX3927.
The RESET* signal must remain low for at least 512 CPU clock cycles to initialize the
internal circuitry.
The pin is equipped with an internal pull-up resistor.

Clock signals
XIN I Crystal Input

Connect a crystal resonator or directly input an external clock signal.
The clock frequency must match the multiplier specified with boot signals PLLM[1:0]
(ADDT[3:2] pins).
PLLM[1:0] = “01”: The multiplier is 2. In this case, input an external clock signal,

leaving XOUT open.
PLLM[1:0] = “11”: The multiplier is 16. In this case, connect a crystal resonator or input

an external clock signal.
PLLM[1:0] should not be set to “00” or “10”.

XOUT O Crystal Output
Connect a crystal resonator.
This pin must be left open when PLLM[1:0] = “01”.

CLKEN I Clock Enable
Enables the internal clock generator of the TX3927.
The CLKEN signal must remain low until the clock signal input from XIN (a crystal
resonator or external clock input) becomes stable as the voltage settles.
The pin is equipped with an internal pull-up resistor.

Chapter 3 Pins

3-4

Signal Name I/O Description
Interrupt signals

NMI* I Non Maskable Interrupt
Non-maskable interrupt signal.
The pin is equipped with an internal pull-up resistor.

INT [5:4] I Interrupt Request
External interrupt request signals. INT[5] and INT[4] are multiplexed with CTS0 and
RTS0, respectively.
The pins are equipped with internal pull-up resistors.

INT [3:0] I Interrupt Request
External interrupt request signals.
The pins are equipped with internal pull-up resistors.

Timer interface
TIMER [1:0] O Timer Pulse Width Output

Timer output signals used in pulse generator mode. The pins output “1” in other
modes. The pins are multiplexed with other functions.
DMAREQ[3]/PIO[15]/TIMER[1]
DMAACK[3]/PIO[11]/TIMER[0]
DMADONE*/PIO[7]/TIMER[0]

TCLK I External Timer Clock
Timer input clock signal. TMR0, TMR1, and TMR2 share this signal. The pin is
multiplexed with PIO[13] and DMAREQ[2].

Memory interface
SDCLK [4:0] O SDRAM Clock Out

Outputs one half the frequency of the TX39/H2 core (e.g., 66 MHz when the TX39/H2
is operating at 133 MHz), which is used as a clock for SDRAM and SMROM, as well
as for I/O devices that run in full speed bus mode.
Only SDCLK[0] is equipped with an internal pull-up resistor.
SDCLK[0] must be enabled when an SDRAM is used.

RAS* O Row Address Strobe
RAS* signal for SDRAM, SMROM, and SGRAM.

CAS* O Column Address Strobe
CAS* signal for SDRAM, SMROM, and SGRAM.

SDCS [7:0] * O Synchronous Memory Device Chip Select
Chip select signals for SDRAM, SMROM, SGRAM, and 100-pin DIMM flash memory.
The SDCS[7:2] pins are multiplexed with CE[7:2]. SDCS[7:6] are also multiplexed
with DMAREQ[1]/PIO[11] and DMAACK[1]/PIO[10]. The SDCS[7:6] pins are
equipped with internal pull-up resistors.

DQM [3:0] * O Data Mask
During a write cycle, the DQM signals function as a data mask and can control
individual bytes of the input data for SDRAM. During a read cycle, they control the
SDRAM output buffers. The DQM signals also function as byte enable signals for
DIMM flash memory during a write cycle.

WE* O Write Enable
WE* signal for SDRAM, SMROM, and SGRAM.

CKE O Clock Enable
CKE signal for SDRAM, SMROM, and SGRAM.

SWE* O SRAM Write Enable
Write enable signal for SRAM and I/O devices.

Chapter 3 Pins

3-5

Signal Name I/O Description
Memory interface

ADDR [19:2] O Address
Address signals.
For ROM, SRAM, and I/O devices, ADDR can be used as 28 address signals with an
external circuit (74377) and the ACE* signal. ADDR[29:20] are output to the
ADDR[19:10] pins when ACE* is low.
ADDR[19:5] are used for SDRAM, SMROM, SGRAM, and DIMM flash memory.
All pins are equipped with internal pull-up resistors.
The ADDR signals are also used as boot signals during a reset. The boot settings are
latched into the TX3927 on the rising edge of RESET*.

OE* O Output Enable
Output enable signal for ROM, SRAM, I/O devices, SMROM, DIMM flash memory.

CE [7:0] * O ROM Chip Enable
Chip select signals for ROM, SRAM, and I/O devices. The CE[7:2] pins are
multiplexed with SDCS[7:2].
Only CE[7:6] pins are equipped with internal pull-up resistors.

ACE* O ROM Address Clock Enable
Clock enable signals used by an external circuit (74377) to latch ADDR[29:20], output
from the multiplexed ADDR[19:10] pins.

BE [3:0] */
BWE [3:0] *

O Byte Enable/Byte Write Enable
BE[3:0] indicate a valid data position on the data bus DATA[31:0] during bus
operation. In 16-bit bus mode, only BE[1:0]* are used.
BWE[3:0]* indicate a valid data position on the data bus DATA[31:0] during write bus
operation. In 16-bit bus mode, only BWE[1:0]* are used.
The following shows the correspondence between BE[3:0]*/BWE[3:0]* and the data
bus signals.

BE[3]*/BWE[3]*: DATA[31:24]
BE[2]*/BWE[2]*: DATA[23:16]
BE[1]*/BWE[1]*: DATA[15:8]
BE[0]*/BWE[0]*: DATA[7:0]

Boot signal BBC (ADDR[6] pin) and the RCCRn.RBCn ROM controller bit determine
whether the signals are used as BE[3:0] or BWE[3:0].

DSF O Define Special Function
Signal used for SGRAM. The DSF pin is multiplexed with PIO[1].

Chapter 3 Pins

3-6

Signal Name I/O Description
PCI interface

PCIAD [31:0] I/O PCI Address and Data
Multiplexed address and data bus.

C_BE [3:0] I/O Bus Command and Byte Enables
Command and byte enable signals.

PAR I/O Parity
Even parity signal for PCIAD[31:0] and C_BE[3:0]*.

FRAME* I/O Cycle Frame
Indicates that bus operation is in progress.
The PCI specification requires that a pull-up resistor be added.

IRDY* I/O Initiator Ready
Indicates that the initiator is ready to complete data transfer.
The PCI specification requires that a pull-up resistor be added.

TRDY* I/O Target Ready
Indicates that the target is ready to complete data transfer.
The PCI specification requires that a pull-up resistor be added.

STOP* I/O Stop
The target sends this signal to the initiator to request termination of data transfer.
The PCI specification requires that a pull-up resistor be added.

ID_SEL I Initialization Device Select
Chip select signal used for configuration access.

DEVSEL* I/O Device Select
The target asserts this signal in response to access from the initiator.
The PCI specification requires that a pull-up resistor be added.

REQ [3:0] * I/O Request
Signals used by the master to request bus mastership.
In internal arbiter mode, REQ[3:0] are input signals.
In external arbiter mode, REQ[0] is an output signal, REQ[1] is a flag interrupt output
signal, and REQ[3:2] are not used.

GNT [3:0] * I/O Grant
Indicates that bus mastership has been granted to the master.
In internal arbiter mode, GNT[3:0] are output signals.
In external arbiter mode, GNT[0] is an input signal and GNT[3:1] are not used.

PERR* I/O Parity Error
Indicates a parity error in a bus cycle other than special cycles.
The PCI specification requires that a pull-up resistor be added.

SERR* I/O System Error
Indicates an address parity error, a data parity error in a special cycle, or a fatal error.
The PCI specification requires that a pull-up resistor be added.

PCICLK [3:0] I/O PCI Clock
PCI bus clock signals.
PCICLK[0] is either used as an output from the TX3927 or as an input from an
external device to the PCI controller of the TX3927. PCICLK[3:1] are tri-state outputs.
Boot signal PCICLKEN (ADDR[18] pin) determines the usage of PCICLK[0].
When PCICLKEN is set to “1”, PCICLK[3:0] are used as outputs. When PCICLKEN is
set to “0”, PCICLK[0] is used as an input and PCICLK[3:1] are not used.
PCICLK[0] must be enabled when the internal PCICLK is used.

Chapter 3 Pins

3-7

Signal Name I/O Description
DMA interface

DMAREQ [3:0] I DMA Request
DMA transfer request signals from an external I/O device.
The pins are multiplexed with PIO, TIMER, TCLK, SDCS[7], and CE[7].
Refer to “3.3 Pin Multiplexing” for details.
The pins are equipped with internal pull-up resistors.

DMAACK [3:0] O DMA Acknowledge
DMA transfer acknowledge signals to an external I/O device.
The pins are multiplexed with PIO, TIMER, SDCS[6], and CE[6].
Refer to “3.3 Pin Multiplexing” for details.
The pins are equipped with internal pull-up resistors.

DMADONE* I/O DMA Done
DMADONE is either used as an output signal that reports the termination of DMA
transfer or as an input signal that causes DMA transfer to terminate.
The pin is equipped with an internal pull-up resistor.

SIO interface
TXD [1:0] O SIO Transmit Data

Serial data output signals.
The TXD pins are multiplexed with PIO.
The pins are equipped with internal pull-up resistors.

RXD [1:0] I SIO Receive Data
Serial data input signals.
The RXD pins are multiplexed with PIO.
The pins are equipped with internal pull-up resistors.

RTS [1:0] * O Request to Send
RTS* signals.
The RTS pins are multiplexed with PIO, INT, DSF, and debug signal GPCST[3].
The pins are equipped with internal pull-up resistors.

CTS [1:0] * I Clear to Send
CTS* signals.
The CTS pins are multiplexed with PIO, INT, and debug signal GSDAO[1].
The pins are equipped with internal pull-up resistors.

SCLK I SIO Clock
SIO clock input signal. SIO0 and SIO1 share this signal.
The pin is equipped with an internal pull-up resistor.

Parallel interface
PIO [15:0] I/O PIO Port

The PIO[0] pin is dedicated to a PIO signal. The other pins, PIO[15:1], are
multiplexed with DMA, interrupt input, timer, serial interface, and SGRAM DSF
signals.
The pins are equipped with internal pull-up resistors.

Chapter 3 Pins

3-8

Signal Name I/O Description
Debug interface

GDCLK O Debug Clock Signal
Clock signal for an external real-time debug system.

GSDAO [1:0] O Serial Data and Address Output/Target PC
Output signals for an external real-time debug system.

GPCST [3:0] O PC Trace Status
PC trace output signals for an external real-time debug system.

GDRESET* I Debug Reset
Reset signal for an external real-time debug system.
The pin is equipped with an internal pull-up resistor.

GDBGE* I Debugger Enable
Enable signal for an external real-time debug system.
The pin is equipped with an internal pull-up resistor.

GSDI* I Serial Data input/Debug Interrupt
Input signal for an external real-time debug system.
The pin is equipped with an internal pull-up resistor.

Other signals
TEST* I Test

Test pin. Fix the pin to high.
The pin is equipped with an internal pull-up resistor.

SCAN_ENB* I Scan Mode Test Control
Test pin. Fix the pin to high.
The pin is equipped with an internal pull-up resistor.

PLLVDD Power supply pin for the PLL. Supply 2.5 V.
PLLVSS Ground pin for the PLL.

VDD2 Power supply pin for the internal logic. Supply 2.5 V.
VSS2 Ground pin for the internal logic.
VDDS Power supply pin for the I/O ports. Supply 3.3 V.
VSS Ground pin for the I/O ports.

Chapter 3 Pins

3-9

3.3 Pin Multiplexing
A total of 24 pins of the TX3927 have multiplexed functions. Table 3.3.1 shows the multiplexed pins.

The functions of individual pins are selected in different ways. Table 3.3.2 shows the pins for which the
PCFG control register determines the functions.

Table 3.3.1 Pin Multiplexing

Pin No. Signal Name Multiplexed Functions
217 SDCS_CE [5] * SDCS [5] */CE [5] *
216 SDCS_CE [4] * SDCS [4] */CE [4] *
215 SDCS_CE [3] * SDCS [3] */CE [3] *
214 SDCS_CE [2] * SDCS [2] */CE [2] *
52 GNT [0] * GNT_0_OUT/GNT_IN
56 REQ [0] * REQ_0_IN/REQ_OUT
55 REQ [1] * REQ_1_IN/XINT_OUT

125 DMAREQ [3] PIO [15] /DMAREQ [3] /TIMER [1]
126 DMAACK [3] PIO [14] /DMAACK [3] /TIMER [0]
127 DMAREQ [2] PIO [13] /DMAREQ [2] /TCLK
128 DMAACK [2] PIO [12] /DMAACK [2]
220 DMAREQ [1] PIO [11] /DMAREQ [1] /SDCS [7] */CE [7] *
219 DMAACK [1] PIO [10] /DMAACK [1] /SDCS [6] */CE [6] *
129 DMAREQ [0] PIO [9] /DMAREQ [0]
132 DMAACK [0] PIO [8] /DMAACK [0]
133 DMADONE* PIO [7] /DMADONE*/TIMER [0]
26 RXD [1] PIO [6] /RXD [1]
27 TXD [1] PIO [5] /TXD [1]
22 RXD [0] PIO [4] /RXD [0]
23 TXD [0] PIO [3] /TXD [0]
28 CTS [1] * PIO [2] /CTS [1] */GSDAO [1]
34 RTS [1] * PIO [1] /RTS [1] */DSF/GPCST [3]
25 CTS [0] * INT [5] /CTS [0] *
24 RTS [0] * INT [4] /RTS [0] *

The SDCS_CE[5:2]* chip select signals, corresponding to channels 5 to 2, respectively, are shared
for both SDRAM and ROM. If a given SDRAM or ROM channel is enabled using the SDRAM or
ROM controller, the corresponding pin is assigned to that channel. If SDRAM and ROM channels
having an identical number are enabled at the same time, the signal on the corresponding SDCS_CE pin
is asserted in both SDRAM and ROM bus cycles, resulting in undetermined memory data.

The PCI grant signals (GNT[3:0]*) and request signals (REQ[3:0]*) have different operations
depending on whether the chip booted into external or internal PCI arbiter mode. In internal arbiter
mode, REQ[3:0]* are input signals and GNT[3:0]* are output signals.

In external arbiter mode, REQ[0]* becomes a request signal output to the PCI module and GNT[0]*
becomes a grant signal input from the PCI module. REQ[1]* becomes an interrupt output that can be
controlled with the PIO module flag registers. REQ[3:2]* and GNT[3:1]*, which become output and
input pins, respectively, are not used.

Chapter 3 Pins

3-10

The other multiplexed pins are controlled by setting the bits of the pin configuration (PCFG) register,
as detailed in Table 3.3.2. Usually, the pins are controlled in pairs, such as DMAREQ[3] and
DMAACK[3].

CTS[1]* and RTS[1]* are also shared with debug support signals; their functions are determined by
the GDBGE* pin as well as PCFG register bits.

The DMAREQ[1] and DMAACK[1] pins can be used for the SDCS_CE[7:6]* chip select signals,
corresponding to channels 7 and 6, respectively. These chip select signals are, however, shared for both
SDRAM and ROM. If a given SDRAM or ROM channel is enabled using the SDRAM or ROM
controller, the corresponding pin is assigned to that channel. If SDRAM and ROM channels having an
identical number are enabled at the same time, the signal on the corresponding SDCS_CE pin is
asserted in both SDRAM and ROM bus cycles, resulting in undetermined memory data.

CTS[0]* and RTS[0]* are multiplexed with INT[5:4]. Both pins are always internally routed to the
interrupt controller. Thus, if the serial interface function is selected, ensure that interrupts are not
enabled. Otherwise, interrupts will occur every time CTS[0]* or RTS[0]* changes the state.

Chapter 3 Pins

3-11

Table 3.3.2 Pin Functions Corresponding to The Settings of PCFG Control Register Bits

Pin/Function Pin/Function PCFG Control Bits
DMAREQ [3] DMAACK [3] SELDMA [3] SELTMR [1] SELTMR [0]

PIO [15] PIO [14] 0 0 0
PIO [15] TIMER [0] 0 0 1

TIMER [1] PIO [14] 0 1 0
TIMER [1] TIMER [0] 0 1 1

DMAREQ [3] DMAACK [3] 1 x x

DMAREQ [2] DMAACK [2] SELDMA [2]
PIO [13] PIO [12] 0

DMAREQ [2] DMAACK [2] 1

DMAREQ [1] DMAACK [1] SELDMA [1] SELCS
PIO [11] PIO [10] 0 0

SDCS_CE [7]* SDCS_CE [6]* 0 1
DMAREQ [1] DMAACK [1] 1 x

DMAREQ [0] DMAACK [0] SELDMA [0]
PIO [9] PIO [8] 0

DMAREQ [0] DMAACK [0] 1

DMADONE* SELDONE SELTMR [2]
PIO [7] 0 0

TIMER [0] 0 1
DMADONE* 1 x

RXD [1] TXD [1] SELSIO [1]
PIO [6] PIO [5] 0
RXD [1] TXD [1] 1

RXD [0] TXD [0] SELSIO [0]
PIO [4] PIO [3] 0
RXD [0] TXD [0] 1

CTS [1] * RTS [1] * GDBGE* SELSIOC [1] SELDSF
PIO [2] PIO [1] 1 0 0
PIO [2] DSF 1 0 1

CTS [1] * RTS [1] * 1 1 0
GSDAO [1] GPCST [3] 0 x x

CTS [0] * RTS [0] * SELSIOC [0]
INT [5] INT [4] 0

CTS [0] * RTS [0] * 1

Chapter 3 Pins

3-12

3.4 Initial Setting Signals
These initial setting signals (also known as boot signals) use the same pins as ADDR[19:2]. The signals

are captured into the TX3927 on the rising edge of the RESET* or CLKEN signal to initialize the TX3927.
PLLM[1:0] are latched on the rising edge of CLKEN and the others are latched on the rising edge of
RESET*. All initial setting signals are pulled up in the TX3927.

Some of these signals are latched into registers. The R/W column of the following table shows the
read/write attribute of the corresponding register bit. For details of the CCFG and PCFG registers, refer to
Chapter 5, “Configuration.” For details of the SDCCR0 register, refer to Chapter 8, “SDRAM Controller.”
For details of the RCCR0 register, refer to Chapter 9, “External Bus Controller.”

Initial Setting
Signal Pin Description Register/Bit R/W

PLLM [1:0] ADDR [3:2] PLL Multiplier
Specifies the multiplier value for the internal clock generator.
After the termination of a reset, the value cannot be changed.
00: Not to be set.
01: ×2
10: Not to be set.
11: ×16

CCFG/bit [5:4]
(Chip Configuration
register)

R

TLBOFF* ADDR [19] TLB Off
Enables or disables TLB operation.
0: Disable (TLB Off)
1: Enable (TLB On)

CCFG/bit [17]
(Chip Configuration
register)

R/W
(*1)

ENDIAN ADDR [14] ENDIAN
Specifies the CPU endian mode. After the termination of a reset,
the value cannot be changed.
0: Little endian
1: Big endian

CCFG/bit [2]
(Chip Configuration
register)

R

CHANHS* ADDR [15] Boot with Half Speed Bus
Specifies the frequency of the SYSCLK output. When BME[1:0]
= “10”, however, the SYSCLK output is forcibly placed in half
speed bus mode. After the termination of a reset, the value
cannot be changed.
0: The SYSCLK output frequency is one quarter of the CPU

frequency (half speed bus mode).
1: The SYSCLK output frequency is one half of the CPU

frequency (full speed bus mode).

CCFG/bit [1]
(Chip Configuration
register)

R

BME [1:0] ADDR [9:8] Boot Memory Enable
Specifies the type of memory device to boot from.
00: SMROM
01: DIMM flash memory
10: Half speed ROM
11: Full speed ROM

RCCR0/bit [4:3]
or
SDCCR0/bit
[19:18], [17]

R/W

BOOT16* ADDR [13] Boot with 16-bit Bus Width
Specifies the bus size for the boot device.
0: 16 bits
1: 32 bits

RCCR0/bit [7]
(ROM channel
control register 0)

R/W

Chapter 3 Pins

3-13

Initial Setting
Signal Pin Description Register/Bit R/W

BAI* ADDR [7] Boot ACK* Input
Enables or disables an external ACK input signal for the boot
device.
0: Enable external ACK input
1: Disable external ACK input
(ACK is internally generated and output from the ACK pin.)

RCCR0/bit [12]
(ROM channel
control register 0)

R/W

BBC ADDR [6] Boot Byte Control
Specifies whether the byte enable signals for the boot device are
BWE [3:0] or BE [3:0].
0: BE [3:0] (Byte Enable)
1: BWE [3:0] (Byte Write Enable)

RCCR0/bit [5]
(ROM channel
control register 0)

R/W

PCICLKEN ADDR [18] PCI Clock Enable
Enables or disables the PCI output clock (PCICLK).
0: Disable (input)
An external PCI clock must be input to the PCICLK[0] pin.
1: Enable (output)

PCFG/bit [21:18]
(Pin Configuration
register)

R/W

PCI3* ADDR [17] PCI Clock divisor
Specifies the divisor value for the PCI output clock.
0: The PCI clock frequency is one third of the GBus clock

frequency.
1: The PCI clock frequency is one half of the GBus clock

frequency.

CCFG/bit [12]
(Chip Configuration
register)

R/W

PCIXARB* ADDR [11] PCI Arbiter Control Setting
Specifies whether the TX3927 or an external bus master is
responsible for PCI arbitration. After the termination of a reset,
the value cannot be changed.
0: External bus master
1: PCI controller of TX3927

CCFG/bit [13]
(Chip Configuration
register)

R

Note 1: CCFG.TLBOFF can be written but it should not be changed from the initial value.
Note 2: Ensure that none of ADDR[16], ADDR[12], and ADDR[10] are driven to low during a reset.

Table 3.4.1 Correspondence Between Initial Setting Signals and Address Bus Pins

Pin No. Initial Setting Signal Address Bus
Pin

197 TLBOFF* ADDR [19]
196 PCICLKEN ADDR [18]
179 PCI3 ADDR [17]
177 CHANHS* ADDR [15]
175 ENDIAN ADDR [14]
174 BOOT16* ADDR [13]
172 PCIXARB* ADDR [11]

169,167 BME [1:0] ADDR [9:8]
166 BAI* ADDR [7]
165 BBC ADDR [6]

10,11 PLLM [1:0] ADDR [3:2]

Chapter 3 Pins

3-14

Chapter 4 Address Mapping

4-1

4. Address Mapping

4.1 Memory Mapping
The TX3927 supports up to 4G bytes of address space.

The memory map of the TX3927 is managed by the memory management unit (MMU) of the TX39/H2
processor core. Table 4.1.1 summarizes the address mapping of the TX3927. Figure 4.1.1 shows the address
map in TLB OFF. Figure 4.1.2 shows the address map in TLB ON.

For more information on the memory map of the TX39/H2 processor core, refer to the 32-bit TX System
RISC, TX39/H2 Family Processor Core Architecture: Databook.

Table 4.1.1 TX3927 Address Mapping

Cacheable Area
Segment Virtual Address Physical Address

TLB on TLB off
Mode

kseg2
(Reserved)

0xFFFF_FFFF

0xFFFF_0000

0xFFFF_FFFF

0xFFFF_0000

Cacheable Uncacheable Kernel

Kseg2
(Reserved)

0xFFFE FFFF

0xFF00 0000

0xFFFE FFFF

0xFF00 0000

Uncacheable Uncacheable Kernel

kseg2 0xFEFF_FFFF

0xC000_0000

0xFEFF_FFFF

0xC000_0000

Cacheable Cacheable Kernel

kseg1 0xBFFF_FFFF

0xA000_0000

0x1FFF_FFFF

0x0000_0000

Uncacheable Uncacheable Kernel

kseg0 0x9FFF_FFFF

0x8000_0000

0x1FFF_FFFF

0x0000_0000

Cacheable Cacheable Kernel

Kuseg
(Reserved)

0x7FFF_FFFF

0x7F00_0000

0xBFFF_FFFF

0xBF00_0000

Cacheable Uncacheable Kernel/user

kuseg 0x7EFF_FFFF

0x0000_0000

0xBEFF_FFFF

0x4000_0000

Cacheable Cacheable Kernel/user

In the TX3927, the memory controllers (SDRAMC and ROMC) are used to specify the address (physical
address) in the memory (SDRAM, ROM, etc.) or I/O device to be connected.

The boot memory device is assigned channel 0 of ROMC or SDRAMC. Immediately after a reset, both
channels have a base address of 0x1FC0_0000 (physical address), from which instruction fetch is started.

The top area of kseg2 (0xFF00_0000-0xFFFE_FFFF) is reserved. The registers of the TX3927 built-in
modules are allocated in this area.

Chapter 4 Address Mapping

4-2

Figure 4.1.1 Memory Address Map (TLB off)

Figure 4.1.2 Memory Address Map (TLB on)

0xFFFF_FFFF

0xC000_0000

0xA000_0000

0x8000_0000

Physical address spaceVirtual address space

(Reserved area)

kseg2

kseg1

kseg0

kuseg

1024 MB

2048 MB

Access prohibited

512 MB

0xFFFF_FFFF

0xC000_0000

0x4000_0000

0x2000_0000

0x0000_0000

Virtual address space Physical address space

Page
mapping

Kernel (uncacheable)
(kseg1)

Kernel (reserved)

Kernel (cacheable)
(kseg2)

Kernel/user (cacheable)
(kuseg)

64 KB

16 MB (reserved)

3568 MB

Reserved

Kernel boot and I/O
512 MB cacheable/

uncacheable

0xFFFF FFFF

0xFFFF 0000

0xFF00 0000

0x4000 0000

0x2000 0000

0x1FFF FFFF

0x0000 0000

0xFFFF FFFF

0xFFFF 0000

0xFF00 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x0000 0000

Kernel (cacheable)
(kseg0)

Chapter 4 Address Mapping

4-3

4.2 Register Mapping
Among addresses 0xFFFE_0000 to 0xFFFE_FFFF, only the addresses shown in the table can be accessed.

Accessing any other address may cause the bus to be locked.

Table 4.2.1 TX3927 Register Mapping (1/6)

Address Register Symbol Register Name
PIO
0xFFFE_F524 XPIOMASKEXT PIO External Interrupt Mask Register
0xFFFE_F520 XPIOMASKCPU PIO CPU Interrupt Mask Register
0xFFFE_F51C XPIOINT PIO Interrupt Control Register
0xFFFE_F518 XPIOPOL PIO Flag Polarity Control Register
0xFFFE_F514 XPIOFLAG1 PIO Flag 1 Register
0xFFFE_F510 XPIOFLAG0 PIO Flag 0 Register
0xFFFE_F50C XPIOOD PIO Open Drain Control Register
0xFFFE_F508 XPIODIR PIO Direction Control Register
0xFFFE_F504 XPIODI PIO Input Data Register
0xFFFE_F500 XPIODO PIO Output Data Register
SIO1
0xFFFE_F420 SIRFIFO1 Receiver FIFO 1
0xFFFE_F41C SITFIFO1 Transmitter FIFO 1
0xFFFE_F418 SIBGR1 Baud Rate Control Register 1
0xFFFE_F414 SIFLCR1 Flow Control Register 1
0xFFFE_F410 SIFCR1 FIFO Control Register 1
0xFFFE_F40C SICISR1 Status Change Interrupt Status Register 1
0xFFFE_F408 SIDISR1 DMA/Interrupt Status Register 1
0xFFFE_F404 SIDICR1 DMA/Interrupt Control Register 1
0xFFFE_F400 SILCR1 Line Control Register 1
SIO0
0xFFFE_F320 SIRFIFO0 Receiver FIFO 0
0xFFFE_F31C SITFIFO0 Transmitter FIFO 0
0xFFFE_F318 SIBGR0 Baud Rate Control Register 0
0xFFFE_F314 SIFLCR0 Flow Control Register 0
0xFFFE_F310 SIFCR0 FIFO Control Register 0
0xFFFE_F30C SICISR0 Status Change Interrupt Status Register 0
0xFFFE_F308 SIDISR0 DMA/Interrupt Status Register 0
0xFFFE_F304 SIDICR0 DMA/Interrupt Control Register 0
0xFFFE_F300 SILCR0 Line Control Register 0

Chapter 4 Address Mapping

4-4

Table 4.2.1 TX3927 Register Mapping (2/6)

Address Register Symbol Register Name
TMR2
0xFFFE_F2F0 TMTRR2 Timer Read Register 2
0xFFFE_F240 TMWTMR2 Watchdog Timer Mode Register 2
0xFFFE_F230  (Reserved)
0xFFFE_F220 TMCCDR2 Divider Register 2
0xFFFE_F210 TMITMR2 Interval Timer Mode Register 2
0xFFFE_F20C  (Reserved)
0xFFFE_F208 TMCPRA2 Compare Register A2
0xFFFE_F204 TMTISR2 Timer Interrupt Status Register 2
0xFFFE_F200 TMTCR2 Timer Control Register 2
TMR1
0xFFFE_F1F0 TMTRR1 Timer Read Register 1
0xFFFE_F140  (Reserved)
0xFFFE_F130 TMPGMR1 Pulse Generator Mode Register 1
0xFFFE_F120 TMCCDR1 Divider Register 1
0xFFFE_F110 TMITMR1 Interval Timer Mode Register 1
0xFFFE_F10C TMCPRB1 Compare Register B1
0xFFFE_F108 TMCPRA1 Compare Register A1
0xFFFE_F104 TMTISR1 Timer Interrupt Status Register 1
0xFFFE_F100 TMTCR1 Timer Control Register 1
TMR0
0xFFFE_F0F0 TMTRR0 Timer Read Register 0
0xFFFE_F040  (Reserved)
0xFFFE_F030 TMPGMR0 Pulse Generator Mode Register 0
0xFFFE_F020 TMCCDR0 Divider Register 0
0xFFFE_F010 TMITMR0 Interval Timer Mode Register 0
0xFFFE_F00C TMCPRB0 Compare Register B0
0xFFFE_F008 TMCPRA0 Compare Register A0
0xFFFE_F004 TMTISR0 Timer Interrupt Status Register 0
0xFFFE_F000 TMTCR0 Timer Control Register 0
CCFG
0xFFFE_E010 PDCR Power Down Control Register
0xFFFE_E00C TEAR Timeout Error Address Register
0xFFFE_E008 PCFG Pin Configuration Register
0xFFFE_E004 CRIR Chip reversion ID Register
0xFFFE_E000 CCFG Chip Configuration Register

Chapter 4 Address Mapping

4-5

Table 4.2.1 TX3927 Register Mapping (3/6)

Address Register Symbol Register Name
PCIC
0xFFFE_D158 IPCICBE Initiator Indirect Command/Byte Enable Register
0xFFFE_D154 IPCIDATA Initiator Indirect Data Register
0xFFFE_D150 IPCIADDR Initiator Indirect Address Register
0xFFFE_D14C IOMAS Initiator I/O Mapping Address Size Register
0xFFFE_D148 MMAS Initiator Memory Mapping Address Size Register
0xFFFE_D144 ISCDP Initiator Special Cycle Data Port Register
0xFFFE_D140 IIADP Initiator Interrupt Acknowledge Data Port Register
0xFFFE_D13C ICRD Initiator Configuration Data Register
0xFFFE_D138 ICA Initiator Configuration Address Register
0xFFFE_D134 PCISTATIM PCI Status Interrupt Mask Register
0xFFFE_D130 LBIM Local Bus Interrupt Mask Register
0xFFFE_D12C LBSTAT Local Bus Status Register
0xFFFE_D128 LBC Local Bus Control Register
0xFFFE_D124 MBAS Target Memory Base Address Size Register
0xFFFE_D120 IOBAS Target I/O Base Address Size Register
0xFFFE_D11C PBACS PCI Bus Arbiter Current State Register
0xFFFE_D118 CPCIBGS Current PCI Bus Grant Status Register
0xFFFE_D114 CPCIBRS Current PCI Bus Request Status Register
0xFFFE_D110 BM Broken Master Register
0xFFFE_D10C PBAPMIM PCI Bus Arbiter/Park Master Interrupt Mask Register
0xFFFE_D108 PBAPMS PCI Bus Arbiter/Park Master Status Register
0xFFFE_D104 PBAPMC PCI Bus Arbiter/Park Master Control Register
0xFFFE_D100 REQ_TRACE Request Trace Register
0xFFFE_D0EA PWMNGSR Power Management Support Register
0xFFFE_D0E0 PWMNGR Power Management Register
0xFFFE_D0D0 TBL Target Burst Length Register
0xFFFE_D0CC SC_BE Special Cycle Byte Enable Register
0xFFFE_D0C8 SC_MSG Special Cycle Message Register
0xFFFE_D0C4 TLBIOMAR Target Local Bus I/O Mapping Address Register
0xFFFE_D0C0 TLBMMAR Target Local Bus Memory Mapping Address Register
0xFFFE_D0BC TLBIAP Target Local Bus IFIFO Address Register
0xFFFE_D0B8 TLBOAP Target Local Bus OFIFO Address Register
0xFFFE_D0A8 PCIRRDT PCI Read Retry Discard Timer Register
0xFFFE_D0A4 PCIRRT_CMD PCI Read Retry Timer Command Register
0xFFFE_D0A0 PCIRRT PCI Read Retry Tag Register
0xFFFE_D09C TCCMD Target Current Command Register
0xFFFE_D098 TIM Target Interrupt Mask Register
0xFFFE_D094 TSTAT Target Status Register
0xFFFE_D090 TC Target Control Register
0xFFFE_D068 ILBIOMA Initiator Local Bus I/O Mapping Address Register
0xFFFE_D064 ILBMMAR Initiator Local Bus Memory Mapping Address Register
0xFFFE_D060 IPBIOMAR Initiator PCI Bus I/O Mapping Address Register
0xFFFE_D05C IPBMMAR Initiator PCI Bus Memory Mapping Address Register
0xFFFE_D04C RRT Retry/Reconnect Timer Register
0xFFFE_D048 IIM Initiator Interrupt Mask Register
0xFFFE_D044 ISTAT Initiator Status Register
0xFFFE_D040 — (Reserved)
0xFFFE_D03F IL PCI Interrupt Line Register

Chapter 4 Address Mapping

4-6

Table 4.2.1 TX3927 Register Mapping (4/6)

Address Register Symbol Register Name
0xFFFE_D03E IP PCI Interrupt Pin Register
0xFFFE_D03D MG Minimum Grant Register
0xFFFE_D03C ML Maximum Latency Register
0xFFFE_D037 CAPPTR Capabilities Pointer
0xFFFE_D030 — (Reserved)
0xFFFE_D02E SSVID Subsystem Vendor ID Register
0xFFFE_D02C SVID System Vendor ID Register
OxFFFE_D028 — (Reserved)
0xFFFE_D014 MBA Target Memory Base Address Register
0xFFFE_D010 IOBA Target I/O Base Address Register
0xFFFE_D00F CLS Cache Line Size Register
0xFFFE_D00E MLT Master Latency Timer Register
0xFFFE_D00D HT Header Type Register
0xFFFE_D00C — (Reserved)
0xFFFE_D00B RID Revision ID Register
0xFFFE_D00A RLPI Register Level Programming Interface Register
0xFFFE_D009 SCC Sub-Class Code Register
0xFFFE_D008 CC Class Code Register
0xFFFE_D006 PCICMD PCI Command Register
0xFFFE_D004 PCISTAT PCI Status Register
0xFFFE_D002 VID Vendor Identification Register
0xFFFE_D000 DID Device Identification Register
IRC
0xFFFE_C0A0 IRCSR Interrupt Current Status Register
0xFFFE_C080 IRSSR Interrupt Source Status Register
0xFFFE_C060 IRSCR Interrupt Status Control Register
0xFFFE_C040 IRIMR Interrupt Mask Register
0xFFFE_C02C IRILR7 Interrupt Level Register 7
0xFFFE_C028 IRILR6 Interrupt Level Register 6
0xFFFE_C024 IRILR5 Interrupt Level Register 5
0xFFFE_C020 IRILR4 Interrupt Level Register 4
0xFFFE_C01C IRILR3 Interrupt Level Register 3
0xFFFE_C018 IRILR2 Interrupt Level Register 2
0xFFFE_C014 IRILR1 Interrupt Level Register 1
0xFFFE_C010 IRILR0 Interrupt Level Register 0
0xFFFE_C008 IRCR1 Interrupt Control Mode Register 1
0xFFFE_C004 IRCR0 Interrupt Control Mode Register 0
0xFFFE_C000 IRCER Interrupt Control Enable Register

Chapter 4 Address Mapping

4-7

Table 4.2.1 TX3927 Register Mapping (5/6)

Address Register Symbol Register Name
DMA
0xFFFE_B0A8 — (Reserved)
0xFFFE_B0A4 MCR DMA Master Control Register
0xFFFE_B0A0 TDHR DMA Temporary Data Holding Register
0xFFFE_B09C DBR7 DMA Data Buffer Register 7
0xFFFE_B098 DBR6 DMA Data Buffer Register 6
0xFFFE_B094 DBR5 DMA Data Buffer Register 5
0xFFFE_B090 DBR4 DMA Data Buffer Register 4
0xFFFE_B08C DBR3 DMA Data Buffer Register 3
0xFFFE_B088 DBR2 DMA Data Buffer Register 2
0xFFFE_B084 DBR1 DMA Data Buffer Register 1
0xFFFE_B080 DBR0 DMA Data Buffer Register 0
0xFFFE_B07C CSR3 DMA Status Register Channel 3
0xFFFE_B078 CCR3 DMA Control Register Channel 3
0xFFFE_B074 DAI3 DMA Destination Address Increment Register Channel 3
0xFFFE_B070 SAI3 DMA Source Address Increment Register Channel 3
0xFFFE_B06C CNAR3 DMA Count Register Channel 3
0xFFFE_B068 DAR3 DMA Destination Address Register Channel 3
0xFFFE_B064 SAR3 DMA Source Address Register Channel 3
0xFFFE_B060 CHAR3 DMA Chain Address Register Channel 3
0xFFFE_B05C CSR2 DMA Status Register Channel 2
0xFFFE_B058 CCR2 DMA Control Register Channel 2
0xFFFE_B054 DAI2 DMA Destination Address Increment Register Channel 2
0xFFFE_B050 SAI2 DMA Source Address Increment Register Channel 2
0xFFFE_B04C CNAR2 DMA Count Register Channel 2
0xFFFE_B048 DAR2 DMA Destination Address Register Channel 2
0xFFFE_B044 SAR2 DMA Source Address Register Channel 2
0xFFFE_B040 CHAR2 DMA Chain Address Register Channel 2
0xFFFE_B03C CSR1 DMA Status Register Channel 1
0xFFFE_B038 CCR1 DMA Control Register Channel 1
0xFFFE_B034 DAI1 DMA Destination Address Increment Register Channel 1
0xFFFE_B030 SAI1 DMA Source Address Increment Register Channel 1
0xFFFE_B02C CNAR1 DMA Count Register Channel 1
0xFFFE_B028 DAR1 DMA Destination Address Register Channel 1
0xFFFE_B024 SAR1 DMA Source Address Register Channel 1
0xFFFE_B020 CHAR1 DMA Chain Address Register Channel 1
0xFFFE_B01C CSR0 DMA Status Register Channel 0
0xFFFE_B018 CCR0 DMA Control Register Channel 0
0xFFFE_B014 DAI0 DMA Destination Address Increment Register Channel 0
0xFFFE_B010 SAI0 DMA Source Address Increment Register Channel 0
0xFFFE_B00C CNAR0 DMA Count Register Channel 0
0xFFFE_B008 DAR0 DMA Destination Address Register Channel 0
0xFFFE_B004 SAR0 DMA Source Address Register Channel 0
0xFFFE_B000 CHAR0 DMA Chain Address Register Channel 0

Chapter 4 Address Mapping

4-8

Table 4.2.1 TX3927 Register Mapping (6/6)

Address Register Symbol Register Name
ROMC
0xFFFE_901C RCCR7 ROM Channel Control Register 7
0xFFFE_9018 RCCR6 ROM Channel Control Register 6
0xFFFE_9014 RCCR5 ROM Channel Control Register 5
0xFFFE_9010 RCCR4 ROM Channel Control Register 4
0xFFFE_900C RCCR3 ROM Channel Control Register 3
0xFFFE_9008 RCCR2 ROM Channel Control Register 2
0xFFFE_9004 RCCR1 ROM Channel Control Register 1
0xFFFE_9000 RCCR0 ROM Channel Control Register 0
SDRAMC
0xFFFE_8034 SDCSMRS2 SGRAM Load Color Register
0xFFFE_8030 SDCSMRS1 SGRAM Load Mask Register
0xFFFE_802C SDCCMD SDRAM Command Register
0xFFFE_8028 SDCTR3 SDRAM Timing Register 3 (for SMROM)
0xFFFE_8024 SDCTR2 SDRAM Timing Register 2 (for DIMM flash memory)
0xFFFE_8020 SDCTR1 SDRAM Timing Register 1 (for SDRAM/SGRAM)
0xFFFE_801C SDCCR7 SDRAM Channel Control Register 7
0xFFFE_8018 SDCCR6 SDRAM Channel Control Register 6
0xFFFE_8014 SDCCR5 SDRAM Channel Control Register 5
0xFFFE_8010 SDCCR4 SDRAM Channel Control Register 4
0xFFFE_800C SDCCR3 SDRAM Channel Control Register 3
0xFFFE_8008 SDCCR2 SDRAM Channel Control Register 2
0xFFFE_8004 SDCCR1 SDRAM Channel Control Register 1
0xFFFE_8000 SDCCR0 SDRAM Channel Control Register 0

Note: All addresses listed above comply with big-endian address formatting.

Chapter 5 Configuration

5-1

5. Configuration
This chapter describes the four registers that are mapped to addresses 0xFFFE_E000 to 0xFFFE_E00F.

5.1 Chip Configuration Register (CCFG) 0xFFFE_E000
The TX3927 has software-configurable functions and pins. These functions and pins are set up using the

chip configuration register (CCFG) and the pin configuration register (PCFG). They are also subjected to
boot configuration using boot pins.

31 19 18 17 16
0 1 TLBOFF BEOW

R/W R/W : Type
TLBOFF 0 : Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WR TOE XArb PCI3 PSNP PPRI 0 0 PLLM 1 Endian Half ACE

Hold
R/W R/W R R/W R/W R/W R R R R/W : Type

0 0 PCIXARB* PCI3* 0 0 PLLM Endian 1 : Initial value

Bits Mnemonic Field Name Description
17 TLBOFFB TLB Off TLB Off

Enables or disables TLB operation.
Latched from ADDR[19] during a reset.
This bit is write-enabled but its value should not be changed after a reset.
0: TLB off (disable)
1: TLB on (enable)

16 BEOW Bus Error Bus Error on Write
0: Clear the bit.
1: Indicate that a bus error has occurred during a write operation by the TX39/H2

core.
15 WR Watchdog Timer

Reset
Watchdog Timer for Reset/NMI
Specifies the action to be taken when TMR2 generates a watchdog timer interrupt.
0: Generates a non-maskable interrupt.
1: Causes a reset.

14 TOE Timeout Enable
for Bus Error

Timeout Enable for Bus Error
Enables or disables the bus error timeout function.
0: Disable the timeout function.
1: Enable the timeout function.
Refer to “7.2.1 Bus error” for details.

13 PCIXARB PCI Arbiter Internal or External PCI arbiter.
Indicates whether the internal arbiter is used as a PCI arbiter.
Latched from ADDR[11] during a reset.
0: External arbiter
1: Internal arbiter

12 PCI3B PCI Clock
Divider

PCI Clock Divider Control
Specifies the PCI controller clock frequency.
Latched from ADDR[17] during a reset.
0: The PCI clock frequency is 1/3 of the G-Bus clock frequency.
1: The PCI clock frequency is 1/2 of the G-Bus clock frequency.

Figure 5.1.1 Chip Configuration Register (1/2)

Chapter 5 Configuration

5-2

Bits Mnemonic Field Name Description
11 PSNP PCI Snoop PCI Bus Request Snoop

Enables or disables the TX39/H2 core cache snoop function while the PCI has bus
mastership. If data cache is used in write back mode, the snoop function must be
disabled.
0: Disable the cache snoop function.
1: Enable the cache snoop function.

10 PPRI PCI Arbitration
Priority

Select PCI Arbitration Priority
Specifies the priority of the DMAC to PCI.
0: DMA has priority over PCI in arbitration.
1: Setting prohibited.

5 : 4 PLLM PLL Multiplier PLL Multiplier
Indicates the PLL multiplier value. Latched from ADDR[3:2] during a reset.
When PLLM[1] is set to “1”, a crystal having a frequency in the range of 6.25 to 8.33
MHz should be used.
When PLLM[1] is set to “0”, a crystal oscillator should be used and connected to the
XIN pin as a clock input signal. The XOUT pin should be left open.
00: Don’t use.
01: ×2
10: Don’t use.s
11: ×16

2 ENDIAN Endian Current Endian Setting of G-Bus
Indicates the endian mode. Latched from ADDR[14] during a reset.
0: Little endian
1: Big endian
The setting of this bit is not affected by the state of the RE (reverse endian) bit of
the TX39/H2 core status register.

1 HALF Half-Speed System Clock Half-Speed Mode
Indicates the SYSCLK output frequency.
The state of this bit is determined from the values of ADDR[15] and ADDR[9:8]
during a reset.
Half speed mode is selected when ADDR[15] is “0” or when ADDR[9:8] is “10”.
Otherwise, full speed mode is selected.
0: Full speed (same frequency as G-Bus clock frequency)
1: Half speed (half of G-Bus clock frequency)

0 ACEHOLD ACE Hold ACE* Address Hold
Specifies whether the address is held for one clock cycle after ACE* is deasserted.
0: The address changes in the same clock cycle as ACE*. In this mode, an address

hold time of 1 ns is guaranteed.
1: The address is held for one clock cycle after the rising edge of ACE*.

Note: For the bits other than those defined above, write the values shown in the figure.

Figure 5.1.1 Chip Configuration Register (2/2)

Chapter 5 Configuration

5-3

5.1.1 Chip Revision ID Register (CRIR) 0xFFFE_E004

The chip revision ID register shows the revision of the TX3927.

31 16
PCODE

R : Type
0x3927 : Initial value

15 12 11 8 7 4 3 0
MJERREV MINEREV MJREV MINREV

R R R R : Type
0 0   : Initial value

Bits Mnemonic Field Name Description
31 : 16 PCODE Product Code Product Code (fixed value: 0x3927)

Indicates the product number.
15 : 12 MJERREV Major Extra Code Major Extra Code Implementation Revision (fixed value: 0x0)

Indicates the major extra code.
11 : 8 MINEREV Minor Extra Code Minor Extra Code Implementation Revision (fixed value: 0x0)

Indicates the minor extra code.
7 : 4 MJREV Major Revision Major Implementation Revision

Indicates the major revision. Contact Toshiba technical staff for information on the
value.

3 : 0 MINREV Minor Revision Minor Implementation Revision
Indicates the minor revision. Contact Toshiba technical staff for information on the
value.

Figure 5.1.2 Chip Revision ID Register

Chapter 5 Configuration

5-4

5.1.2 Pin Configuration Register (PCFG) 0xFFFE_E008

The TX3927 has software-configurable functions and pins. These functions and pins are
set up using the chip configuration register (CCFG) and the pin configuration register
(PCFG). Refer also to “3.3 Pin Multiplexing” for information on pin multiplexing.

31 28 27 26 22 21 18 17 16
0 SYSCLKE SDRCLKEN PCICLKEN SELCS SELDSF

R R/W R/W R/W R/W R/W : Type
   0 0 : Initial value

15 14 13 12 11 9 8 7 4 3 0
SELSIOC SELSIO SELTMR SELDONE INTDMA SELDMA

R/W R/W R/W R/W R/W R/W : Type
00 00 00 0 0000 0000 : Initial value

Bits Mnemonic Field Name Description
27 SYSCLKEN System Clock

Enable
System Clock Enable
Enables or disables output from the SYSCLK pin. After a reset, the bit may be read
and written by the CPU. When disabled, SYSCLK assumes the Hi-Z state.
1: Enable SYSCLK.
0: Disable SYSCLK.

26 : 22 SDRCLKEN
[4 : 0]

SDRAM Clock
Enable

SDRAM Clock Enable
Individually enables or disables SDRAM clock output on each of the SDCLK[4:0]
pins. After a reset, the bits may be read and written individually by the CPU. The
SDRCLKEN[0] bit must be set when an SDRAM is used. When disabled, SDRCLK
assumes the Hi-Z state.
1: Enable SDRCLK.
0: Disable SDRCLK.

21 : 18 PCICLKEN
[3 : 0]

PCI Clock
Enable

PCI Clock Enable
Individually enables or disables PCI clock output on each of the PCICLK[3:0] pins.
Latched from ADDR[18] at the rising edge of RESET. After a reset, the bits may be
read and written individually by the CPU. The PCICLKEN[0] bit must be set when
the internal PCICLK is used. When disabled, PCICLK assumes the Hi-Z state.
1: Enable PCICLK.
0: Disable PCICLK.

17 SELCS Select CS Select DMA/SDCS_CE Function (initial value: 0)
Used in conjunction with SELDMA[1] to select the functions of
DMAREQ[1]/PIO[11]/SDCS_CE[7] and DMAACK[1]/PIO[10]/SDCS_CE[6].
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

16 SELDSF Select DSF Select DSF Function (initial value: 0)
Used in conjunction with SELSIOC[1] to select the function of the
RTS*[1]/PIO[1]/DSF pin.
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

15 : 14 SELSIOC [1 : 0] Select SIO
Control

Select SIO Control Pins (initial value: 00)
SELSIOC[1]: Used in conjunction with SELDSF to select the functions of

CTS[1]/PIO[2] and RTS[1]/PIO[1]/DSF.
SELSIOC[0]: Used in conjunction with SELDSF to select the functions of

CTS[0]/INT[5] and RTS[0]/INT[4].
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

Figure 5.1.3 Pin Configuration Register (1/2)

Chapter 5 Configuration

5-5

Bits Mnemonic Field Name Description
13 : 12 SELSIO [1 : 0] Select SIO

Function
Select SIO/PIO function select (initial value: 00)
SELSIO[1]: Selects the functions of RXD[1]/PIO[6] and TXD[1]/PIO[5].
SELSIO[0]: Selects the functions of RXD[0]/PIO[4] and TXD[0]/PIO[3].
0: PIO pin
1: SIO pin
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

11 : 9 SELTMR [2 : 0] Select TMR
Function

Select TIMER/PIO Function Select (initial value: 000)
SELTMR[2]: Used in conjunction with SELDONE to select the function of

DMADONE/TIMER[0]/PIO[7].
SELTMR[1]: Used in conjunction with SELDMA[3] to select the function of

DMAREQ[3]/TIMER[1]/PIO[15].
SELTMR[0]: Used in conjunction with SELDMA[3] to select the function of

DMAACK[3]/TIMER[0]/PIO[14].
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

8 SELDONE Select
DMADONE

Select DMADONE*/PIO (initial value: 0)
Used in conjunction with SELTMR[2] to select the function of
DMADONE/TIMER[0]/PIO[7].
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

7 : 4 INTDMA [3 : 0] Select Internal
DMA Request

Internal/External DMA Source connection (initial value: 0000)
Specifies whether the external I/O or internal SIO is used as a DMA request source.
INTDMA[3]:
0: DMAREQ/ACK[3] connects to external pins.
1: DMAREQ/ACK[3] connects to SIO[1] SITXDREQ/ACK.
INTDMA[2]:
0: DMAREQ/ACK[2] connects to external pins.
1: DMAREQ/ACK[2] connects to SIO[0] SITXDREQ/ACK.
INTDMA[1]:
0: DMAREQ/ACK[1] connects to external pins.
1: DMAREQ/ACK[1] connects to SIO[1] SIRXDREQ/ACK.
INTDMA[0]:
0: DMAREQ/ACK[0] connects to external pins.
1: DMAREQ/ACK[0] connects to SIO[0] SIRXDREQ/ACK.

3 : 0 SELDMA [3 : 0] Select DMA
Function

Select DMA/PIO/TIMER Function (initial value: 0000)
SELDMA[3]: Used in conjunction with SELTMR[1:0] to select the functions of

DMAREQ[3]/PIO[15]/TIMER[1] and DMAACK[3]/PIO[14]/TIMER[0].
SELDMA[2]: Used to select the functions of DMAREQ[2]/PIO[13] and

DMAACK[2]/PIO[12].
SELDMA[1]: Used in conjunction with SELCS to select the functions of

DMAREQ[1]/PIO[11]/SDCS_CE[7] and DMAACK[1]/PIO[10]/
SDCS_CE[6].

SELDMA[0]: Used to select the functions of DMAREQ[0]/PIO[9] and
DMAACK[0]/PIO[8].
Refer to “3.3 Pin Multiplexing” and Table 5.1.1 for details of pin multiplexing.

Note: For the bits other than those defined above, write the values shown in the figure.

Figure 5.1.3 Pin Configuration Register (2/2)

Chapter 5 Configuration

5-6

Table 5.1.1 Pin Functions Corresponding to the Settings of PCFG Control Register Bits

Pin/Function Pin/Function PCFG Control Bits
DMAREQ [3] DMAACK [3] SELDMA [3] SELTMR [1] SELTMR [0]

PIO [15] PIO [14] 0 0 0
PIO [15] TIMER [0] 0 0 1

TIMER [1] PIO [14] 0 1 0
TIMER [1] TIMER [0] 0 1 1

DMAREQ [3] DMAACK [3] 1 x x

DMAREQ [2] DMAACK [2] SELDMA [2]
PIO [13] PIO [12] 0

DMAREQ [2] DMAACK [2] 1

DMAREQ [1] DMAACK [1] SELDMA [1] SELCS
PIO [11] PIO [10] 0 0

SDCS_CE [7] SDCS_CE [6] 0 1
DMAREQ [1] DMAACK [1] 1 x

DMAREQ [0] DMAACK [0] SELDMA [0]
PIO [9] PIO [8] 0

DMAREQ [0] DMAACK [0] 1

DMADONE* SELDONE SELTMR [2]
PIO [7] 0 0

TIMER [0] 0 1
DMADONE* 1 x

RXD [1] TXD [1] SELSIO [1]
PIO [6] PIO [5] 0
RXD [1] TXD [1] 1

RXD [0] TXD [0] SELSIO [0]
PIO [4] PIO [3] 0
RXD [0] TXD [0] 1

CTS* [1] RTS* [1] GDBGE* SELSIOC [1] SELDSF
PIO [2] PIO [1] 1 0 0
PIO [2] DSF 1 0 1

CTS* [1] RTS* [1] 1 1 0
GSDAO [1] GPCST [3] 0 x x

CTS* [0] RTS* [0] SELSIOC [0]
INT [5] INT [4] 0

CTS* [0] RTS* [0] 1

Chapter 5 Configuration

5-7

5.1.3 Timeout Error Address Register (TEAR) 0xFFFE_E00C

31 16
BEAR

R : Type
Undefined : Initial value

15 0
BEAR

R : Type
Undefined : Initial value

Bits Mnemonic Field Name Description
31 : 0 BEAR Bus Error

Address
Bus Error Address
This register latches the address on the bus when a bus error occurs.

Figure 5.1.4 Timeout Error Address Register

Chapter 5 Configuration

5-8

Chapter 6 Clocks

6-1

6. Clocks

6.1 Clock Generator
The CPU clock of the TX3927 uses a frequency that is a multiple of the externally input clock frequency.

The multiplier value can be chosen between two and sixteen, using boot signals PLLM[1:0] (ADDR[3:2]). If
PLLM[1:0] = "01" at the rising edge of the CLKEN signal, the multiplier value is two. If PLLM[1:0] = "11"
at the rising edge of the CLKEN signal, the multiplier value is sixteen.

The TX3927 has five internal clock sources: CORECLK, GBUSCLK, SYSCLK, PCICLK, and IMCLK.
Table 6.1.1 lists their frequencies and functions.

Table 6.1.1 Frequencies and Functions of TX3927 Internal Clocks

Operating Frequency fc =
(Externally Input Clock

Frequency) × (Multiplier)Clock
Full Speed Bus

Mode
Half Speed Bus

Mode

Function Block Used

CORECLK fc fc Reference clock for
TX39/H2 CPU core

TX39/H2 core

GBUSCLK fc/2 fc/2 G-Bus reference clock DMAC, SDRAMC,
IRC, part of EBIF, part
of ROMC, PCIC (G-
Bus interface)

SYSCLK fc/2 fc/4 G-Bus clock
(reference clock for
half speed bus mode)

ROMC, part of EBIF

PCICLK PCI3* = Low fc/6 fc/6
PCICLKEN = High

PCI3* = High fc/4 fc/4
PCICLKEN = Low PCICLK input PCICLK input

PCI bus reference
clock

PCIC (PCI bus
interface)

IMCLK fc/4 fc/4 IM-Bus reference
clock

SIO, TMR

6.2 System Control Clock (SYSCLK)
The internal clock generator of the TX39/H2 core generates this signal. The system control clock

(SYSCLK) operates 1/2 or 1/3 the frequency of the TX39/H2 processor core. SYSCLK provides timing for
system control interface signals.

The boot setup value which determines the frequency of SYSCLK is captured into the TX3927 in
synchronization with the internal clock. Therefore, if half speed mode is selected, SYSCLK may operate at
full speed for several clocks before entering half speed mode.

Chapter 6 Clocks

6-2

6.3 Power-Down Mode
The TX3927 provides power-down mode, in which it enters a standby state with the internal clocks

stopped, including the PLL.

6.3.1 Operation

The TX3927 uses an externally input clock (XIN) to control the power-down logic because power-
down causes the internal clock signals from the clock generator to be stopped. Note that the input clock
used to control the power-down logic is not frequency-multiplied by the PLL of the clock generator.
When the power-down trigger bit (PDN) of the power-down control register (PDCR) is set, the power-
down logic waits for 20 (if the multiplier is 16) or 132 (if the multiplier is 2) XIN clock cycles before
deasserting the CLKEN control input signal to stop the output of clock signals. Then, the power-down
logic waits 16 (if the multiplier is 16) or 128 (if the multiplier is 2) XIN clock cycles before turning off
the PLL. All on-chip clocks will be halted with the exception of the PCI clock (if it is supplied by an
external device) and the XIN clock. Once all clocks are shut down, they will remain in this state until an
interrupt is generated from any of the specified interrupt pins, including NMI. The power-down mask
bits (PDCR.PDNMSK[6:0]) of the power-down control register determine which external interrupt
sources are used for resume from power-down mode. Each mask bit corresponds to an interrupt source.
Setting a bit enables the corresponding interrupt source as an interrupt for terminating the power-down
state. If an interrupt is generated, the power-down logic turns on the PLL, and then, after the delay
specified with the power-up time counter (PUTCV) of the power-down control register (PDCR),
enables the output of internal clocks, causing the system to resume normal operation. Table 6.3.1 shows
the delay required for power-down in terms of the number of SDCLK cycles. Table 6.3.2 shows the
delay required for power-up (value added to the PCVTV count) in terms of the number of externally
input clock cycles.

Note: Poorly written software may unexpectedly cause the power-down logic to disable the
clocks, with no easy way to re-enable them. If software disables all interrupt inputs,
then there is no way to exit power-down mode other than a special reset sequence or
a power cycle. The special reset cycle requires the same reset timing as the power-up
reset. After the power-down trigger bit is set, any interrupt received will cause the
TX3927 to exit from power-down mode and restore normal operation with the clocks
operating. If a wakeup event occurs before the PLL is disabled, clocks will be re-
enabled immediately after three clock cycles.

Table 6.3.1 Power-Down Delay

PLLM [1 : 0] Number of Clock Cycles Required Before the
Output Clocks Stop

01 132 (Xin clock cycles) + 12 to 24 (CORECLK cycles)
11 20 (Xin clock cycles) + 12 to 24 (CORECLK cycles))

Table 6.3.2 Power-Up Delay

PLLM [1 : 0] Number of Clock Cycles Required Before the
Output Clocks Restart

01 PUTCV (Xin clock cycles) + 24 (CORECLK cycles)
11 PUTCV (Xin clock cycles) + 24 (CORECLK cycles)

Transition to power-down mode is controlled using a program. The program must be executed from
cache to ensure that there are no active bus cycles during the power-down or power-up process.

Chapter 6 Clocks

6-3

6.3.2 Register

The power-down control register (PDCR) is used to control the power-down process. Bit 16 of this
register is the power-down trigger bit (PDN), which is cleared to "0" by a reset. A subsequent transition
from "0" to "1" will initiate the power-down sequence. The bit is not cleared automatically, so software
must clear this bit before starting another power-down sequence. Bits [23:17] (PDNMSK[6:0]) contain
a 7-bit mask for the interrupt input pins. Bit 17 masks external interrupt 0, bit 18 masks external
interrupt 1, and so on. A "0" value in any mask bit prevents that interrupt pin from starting the power-up
sequence while a "1" allows it. Bits [15:0] contain a value that determines the dominant delay between
the PLL being enabled and the input clocks from the clock generator being activated. The total power-
up delay is the sum of this value plus 24 XIN clock cycles.

Chapter 6 Clocks

6-4

6.3.2.1 Power-Down Control Register (PDCR) 0xFFFE_E010

31 24 23 16
0 PDNMSK PDN

R/W R/W : Type
0x7F 0 : Initial value

15 0
PUTCV

R/W : Type
0 : Initial value

Bits Mnemonic Field Name Description
23 : 17 PDNMSK [6 : 0] Power-Down

Mask
Power Down Mask bit (initial value: 0x7F)
Specifies which external interrupt signals are used to terminate power-down mode.
A bit is allocated to each interrupt source. Setting 1 enables the corresponding
interrupt signal to terminate power-down mode.
PDNMSK [6] = NMI
PDNMSK [5] = INT [5]
PDNMSK [4] = INT [4]
PDNMSK [3] = INT [3]
PDNMSK [2] = INT [2]
PDNMSK [1] = INT [1]
PDNMSK [0] = INT [0]
1: Enable interrupt.
0: Disable interrupt

16 PDN Power-Down
Trigger

Power Down Trigger (initial value: 0)
This bit is a trigger for the power-down sequence. It is cleared to "0" upon reset and
a "0" to "1" transition will initiate the power-down sequence.
This bit does not clear to "0" automatically when power-down mode is terminated.
Clear the bit to "0" before starting a next power-down sequence.

15 : 0 PUTCV Power-Up Time
Counter

Power Up Time Counter Value (initial value: 0x0000)
Specifies the delay between the PLL being enabled and the outputs of the clock
generator being enabled. The total wait time is this value plus 3.5 XIN clock cycles.
Ensure that the power-up sequence is performed when the XIN clock is stable. XIN
can be 1/16 or 1/2 of the CPU core clock depending on the selected PLL multiplier
value.

Note: For the bits other than those defined above, write the values shown in the figure.

Figure 6.3.1 Power-Down Control Register

Chapter 7 Bus Operation

7-1

7. Bus Operation
In the TX3927, the TX39/H2 CPU core normally operates as the bus master, but the DMAC and PCIC can

also acquire bus mastership to initiate bus operation. The bus master accesses external memory and other
devices via the memory controllers in the TX3927.

7.1 Bus Mastership
In the TX3927, the DMAC and PCIC can become the bus master as well as the TX39/H2 CPU core.

Although the TX39/H2 core normally operates as the bus master, when necessary, the DMAC and PCIC can
also acquire internal bus mastership. The DMAC and PCIC operate as the bus master under the following
conditions:

• DMAC: When performing I/O to memory, memory to I/O, or memory to memory DMA transfer.

• PCIC: When performing memory to PCI or PCI to memory data transfer.
The PCIC uses the TX3927’s built-in memory controllers (SDRAMC and ROMC) to access
memory.

7.1.1 Snoop Function

The DMAC and PCIC can use the snoop function.

• When cache is used in write back mode

The snoop function is not available. Set the CCFG.PSNP and CCRn.SNOP bits to “0”.

• When cache is used in write through mode

The snoop function is available. To use the snoop function, set the CCFG.PSNP and
CCRn.SNOP bits to “1”.

7.1.2 Relationship Between the Endian Mode and Data Bus

The TX3927 supports both big endian and little endian modes. Which mode is used depends on the
following:

• Initial setting signal ENDIAN (ADDR[14])

• LE bit of DMAC MCR register (bit 2)

The above signal and bit must specify the same endian mode.

The PCI bus also supports the PCIC byte swap function, providing the following choices:

• Straight data output without swap

• Byte swap

For details, refer to “12.4.12 Byte swap function”.

The following describes the data structure in registers and memory. The TX3927 supports 32-bit
word, 16-bit half word, and 8-bit byte data sizes. The byte sequence depends on the endian mode.
Figure 7.1.1 shows the byte sequence within a word and the sequence of multiple words in little endian
mode.

Chapter 7 Bus Operation

7-2

31 24 23 16 15 8 7 0 Word address
8 9 10 11 8
4 5 6 7 4
0 1 2 3 0

• Byte 0 is the highest byte (bits 31-24).

• The address of the word is specified with the address of the highest byte (byte 0).

(a) Big endian

31 24 23 16 15 8 7 0 Word address
11 10 9 8 8
7 6 5 4 4
3 2 1 0 0

• Byte 0 is the lowest byte (bits 7-0).

• The address of the word is specified with the address of the lowest byte (byte 0).

(b) Little endian

Figure 7.1.1 Big Endian and Little Endian

The TX3927 supports 16-bit and 32-bit memory bus sizes. Table 7.1.1 shows the relationship among
the data size, bus size, endian mode, and data positions.

Table 7.1.1 Relationship among Data Size, Bus Size, Endian Mode, and Data Positions

Data
Big Endian Little EndianData

Size
Start

Address
Bus
Size

Bus
Cycle

Address DATA[31]-
DATA[24]

DATA[23]-
DATA[16]

DATA[15]-
DATA[8]

DATA[7]-
DATA[0]

DATA[31]-
DATA[24]

DATA[23]-
DATA[16]

DATA[15]-
DATA[8]

DATA[7]-
DATA[0]

16 bits 4n + 0 xxxx xxxx b7 − b0 xxxx xxxx xxxx xxxx b7 − b04n + 0
32 bits 4n + 0 b7 − b0 xxxx xxxx xxxx xxxx xxxx xxxx b7 − b0
16 bits 4n + 0 xxxx xxxx xxxx b7 − b0 xxxx xxxx b7 − b0 xxxx4n + 1
32 bits 4n + 0 xxxx b7 − b0 xxxx xxxx xxxx xxxx b7 − b0 xxxx
16 bits 4n + 2 xxxx xxxx b7 − b0 xxxx xxxx xxxx xxxx b7 − b04n + 2
32 bits 4n + 0 xxxx xxxx b7 − b0 xxxx xxxx b7 − b0 xxxx xxxx
16 bits 4n + 2 xxxx xxxx xxxx b7 − b0 xxxx xxxx b7 − b0 xxxx

8 bits

4n + 3
32 bits 4n + 0 xxxx xxxx xxxx b7 − b0 b7 − b0 xxxx xxxx xxxx
16 bits 4n + 0 xxxx xxxx b15 − b8 b7 − b0 xxxx xxxx b15 − b8 b7 − b04n + 0
32 bits 4n + 0 b15 − b8 b7 − b0 xxxx xxxx xxxx xxxx b15 − b8 b7 − b0
16 bits 4n + 2 xxxx xxxx b15 − b8 b7 − b0 xxxx xxxx b15 − b8 b7 − b0

16 bits

4n + 2
32 bits 4n + 0 xxxx xxxx b15 − b8 b7 − b0 b15 − b8 b7 − b0 xxxx xxxx
16 bits 4n + 0

4n + 2
xxxx
xxxx

xxxx
xxxx

b31 − b24
b15 − b8

b23 − b16
b7 − b0

xxxx
xxxx

xxxx
xxxx

b15 − b8
b31 − b24

b7 − b0
b23 − b16

32 bits 4n + 0

32 bits 4n + 0 b31 − b24 b23 − b16 b15 − b8 b7 − b0 b31 − b24 b23 − b16 b15 − b8 b7 − b0

Upper address

Lower address

Upper address

Lower address

Chapter 7 Bus Operation

7-3

7.2 Bus Operation
The TX3927 performs bus operation for the following four device controllers. Before attempting to access

a particular external device, you must set the corresponding controller with the device's address space and
the number of desired wait states. For details of bus operation, refer to the relevant chapters.

External Device Controller Detailed Description
SDRAM, SGRAM,
SMROM, DIMM flash
memory

SDRAMC Chapter 8

ROM, SRAM, flash
memory

ROMC Chapter 9

Memory, I/O DMAC Chapter 10
PCI devices PCIC Chapter 12

The SDRAMC and ROMC operate in the same way regardless of whether the bus master is the TX39/H2,
DMA controller (DMAC), or PCI controller (PCIC). The DMAC does not directly access external memory
or I/O devices, but access them via the SDRAMC or ROMC. When the TX39/H2 or DMAC accesses any
device on the PCI, the PCIC acts as the memory controller for the PCI bus. When an external PCI device
accesses memory or other devices attached to the TX3927, the PCIC acts as the bus master and accesses the
TX3927’s local memory via the SDRAMC or ROMC. If the data cache is used in write back mode, however,
the TX39/H2 core does not support the snoop function, so the snoop function must be disabled for the PCIC
and DMAC.

Bus Master Memory Controller External Device
SDRAMC, ROMC Local memory, I/OTX39/H2
PCIC (initiator) PCI device
SDRAMC, ROMC Local memory, I/ODMAC
PCIC (initiator) PCI device

PCIC (target)
(external PCI device) SDRAMC, ROMC Local memory, I/O

Set the address space for each memory controller to ensure that the SDRAMC, ROMC, and PCIC acting
as memory controllers will not simultaneously access the same address space.

The program must ensure that the TX3927 will only initiate bus operation for accesses to the address areas
which have been properly set up in the controllers listed above (or to TX3927 internal registers). Set the
address area for the device you wish to access in the appropriate controller.

The TX3927 offers two bus speed modes: full speed bus mode and half speed bus mode. In full speed bus
mode, the external bus operates at the same frequency as the G-Bus (1/2 the CPU frequency). In half speed
bus mode, the external bus operates at 1/2 the G-Bus frequency (1/4 the CPU frequency). Boot signal
CHANHS* (ADDR[15] pin) selects the speed of SYSCLK output. Full speed mode is selected if CHANHS*
is high at the rising edge of RESET*. Half speed mode is selected if CHANHS* is low at the rising edge of
RESET*. The ROMC also contains a register used to select either mode for each channel.

Chapter 7 Bus Operation

7-4

7.2.1 Bus Error

When the CCFG.TOE bit is set to 1 to enable bus cycle timeout, the TX3927 generates a bus error if
the access is invalid and no acknowledgement is returned (there is no external pin for bus errors).

A bus error will occur if no acknowledgement is received within 512 G-bus clock cycles. A bus error
(timeout error) occurs when an external ACK* is not asserted and when the TX3927 accesses an
address that is not set in the appropriate memory controller.

When a bus error occurs during TX39/H2 core read operation, the core generates a bus error
exception. When a bus error occurs during TX39/H2 core write operation, the core generates a non-
maskable interrupt exception. When a bus error occurs during DMAC bus operation, the DMAC
terminates transfer and sets the status bit. If interrupts are enabled, an interrupt is also generated.

When a bus error occurs during PCIC bus operation, the PCIC terminates the bus cycle normally and
sets the status bit. If interrupts are enabled, an interrupt is also generated.

Note: When the CCFG.TOE bit is set, PCI configuration read transactions must be
performed in Indirect mode.

Chapter 8 SDRAM Controller

8-1

8. SDRAM Controller

8.1 Features
The SDRAM controller (SDRAMC) generates the required control signals to interface to SDRAM, DIMM

flash memory, SMROM, or SGRAM. The SDRAM controller has eight channels that can operate
independently. It supports memory sizes of up to 1 G-byte in various bus configurations.

Features of the SDRAM controller include:

(1) Clock frequency: 50 to 66 MHz (1/2 the frequency of the TX39/H2 core)

(2) Designed for timing of −10 or faster speed grade SDRAMs/SGRAMs and −15 (66 MHz) to −20 (50
MHz) speed grade SMROMs

(3) Eight independent memory channels. The chip select signals for channels 2 to 7 are, however, shared
with ROM controller channels 2 to 7. Note that both the SDRAM and ROM channels cannot be enabled
at the same time.

(4) Each memory channel configurable for SDRAM, DIMM SDRAM, DIMM flash memory, SMROM, or
SGRAM. Supports JEDEC standard 100-pin and 168-pin memory DIMMs for SDRAM and 100-pin
DIMMs for flash memory.

(5) Data bus width: 16-bit/32-bit selectable per channel (only 32-bit for SMROM and SGRAM)

(6) Critical word first access. This allows for improved performance under cache miss conditions where the
desired data is not located on an aligned boundary. The word data that has caused a cache miss is read
first and used by the CPU to process the instruction while the remaining cache line is refilled. The
SDRAMC supports this feature for all memory types.

(7) Optionally boot after a reset from DIMM flash memory or SMROM. Optionally enable the row address
matching feature for SMROM to eliminate time consuming activate commands.

(8) SDRAM/SGRAM memory access timing:
Single read: 8 cycles Burst read: 8 + (n − 1) cycles
Single write: 6 cycles Burst write: 6 + (n − 2) cycles
where n is the number of data transfers within a burst operation. With slow write bursts enabled, each
additional access for write bursts adds 2 cycles.

(9) A given channel base address is located on an appropriate channel size boundary.
(This is the normal use; the hardware allows more options, but they are not recommended.)

(10) SDRAM/SGRAM and SMROM timing latencies are programmable. The timing parameters can be
programmed according to the clock frequency and the speed grade of the device used, thus optimizing
memory performance for a particular system.

(11) SDRAM/SGRAM burst length: 1 for 32-bit and 16-bit memory
SMROM burst length: 4 for 32-bit memory

Note: The SMROM burst length must be 4-word aligned except when the critical word first
feature is enabled.

(12) Optionally increment the address by a programmable value during burst reads or writes. The default
burst address increments by 1 word. This feature works with the DMA controller in single address mode
to allow more efficient transfers. (This feature is not supported for SMROMs.)

(13) G-Bus burst lengths of 4, 8, 16, and 32 words. There is no alignment requirement for SDRAM,
SGRAM, and DIMM flash memory so bursts that cross page, bank, and channel boundaries are
supported. Bursts crossing a page are always 8 address bits or 256 words. A refresh cycle is held off
during any boundary crossing. Bursts that begin outside of the memory address area and end inside or

Chapter 8 SDRAM Controller

8-2

vice-versa might produce unpredictable results possibly including a bus hang.

(14) Arbitrary byte write for single or burst writes. This feature is controlled with the BWE signal.

(15) Premature termination of an internal bus cycle with a bus error or GDRESET* will allow memory
operation to complete with no loss of data. Termination of an internal bus cycle with RESET* will,
however, terminate memory operation immediately.

(16) Programmable refresh period

(17) SDRAM/SGRAM refresh mode: Auto refresh or self-refresh

(18) Low power modes: Self-refresh or precharge power-down for SDRAM/SGRAM and low power mode
for SMROM. Automatic exit from the power-down modes is supported.

(19) Addressing mode: Sequential only

(20) Auto precharge is used for burst writes only. Precharge commands are used for other types of access.

(21) Serial Presence Detect (SPD) to determine the configuration of DIMMs may be implemented by using
two programmable I/O (PIO) pins. The user should implement the serial protocol through software.

(22) High fanout
In order to support additional loading on the data bus, two selectable data read-back paths and an
optional slow write burst mode are supported. For reads, the user can choose between the path where
data is latched using a feedback clock to better maintain timing coherency with the data and the path
that bypasses that latching stage. For slow burst writes, two clocks are used for each write instead of
one.

(23) SDR (Single Data Rate) SDRAMs/SGRAMs are supported. DDR (Double Data Rate) devices are not
supported.

Chapter 8 SDRAM Controller

8-3

8.2 SDRAM Block Diagram

Figure 8.2.1 TX3927 SDRAMC Block Diagram

G-Bus

SDRAMC

Channel 0-7
Control Register

Timing Register

Command/Load
Register

Refresh Counter

Control
Circuit

G-Bus
Interface
Control

G-Bus
Interface
Signal

CS [7:0] *

OE*

CKE

WE*

ADDR [14:0]

RAS*

CAS*

DQM [3:0]

DSF

Chapter 8 SDRAM Controller

8-4

8.3 Memory Configuration
Table 8.3.1 shows the SDRAM, SMROM, and SGRAM configurations the SDRAM controller supports.

Table 8.3.1 Supported Memory Configurations

Memory Size Banks Row Addresses Column Addresses
16 Mbit
1 M × 16 2 11 8
2 M × 8 2 11 9
4 M × 4* 2 11 10
64 Mbit
2 M × 32 2 11 9
2 M × 32 2 12 8
4 M × 16 2 11 10
4 M × 16 2 13 8
8 M × 8 2 13 9
16 M × 4* 2 13 10
64 Mbit
2 M × 32 4 11 8
4 M × 16 4 12 8
8 M × 8 4 12 9
16 M × 4* 4 12 10
128 Mbit
4 M × 32 4 12 8
8 M × 16 4 12 9
16 M × 8 4 12 10
32 M × 4* 4 12 11
256 Mbit
8 M × 32 4 13 8
16 M × 16 4 13 9
32 M × 8 4 13 10

SDRAM

64 M × 4* 4 13 11
32 Mbit
1 M × 32 NA 13 7
64 Mbit
2 M × 32 NA 14 7

SMROM

2 M × 32 NA 13 8
8 Mbit
256 K × 32 2 9 8
16 Mbit

SGRAM

512 K × 32 2 10 8

* These configurations are supported logically but there are bus loading issues that might
preclude their use.

Table 8.3.2 Maximum Memory (using x8 devices or larger)

Memory Type Maximum/Channel (MB) Maximum for 8 Channels
SDRAM 128 1 GB
DIMM FLASH 32 256 MB
SMROM 8 64 MB
SGRAM 2 16 MB

Chapter 8 SDRAM Controller

8-5

8.4 Registers

8.4.1 Register Mapping

Table 8.4.1 SDRAM Control Registers

Address Register Symbol Register Name
0xFFFE_8000 SDCCR0 SDRAM Channel Control Register 0
0xFFFE_8004 SDCCR1 SDRAM Channel Control Register 1
0xFFFE_8008 SDCCR2 SDRAM Channel Control Register 2
0xFFFE_800C SDCCR3 SDRAM Channel Control Register 3
0xFFFE_8010 SDCCR4 SDRAM Channel Control Register 4
0xFFFE_8014 SDCCR5 SDRAM Channel Control Register 5
0xFFFE_8018 SDCCR6 SDRAM Channel Control Register 6
0xFFFE_801C SDCCR7 SDRAM Channel Control Register 7
0xFFFE_8020 SDCTR1 SDRAM Shared Timing Register 1 (for SDRAM/SGRAM)
0xFFFE_8024 SDCTR2 SDRAM Shared Timing Register 2 (for DIMM flash memory)
0xFFFE_8028 SDCTR3 SDRAM Shared Timing Register 3 (for SMROM)
0xFFFE_802C SDCCMD SDRAM Command Register
0xFFFE_8030 SDCSMRS1 SGRAM Load Mask Register
0xFFFE_8034 SDCSMRS2 SGRAM Load Color Register

Note 1: Any “Reserved” designation means unpredictable results.

Note 2: All registers are readable and are word addressable only.

Note 3: tCK = clock period

Channels 2 to 7 share chip select signals with ROM controller channels 2 to 7. Ensure that the same
channel is not enabled simultaneously for the SDRAM and ROM controllers.

Chapter 8 SDRAM Controller

8-6

8.4.2 SDRAM Channel Control Registers (SDCCR0-SDCCR7) 0xFFFE_8000 (ch.0)
0xFFFE_8004 (ch.1)
0xFFFE_8008 (ch.2)
0xFFFE_800C (ch.3)
0xFFFE_8010 (ch.4)
0xFFFE_8014 (ch.5)
0xFFFE_8018 (ch.6)
0xFFFE_801C (ch.7)

31 21 20 19 18 17 16
SDBA 0 SDM SDE SDBS

R/W R/W R/W R/W : Type
0x1FC 0 0 0 0 : Initial value

15 5 4 3 2 1 0
SDAM SDRS SDCS SDMW

R/W R/W R/W R/W : Type
0x000 0 0 0 0 0 : Initial value

Note : When DIMM flash memory or SMROM is selected as the boot memory device, the contents of
the channel 0 register are initialized by boot setting. Refer to “3.4 Initial Setting Signals” for
information on boot setting.

Bits Mnemonic Field Name Description
31 : 21 SDBA Base Address Base Address (initial value: 0x1FC)

Base address for the channel 0.
19 : 18 SDM Memory Type Memory Type (initial value: 00)

Memory type for the channel 0.
00: SDRAM
01: DIMM flash memory
10: SMROM
11: SGRAM

17 SDE Enable Enable (initial value: 0)
Enables the channel 0.
0: Disable
1: Enable

16 SDBS Number of Banks Number of Banks (initial value: 0)
Selects the number of SDRAM/SGRAM banks or the address mapping type for
DIMM flash memory.
0: 2 SDRAM/SGRAM banks or address mapping type 0 for DIMM flash memory
1: 4 SDRAM/SGRAM banks or address mapping type 1 for DIMM flash memory

15 : 5 SDAM Address Mask Address Mask (initial value: 0x000)
Specifies which bits of the base address (SDBA field) are valid in address
comparison.
0: Valid bit (to be compared)
1: Invalid bit (to be ignored)

4 : 3 SDRS1 Row Size Row Size (initial value: 00)
Selects the row size of memory.
00: 2048 rows (11-bit)
01: 4096 rows (12-bit)
10: 8192 rows (13-bit)
11: Reserved

Figure 8.4.1 SDRAM Channel Control Registers (1/2)

Chapter 8 SDRAM Controller

8-7

Bits Mnemonic Field Name Description
2 : 1 SDCS1 Column Size Column Size (initial value: 00)

Selects the column size of memory.
00: 256 words (8-bit)
01: 512 words (9-bit)
10: 1024 words (10-bit)
11: 2048 words (11-bit)

0 SDMW2 Memory Width Memory Width (initial value: 0)
Selects the memory bus width.
0: 32-bit
1: 16-bit

Note 1: These fields are used for SDRAMs or SGRAMs only. They are ignored for all other memory types.

Note 2: The memory width field should always be set to 0 for SMROM or SGRAM.

Figure 8.4.1 SDRAM Channel Control Registers (2/2)

• Note on using the base address (SDBA) and address mask (SDAM)
The address mask (SDAM) specifies whether the corresponding address bits of the base address (SDBA)
are used to determine the address space for the channel. Note that the address space can only be allocated
within specified boundaries. For example, the following setting allocates the address space in the range of
0xA000_0000 to 0xA1FF_FFFF, instead of 0xA100_0000 to 0xA2FF_FFFF.

Example:

SDCCR: 0x010301ea

-SDBA = 0000 0001 000b

-SDAM = 0000 0001 111b

Mask these address bits

Chapter 8 SDRAM Controller

8-8

8.4.3 SDRAM Timing Register 1 (for SDRAM/SGRAM) (SDCTR1) 0xFFFE_8020

31 29 28 27 26 25 24 23 18 17 16
SDBC SDACP SDP SDCD WRT SDRC CASL DRB

R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : Initial value

15 14 13 12 11 0
0 SWB BW WpB SDRP

R/W R/W R/W R/W : Type
0 0 0 0x400 : Initial value

Bits Mnemonic Field Name Description
31 : 29 SDBC Bank Cycle Time Bank Cycle Time (tRC) (initial value: 000)

Selects the bank cycle time for memory.
000: 5 tCK (reset) 100: 9 tCK
001: 6 tCK 101: 10 tCK
010: 7 tCK 110: Reserved
011: 8 tCK 111: Reserved

28 : 27 SDACP Active Command
Period

Active Command Period (tRAS) (initial value: 00)
Selects the active command period for memory.
00: 3 tCK (reset)
01: 4 tCK
10: 5 tCK
11: 6 tCK

26 SDP Precharge Time Precharge Time (tRP) (initial value: 0)
Select the precharge time for memory.
0: 2 tCK (reset)
1: 3 tCK

25 SDCD RAS-CAS Delay RAS to CAS Delay (tRCD) (initial value: 0)
0: 2 tCK (reset)
1: 3 tCK

24 WRT Write Recovery
Time

Write Recovery Time (tWR) (initial value: 0)
Selects the write recovery time for memory.
0: 1 tCK (reset)
1: 2 tCK

23 : 18 SDRC Refresh Counter Refresh Counter (initial value: 000000)
Decremented at each refresh. When the refresh circuit is activated with a non-zero
value loaded, this field functions as a down-counter which stops at 0. A non-zero
value must be reloaded to begin another countdown. Used for memory initialization.

17 CASL CAS Latency CAS Latency (tCASL) (initial value: 0)
Selects the CAS latency.
0: 2 tCK (reset)
1: 3 tCK

16 DRB Data Read
Bypass

Data Read Bypass (initial value: 0)
Selects which data read-back path is used.
0: Use the feedback clock to latch data into the register (reset).
1: Bypass the data latching stage.

Figure 8.4.2 SDRAM Timing Register 1 (for SDRAM/SGRAM) (1/2)

Chapter 8 SDRAM Controller

8-9

Bits Mnemonic Field Name Description
14 SWB Slow Write Burst Slow Write Burst (tSWB) (initial value: 0)

Enables slow write bursts.
0: Burst writes occur every tCK (reset).
1: Burst writes occur every other tCK.

13 BW SGRAM Block
Write

SGRAM Block Write (initial value: 0)
Enables SGRAM block write.
0: Disable (reset)
1: Enable

12 WpB SGRAM Write
Per Bit

SGRAM Write Per Bit (initial value: 0)
0: Disable (reset)
1: Enable

11 : 0 SDRP Refresh Period Refresh Period (initial value: 0x400)
Specifies the number of clock cycles between refresh cycles. Refresh is enabled
only if at least one channel is enabled for SDRAM/SGRAM. The timing register
should be programmed before any of the channels are enabled.
The initial value is 0x400, which causes refresh cycles to occur at intervals of 15.5
µs (at 66 MHz).

Note 1: The mode register setting cycle time, tRSC, is set to 3tCK for convenience to satisfy the SMROM
MRS recovery time.

Note 2: tRC is used only for the refresh cycle time. For reads and writes, including bursts, tRC is always
satisfied because it is subsumed by the condition tRAS + tRP + 1tCK ≥ tRC.

Note 3: A combination of tRCD = 2tCK and tRAS = 6tCK is not allowed.

Figure 8.4.2 SDRAM Timing Register 1 (for SDRAM/SGRAM) (2/2)

Chapter 8 SDRAM Controller

8-10

8.4.4 SDRAM Timing Register 2 (for DIMM Flash Memory) (SDCTR2) 0xFFFE_8024

31 16
0

: Type
: Initial value

15 8 7 4 3 0
0 SDWWS SDRWS

R/W R/W : Type
0xF 0xF : Initial value

Bits Mnemonic Field Name Description
7 : 4 SDWWS Write Wait States Write Wait States (initial value: 0xF)

Specifies the number of wait states used for writes to DIMM flash memory.
0000: 1tCK
0001: 2tCK
 :
1110: 15tCK
1111: 16tCK

3 : 0 SDRWS Read Wait States Read Wait States (initial value: 0xF)
Specifies the number of wait states used for reads from DIMM flash memory.
0000: 1tCK
0001: 2tCK
 :
1110: 15tCK
1111: 16tCK

Figure 8.4.3 SDRAM Timing Register 2 (for DIMM Flash Memory)

Chapter 8 SDRAM Controller

8-11

8.4.5 SDRAM Timing Register 3 (for SMROM) (SDCTR3) 0xFFFE_8028

31 27 26 25 24 18 17 16
0 RAME RASL 0 CALS DRB

R/W R/W R/W R/W : Type
0 1 1 0 : Initial value

15 0
0

: Type
: Initial value

Bits Mnemonic Field Name Description
26 RAME Row Address

Match Enable
Row Address Match Enable (initial value: 0)
Enables the feature to check if the current row address matches the previous read
row address on the same channel. If a match occurs then the activate command is
skipped and only the read command is executed.
0: Disable (reset)
1: Enable

25 RASL RAS Latency RAS Latency (tRCD) (initial value: 1)
Selects the RAS latency.
0: 1tCK
1: 2tCK (reset)

17 CASL CAS Latency CAS Latency (tCASL) (initial value: 1)
Selects the CAS latency.
0: 4tCK
1: 5tCK (reset)

16 DRB Data Read
Bypass

Data Read Bypass (initial value: 0)
Selects which data read-back path is used.
0: Use the feedback clock to latch data into the register.
1: Bypass the data latching stage.

Note 1: The mode register setting recovery time is set to 3tCK

Note 2: tRC is subsumed by tRCD and tCASL

Note 3: tVCVC, valid CAS to valid CAS time, is set to 4tCK

Note 4: The following table lists the current parameter settings:

Speed tRCD (tCK) tCASL (tCK)
50 MHz 1 4
66 MHz 2 5

Figure 8.4.4 SDRAM Timing Register 3 (for SMROM)

Chapter 8 SDRAM Controller

8-12

8.4.6 SDRAM Command Register (SDCCMD) 0xFFFE_802C

31 24 23 16
Model Number Version Number

R R : Type
0x20 0x10 : Initial value

15 12 11 4 3 0
0 SDCMSK SDCMD

R/W R/W : Type
0x00 0x0 : Initial value

Bits Mnemonic Field Name Description
31 : 24 Model Number Model Number Model Number (initial value: 0x20)

Shows the model number.
The TX3927’s model number is 0x20. The field is read-only.

23 : 16 Version Number Version Number Version Number (initial value: 0x10)
Shows the version number.
The TX3927’s version number is 0x10. The field is read-only.

11 : 4 SDCMSK Channel Mask Channel Mask (initial value: 0x00)
A “1” enables the command for the corresponding channel. The command is
executed in parallel on all enabled channels.1

Bit 11: Channel 7
Bit 10: Channel 6
Bit 9: Channel 5
Bit 8: Channel 4
Bit 7: Channel 3
Bit 6: Channel 2
Bit 5: Channel 1
Bit 4: Channel 0

3 : 0 SDCMD Command Command (initial value: 0x0)
Selects the command for memory.
0x0: NOP command
0x1: Set the SDRAM/SGRAM mode register.
0x2: Set the SMROM mode register.
0x3: Precharge all SDRAM/SGRAM banks (PALL).
0x4: Enter low power mode.
0x5: Enter power-down mode.
0x6: Exit low power/power-down mode.
0x7-0xf: Reserved
Commands will only be executed on channels with a memory type of SDRAM,
SMROM, or SGRAM. Low power mode is self-refresh mode for SDRAMs/SGRAMs
and low power mode for SMROMs. Power-down mode is precharge power-down
mode for SDRAMs/SGRAMs and low power mode for SMROMs.

Note 1: The mask bits are also used for the SGRAM load mask and load color registers.

Any write cycle for the command register will wait until the command is executed. Therefore,
memory cycles cannot be executed until the command cycle is executed. The command cannot start
until the SDRAMC becomes idle.

First use the channel control register to enable the target channel before executing a command for the
channel. Commands will only be executed on channels enabled with the channel control register.

Figure 8.4.5 SDRAM Command Register

Chapter 8 SDRAM Controller

8-13

8.4.7 SGRAM Load Mask Register (SDCSMRS1) 0xFFFE_8030

31 16

R/W : Type
0x0000 : Initial value

15 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31 : 0 SDCSMRS1 SGRAM Load

Mask
SGRAM Load Mask Register 1 (initial value: 0x0000_0000)
A write to this register loads the SGRAM mask register with 32-bit data. The mask
bit(s) for the target channel(s) must be enabled in the command register and the
corresponding control register(s) must be set with a memory type of SGRAM. To
enable the mask bits, perform a NOP command so the external SGRAM is not
affected by an inadvertent command. In the same way as with a command
operation, the write starts only when the SDRAMC is idle. This register always
reads as 0.

Figure 8.4.6 SGRAM Load Mask Register

8.4.8 SGRAM Load Color Register (SDCSMRS2) 0xFFFE_8034

31 16

R/W : Type
0x0000 : Initial value

15 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31 : 0 SDCSMRS2 SGRAM Load

Color
SGRAM Load Color Register 2 (initial value: 0x0000_0000)
A write to this register loads the SGRAM color register with 32-bit data. The mask
bit(s) for the target channel(s) must be enabled in the command register and the
corresponding control register(s) must be set with a memory type of SGRAM. To
enable the mask bits, perform a NOP command so the external SGRAM is not
affected by an inadvertent command. In the same way as with a command
operation, the write starts only when the SDRAMC is idle. This register always
reads as 0.

Figure 8.4.7 SGRAM Load Color Register

Chapter 8 SDRAM Controller

8-14

8.

8.5 Operation

8.5.1 TX3927 Signals for Different Memory Types

Table 8.5.1 Control Signals for Memory Types

SDRAM/SGRAM DIMM Flash
Memory SMROM

Description Signal Name
Read Write Read Write Read Write1

Chip select CS* [7 : 0] L L L L L L
Output enable OE* NU NU L H L2 H2

Clock enable CKE V V NU NU V V
Address ADDR [19 : 5] V V V V V V
Data DATA [31 : 0] V V V V V V
Row address strobe RAS* L L NU NU L L
Column address strobe CAS* L L NU NU L L
Write enable WE* H L NU NU H3 L3

Data mask DQM [3 : 0] L V H4 V NU5 NU5

Define special function DSF L V6 NU NU NU NU
Byte/write enable BWE [3 : 0] NU NU NU NU NU NU
Serial presence detect SCL, SDA V7 V7 V V NU NU

(V = valid, H = logic high, L = logic low, NU = not used)

Note 1: The only SMROM write operations are the Mode Register Set (MRS) and Burst Stop (precharge)
commands.

Note 2: Connected to the DQM pin of the SMROM.

Note 3: Connected to the mode register setting pin, MR*, of the SMROM.

Note 4: DQM[3:0] are forcibly driven to high. The signals are not used as mask bits but as byte write
enables only.

Note 5: DQM[3:0] are kept high during SMROM accesses.

Note 6: Asserted only for special SGRAM functions.

Note 7: Used only for DIMMs.

• NU signals may or may not be physically connected to the device.

• D[31:0], SCL, and SDA are handled by other modules.

• CS*[1:0] are dedicated to the SDRAM controller while CS*[7:2] are shared with the ROM controller chip select
signals. Ensure that the SDRAM and ROM channels having an identical number are not enabled at the same
time. OE* is shared with the ROM controller output enable. OE* is used for enabling the output buffers of
DIMM flash memory and SMROM during a read access to DIMM flash memory or SMROM.

Chapter 8 SDRAM Controller

8-15

8.5.2 SDRAM Operation

(1) Initialization and refresh

The TX3927 command register provides the ability to generate the cycles required for
initialization and the software can mix and match the cycles with whatever timing it determines is
appropriate so that initialization sequences can be very flexible.

The CAS-before-RAS (CBR) refresh cycles during initialization are generated by the normal
refresh circuit. If they should be completed faster than would result from the normal refresh
interval, the software can set the refresh period to a much smaller time during initialization. After
the required number of CBR refresh cycles have occurred, the software should then write the
normal value into the refresh period field.

The refresh counter field in the SDRAM timing register provides a convenient way to count the
number of refreshes to the memory. Thus software does not need to implement special timing loops
to wait for the appropriate number of refreshes to occur.

Re-initialization of the memory is also supported. Again, software has complete flexibility in the
implementation.

Note that at least one channel must be enabled and configured for SDRAM (or SGRAM) to
enable the refresh circuit. Once a channel is enabled, the refresh circuit loads the refresh period
into its counter to start operation. The refresh circuit reloads the refresh period each time it counts
down to zero. Any change in the refresh cycle will, therefore, take effect in the next refresh cycle.

A refresh request has precedence over any other type of SDRAM controller access request. Any
pending memory access request will be held off and serviced as soon as the refresh completes. If,
however, the refresh period is set to a very small value, perhaps either by accident or for testing,
potentially all memory accesses will be locked out by continuous refreshes and the SDRAMC will
no longer respond. To guard against this possibility, the TX3927 first handles the pending memory
access request before starting a refresh cycle in response to a second refresh request. This allows a
register or memory access to slip in between refreshes.

(2) Precharging

• A burst or single read or a single write is terminated with a precharge active bank command
(PBank). A burst write is terminated with an auto-precharge command, or with a PBank
command if the write crosses boundaries.

The timing parameters “write recovery time” and “time from last data input to low precharge,”
represented with tWR and tDPL (or tRDL) in datasheets, respectively, are particularly important for
write cycles. These parameters are controlled with the write recovery time (WRT) bit of SDRAM
timing register 1 (SDCTR1).

The WRT bit should be set to a value appropriate to the SDRAM used. Otherwise, auto-
precharge occurs with wrong timing, causing a problem during an operation with a sequence of
consecutive accesses. When using the SDRAM with the write recovery time set to 1 clock cycle,
make sure that it can operate normally. If the write recovery time is set to 2 clock cycles, SDRAMs
configured to run with 1 clock cycle can also operate normally.

Chapter 8 SDRAM Controller

8-16

• A bank boundary crossing is treated as a page crossing because a PBank command is issued
before the new bank is activated.

• The PALL command works for any memory configuration on any channel where the
command is issued.

(3) Reading and writing

• For single accesses, the basic number of cycles, 8 cycles for read and 6 cycles for write, are
increased as follows:

Table 8.5.2

Read Write
2 No additional cycles No additional cyclestRCD
3 1 additional cycle 1 additional cycle
2 No additional cycles No additional cyclestCASL
3 1 additional cycle No additional cycles

• For consecutive accesses to SDRAM, reads and writes may operate slightly slower depending
on the programmed timing latencies.

• In all types of accesses a bus acknowledge is returned as soon as possible. The SDRAMC
state machine then returns to an IDLE state according to the programmed timings and what
type of cycle is completing (read or write). Any precharge or recovery cycle required for
SDRAM is performed automatically without the need of special coding. This may, however,
prevent back-to-back operations from starting immediately. Basically, the TX3927 handles
accesses to SDRAM as quickly as possible.

• Some burst write operations cross a page boundary. An extra tRCD cycle is inserted to
determine the page boundary.

• The following burst accesses are supported in the TX3927.

Table 8.5.3 Burst Accesses Supported

Number of words 4 8 16 32
CPU RD Yes Yes Yes Yes
CPU WR Yes No No No
PCI RD Yes Yes Yes No
PCI WR Yes Yes Yes No
DMA RD Yes Yes Yes Yes
DMA WR Yes Yes Yes Yes

• Slow write burst mode, once enabled, applies to all burst write accesses and to single writes to
16-bit memory. Slow writes set up the data bus and DQM bits two clocks before they are
used. All other signals to SDRAM are set up one clock before they are used.

Chapter 8 SDRAM Controller

8-17

(4) Addressing considerations

• Table 8.5.4 shows the SDRAM address mappings for 32-bit memory. B0 is used for the “2
bank” select. B1 is used for the “4 bank” select. L/H indicates low or high, depending on
whether auto-precharge is used.

Table 8.5.4 Address Mapping for 32-bit SDRAM (1/2)

Row address width = 11
Column address width = 8
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 L/H L/H L/H 19 20 22 21
Row address 10 11 12 13 14 15 16 17 18 19 20 19 20 22 21

Row address width = 11
Column address width = 9
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 21 22 L/H 22 22 22 22
Row address 10 11 12 13 14 15 16 17 18 19 20 22 22 22 22

Row address width = 11
Column address width = 10
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 21 22 L/H 23 22 22 23
Row address 10 11 12 13 14 15 16 17 18 19 20 23 22 22 23

Row address width = 12
Column address width = 8
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 22 23 L/H 21 22 23 22
Row address 10 11 12 13 14 15 16 17 18 19 20 21 22 23 22

Row address width = 12
Column address width = 9
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 22 23 L/H 21 23 24 23
Row address 10 11 12 13 14 15 16 17 18 19 20 21 23 24 23

Row address width = 12
Column address width = 10
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 22 23 L/H 21 24 25 24
Row address 10 11 12 13 14 15 16 17 18 19 20 21 24 25 24

Chapter 8 SDRAM Controller

8-18

Table 8.5.4 Address Mapping for 32-bit SDRAM (2/2)

Row address width = 12
Column address width = 11
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column
address

2 3 4 5 6 7 8 9 22 23 L/H 24 25 26 25

Row address 10 11 12 13 14 15 16 17 18 19 20 21 25 26 25

Row address width = 13
Column address width = 8
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column
address

2 3 4 5 6 7 8 9 23 24 L/H 21 22 24 23

Row address 10 11 12 13 14 15 16 17 18 19 20 21 22 24 23

Row address width = 13
Column address width = 9
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column
address

2 3 4 5 6 7 8 9 23 24 L/H 21 22 25 24

Row address 10 11 12 13 14 15 16 17 18 19 20 21 22 25 24

Row address width = 13
Column address width = 10
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column
address

2 3 4 5 6 7 8 9 23 24 L/H 21 22 26 25

Row address 10 11 12 13 14 15 16 17 18 19 20 21 22 26 25

Row address width = 13
Column address width = 11
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column
address

2 3 4 5 6 7 8 9 23 24 L/H 25 22 27 26

Row address 10 11 12 13 14 15 16 17 18 19 20 21 22 27 26

Chapter 8 SDRAM Controller

8-19

• Table 8.5.5 shows the SDRAM address mappings for 16-bit memory. B0 is used for the “2
bank” select. B1 is used for the “4 bank” select (or ADDR18 if using 2 banks). L/H indicates
low or high, depending on whether auto-precharge is used.

Table 8.5.5 Address Mapping for 16-bit SDRAM (1/2)

Row address width = 11
Column address width = 8
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 20 21 L/H 20 21 21 20
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 21 20

Row address width = 11
Column address width = 9
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 20 21 L/H 21 21 21 21
Row address 9 10 11 12 13 14 15 16 17 18 19 21 21 21 21

Row address width = 11
Column address width = 10
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 20 21 L/H 22 21 21 22
Row address 9 10 11 12 13 14 15 16 17 18 19 22 21 21 22

Row address width = 12
Column address width = 8
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 21 22 L/H 20 21 22 21
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 22 21

Row address width = 12
Column address width = 9
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 21 22 L/H 20 22 23 22
Row address 9 10 11 12 13 14 15 16 17 18 19 20 22 23 22

Row address width = 12
Column address width = 10
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 21 22 L/H 20 23 24 23
Row address 9 10 11 12 13 14 15 16 17 18 19 20 23 24 23

Chapter 8 SDRAM Controller

8-20

Table 8.5.5 Address Mapping for 16-bit SDRAM (2/2)

Row address width = 12
Column address width = 11
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 21 22 L/H 23 24 25 24
Row address 9 10 11 12 13 14 15 16 17 18 19 20 24 25 24

Row address width = 13
Column address width = 8
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 22 23 L/H 20 21 23 22
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 23 22

Row address width = 13
Column address width = 9
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 22 23 L/H 20 21 24 23
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 24 23

Row address width = 13
Column address width = 10
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 22 23 L/H 20 21 25 24
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 25 24

Row address width = 13
Column address width = 11
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 22 23 L/H 24 21 26 25
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 26 25

• If the same address is enabled for more than one channel, the address becomes active for the
channel having the smallest number. The following shows the order of priority for the
channels:
ch0 ⇒ ch1 ⇒ ch2 ⇒ ch3 ⇒ ch4 ⇒ ch5 ⇒ ch6 ⇒ ch7

• 16-bit to 32-bit memory and 32-bit to 16-bit memory channel crossings are supported.

• 16-bit memory must be placed on the low-order data bus, D0-D15. Likewise the low-order
data mask signals DQM0* and DQM1* are used. In big endian mode, the high-order half
word D16-D31 is written first and the low-order half word D0-D15 is written last. In little
endian mode, the low-order half word D0-D15 is written first and the high-order half word
D16-D31 is written last. A bys cycle to 16-bit memory will always generate two external
accesses, no matter how the byte enables are set. The high-order data mask signals DQM2*
and DQM3* are held high.

Chapter 8 SDRAM Controller

8-21

• The setting of the base address (SDCCRn.SDBAn) and the address mask (SDCCRn.SDAMn)
determine whether the channel is selected. However, the address bits being asserted to the
SDRAM(s) depend solely on the row/column sizes set in the control registers
(SDCCRn.SDRSn/SDCSn). Hence, there could be overlap between low-order bits used in
channel selection and high-order bits of the asserted address.

• The internal registers of the TX3927 are located in a reserved address space (0xFF00_0000-
0xFFFE_FFFF). If an SDRAMC memory channel is mapped to overlay the register space,
unpredictable results may occur.

(5) Bus error and abnormal cycle termination

• No bus error is returned by the SDRAMC.

• If a write is performed to an address where no register is allocated in the SDRAMC registers
address area (0xFFFE_8000-0xFFFE_8FFF), the bus cycle is completed normally without any
adverse effects. A read from such an address reads all 0’s.

• The SDRAMC immediately aborts its current operation under two conditions: a bus error
(generated by some other module) or a debug reset. If either case occurs, the current SDRAM
clock cycle completes, the remaining SDRAMC operation is aborted, a PALL command is
issued, and the SDRAMC returns to its idle state. The SDRAMC will hold off any new
accesses until it returns to idle and then respond normally. The contents of the SDRAM
remain intact for recovery or debugging.

• A write to the command register for executing a command cycle causes any write cycles to
this register to wait until the command is executed. Therefore, aborting such a register access
is supported. If a register access is aborted, the current operation in the clock cycle completes
and the control signals return to their idle state.

• Refreshes are unaffected by the cycle aborts, even if a refresh was in progress when the abort
occurred.

(6) Power-down modes

Software can disable and enable CKE to the SDRAMs at any time by issuing the appropriate
command in the command register. The commands Enter L/H Power Mode and Enter Power Down
Mode turn off CKE and the command Exit L/H Power/Power Down Mode turns on CKE. Low
power mode puts the SDRAMs in self-refresh mode and power-down mode puts the SDRAMs in
precharge power-down mode, where no refresh is performed and data is at risk.

If one of the power-down modes is entered, the clocks to the SDRAMs are turned off. Also, the
SDRAMC resets and disables the refresh counter of the internal refresh circuit.

Exiting the power-down modes can be done either by using the command register as described
above or by an automatic process. The auto-exit process is executed whenever CKE is turned off
and an SDRAM (or SMROM) access is attempted. This is transparent to software: CKE is
automatically turned on and the bus access completes normally. Thus the TX3927 can begin
fetching instructions or data immediately after returning from one of its power-down states.

Whenever the power-down modes are exited, a pause of 10tCK occurs before the next operation
initiates. This satisfies the SDRAM timing requirements for the first access after power-down
exits.

Chapter 8 SDRAM Controller

8-22

The TX3927 also provides HALT and DOZE modes for power reduction. In these modes, the
CPU stops but the SDRAMC and other peripheral circuits continue to operate. Therefore, software
must setup the memory by executing the proper channel commands before HALT or DOZE mode
is entered.

(7) Debug mode

• As mentioned above (“8.5.1 (5) Bus error and abnormal cycle termination”), debug reset will
gracefully terminate the current SDRAM operation and the memory contents are available for
debugging.

• The SDRAMC executes normally in debug mode.

8.5.3 DIMM Flash Memory Operation

(1) Initialization, boot, and refresh

DIMM flash memory requires no initialization. The devices are ready to read or write with the
reset period of 16 clock cycles maximum.

Boot from DIMM flash memory is selected by setting boot signals BME[1:0] (ADDR[9:8]) to
“01” on the rising edge of the reset signal. SDRAM channel 0 is used as the boot channel. The
default base address in the control register (SDCCR0) is 0x1FC0_0000. If the DIMM flash
memory address uses up to an address bit of 21 as its MSB row address, then the start address at
the DIMM flash memory will be 0. The other fields initialized in the control register (SDCCR0)
are memory type (SDM0) = 01 (DIMM flash memory), enable (SDE0) = 1, and memory width
(SDMW0) = 0 or 1 (32-bit or 16-bit depending on at the value of boot signal BOOT16*
(ADDR[13])).

The refresh circuit is only enabled if there is an SDRAM or SGRAM enabled on at least one
SDRAMC channel. Refresh is inhibited to any channel used for DIMM flash memory.

Another significant difference between the SDRAM and flash memory refresh operations is that
burst accesses to DIMM flash memory are interruptible by refresh requests. This is because under
certain configurations a flash memory burst access can exceed the normal SDRAM refresh period,
thereby potentially missing one of two contiguous refresh requests. For example, a 32-word burst
read from 16-bit flash memory with 16 wait states and a system clock of 50 MHz takes 28.1 µs to
complete [(44 clock cycles × 32 reads −3 clock cycles) × 20 ns], thus exceeding a 15.6 µs refresh
period. To prevent this, the TX3927 always handles a refresh request first, even if it occurs during
a burst access to DIMM flash memory.

(2) Precharging

Precharging has no meaning to flash memory. Likewise, neither do the other commands in the
command register. A command executed to flash memory is treated as a NOP since the CS* for the
flash memory channel is not asserted. Thus if a flash memory channel is selected via the enable
and mask bits or even if flash memory is the only memory in the system, memory accesses are
disabled until the execution of the command is completed.

In general, the ADDR, RAS*, CAS*, and WE* signals, which are shared for SDRAM and
DIMM flash memory channels, will become active during SDRAM accesses and command
execution. However, only the CS* signals for the appropriate SDRAM channels will be asserted.
The flash memory remains in a standby state until its CS* is asserted.

Chapter 8 SDRAM Controller

8-23

(3) Reading and writing

• Programmable wait states in the SDRAM timing register for DIMM flash memory (SDCTR2)
are used to tune read and write accesses to the speed grade of the flash memory.

• The same burst accesses as those for SDRAM are supported for DIMM flash memory. Burst
writes to DIMM flash memory do not make sense since DIMM flash memory writes generally
require a timed interval to complete. However, the feature is supported for future
implementations.

• If the CPU or other circuits attempt burst accesses to DIMM flash memory, the SDRAMC
treats them as single accesses on the external bus.

• During non-DIMM flash memory accesses, the CS* signals are always kept high to keep the
flash memory devices in a NOP state.

• Slow write burst mode is not available for DIMM flash memory. If the feature is enabled (by
setting the SDTCR1.SWB1 bit to “1”), it has no effect on the DIMM flash memory accesses.
The feature can be enabled only for SDRAMs in the same system.

• Data read bypass has the same effect on DIMM flash memory accesses. That is, DIMM flash
memory accesses follow the current setting of the data read bypass bit (DRB1) in the SDRAM
timing register (SDTCR1).

(4) Addressing considerations

• Table 8.5.6 shows the Type 0 address mappings for DIMM flash memory. ADDR5-ADDR7
are “don’t cares” for row address specification. ADDR16-ADDR17 are available for
expansion.

Table 8.5.6 Type 0 Address Mappings for DIMM Flash Memory

Type 0 addressing for 32-bit flash memory
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15 16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 10 11 12 25 26 14 13
Row address 10 11 12 15 16 17 18 19 20 21 22 25 26 24 23

Type 0 addressing for 16-bit flash memory
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15 16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 9 10 11 24 25 13 12
Row address 10 11 12 14 15 16 17 18 19 20 21 24 25 23 22

Chapter 8 SDRAM Controller

8-24

• Table 8.5.7 shows the Type 1 address mappings for DIMM flash memory. ADDR5-ADDR7
and ADDR18-ADDR19 are “don’t cares” for row address specification. ADDR17 is available
for expansion.

Table 8.5.7 Type 1 Address Mappings for DIMM Flash Memory

Type 1 addressing for 32-bit flash memory
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15 16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 9 19 20 10 24 25 12 11
Row address 10 11 12 13 14 15 16 17 18 21 22 23 25 12 11

Type 1 addressing for 16-bit flash memory
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15 16 17 18
(B1)

19
(B0)

Column address 1 2 3 4 5 6 7 8 18 19 9 23 24 11 10
Row address 10 11 12 12 13 14 15 16 17 20 21 22 24 11 10

• The setting of the base address (SDCCRn.SDAAn) and the address mask (SDCCRn.SDAMn)
determine whether the channel is selected. However, the row size (SDCCRn.SDRSn) and
column size (SDCCRn.SDCSn) have no effect on the flash memory. These fields are ignored.

• All other addressing features are the same as those for SDRAM. All boundary crossings are
supported (in particular, page and channel boundaries). If the same address is enabled for
more than one channel, the address becomes active for the channel having the smallest
number. The following shows the order of priority for the channels:
ch0 ⇒ ch1 ⇒ ch2 ⇒ ch3 ⇒ ch4 ⇒ ch5 ⇒ ch6 ⇒ ch7

(5) Bus error and abnormal cycle termination

• Same as those for SDRAM with one exception. The aborting access has a different effect in
that the DIMM flash memory cycle terminates immediately, regardless of whether the abort
occurs in read or write operation (the DIMM flash memory access takes several clock cycles
to complete). This is necessary since the byte enable and data bus (including the deasserting
of OE*) are required immediately by the bus master.

(6) Power-down modes

• Same as those for SDRAM except that bus cycles can still occur as long as the SDRAMC is
running even if SDCLK is not being output. DIMM flash memory devices are asynchronous
devices and do not use the CKE or external clock signals.

(7) Debug mode

• Same as that for SDRAM.
Refer to “8.5.1 (7) Debug mode.”

Chapter 8 SDRAM Controller

8-25

8.5.4 SMROM Operation

(1) Initialization, boot, and refresh

SMROM is self-initialized at power-on and is ready to begin delivering data. The device does
not drive the bus until both CS* and OE* are asserted. Its default values are RAS latency (tRCD) =
2, CAS latency (tCASL) = 5, and burst length = 4 or 8.

These default values are required for proper operation during SMROM boot. The timing
latencies match those set in the SMROM timing register for SMROM (SDCTR3) during
initialization. And although the SDRAMC operates with a burst length of 4, single reads are
performed during the initial boot so a setting of burst length = 8 is acceptable. A burst setting of 8
imposes a requirement of tRC = 10 at 66 MHz on SMROM but this is also acceptable since tRC =
11 for single reads with the default timing latencies.

SMROM boot is selected by setting boot signals BME[1:0] (ADDR[9:8] pins) to "00" during a
reset. As the boot sequence proceeds the first step in changing any of the default settings is to
change the burst length from 8 to 4. This is done by executing the MRS command (the burst length
is automatically set to 4 and the current, default, timing latencies are used). It is important not to
reprogram the timing latencies either in the shared timing register or in the SMROM until the
operations can be properly synchronized.

Once the burst length is set to 4, then the cache can be enabled and burst reads can be
performed. If the boot sequence continues from SMROM and the timing latencies are to be
changed, then the code to do this should be in cache. The cached instructions to perform an update
to the SDRAM timing register (SDCTR3) and an MRS are then unaffected by changing the
SMROM timing latencies. Once the operations are complete the timing latencies are synchronized
between the SDRAMC and the SMROM and normal read cycles can commence.

On the other hand, if the boot sequence has switched to RAM code fetches before the timing
latencies are changed, then there is more flexibility in changing the timing register (SDCTR3) and
the mode register in the SMROM.

Memory channel 0 is used as the boot channel. The default base address in the control register
(SDCCR0) is 0x1FC0_0000. Since the 32M-bit SMROM uses address bit 21 as its MSB row
address, the boot start address in SMROM will be 0. However, for 64M-bit SMROM devices,
address bit 22 (=1) is the MSB and the boot start address will be 0x400000. The other fields
initialized in the control register (SDCCR0) are memory type (SDM0) = 10, enable (SDE0) = 1,
and memory width (SDMW0) = 0 (32-bit).

The refresh circuit is only enabled if there is an SDRAM enabled on at least one memory
channel. Refresh is inhibited to any channel used for SMROM.

Chapter 8 SDRAM Controller

8-26

(2) Reading and writing

• Burst accesses must be 4-word aligned. The TX39/H2 core (except in critical word first mode)
and the DMA controller in dual address mode always align accesses to 4-word boundaries.
Note that PCI burst accesses to SMROM are not always aligned to 4-word boundaries.

• Writes to SMROM are illegal. If a write is attempted, the SDRAMC ignores it and does not
return a bus acknowledge. As a result, the bus is locked and a bus timeout will occur.

• Since the burst length is 4, single reads are terminated with the burst stop command
(precharge command). Thus the SMROM asserts only a single word and then places the data
bus in the high-impedance state.

• If the row address match feature is enabled, the current row address is compared to the
previously read row address. If a match is detected, the same channel is assumed so the
activate command (RAS* cycle) is skipped and only the read command (CAS* cycle) is
executed. This works for single or burst reads. At 66 MHz, two clock cycles are saved for
each read access since tRCD = 2tCK. At 50 MHz, one clock cycle is saved for each read access
since tRCD = 1tCK.

(3) Addressing considerations

• Table 8.5.8 shows the SMROM address mapping for 32-bit memory. The basic mapping is
shown in dark gray for a 13-bit row and 7-bit column device. The next two address bits, A22
and A23, are provided for larger column or row space. The number of address bits to be used
depends on the SMROM device.

Table 8.5.8 Address Mapping for 32-bit SMROM

Row address width = 13 (14, 15)
Column address width = 7 (8, 9)
Address bit
ADDR [19 : 5]

5 6 7 8 9 10 11 12 13 14 15
(AP)

16 17 18
(B1)

19
(B0)

Column address 2 3 4 5 6 7 8 22 22 23 19 20 21 22 23
Row address 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

• If the row address match feature is enabled, the match circuit checks all fifteen row address
bits.

(4) Bus error and abnormal cycle termination

• Same as those for SDRAM except that SMROM operates with a burst length of 4. Read
operation is aborted with a precharge command but the CAS latency of 4tCK or 5tCK is
incurred before the SMROM data pins are placed in the high-impedance state.

(5) Power-down modes

• Same as those for SDRAM except that the only SMROM power-down mode is low power
mode. The auto-exit feature is also implemented in the same way as with SDRAM.

Chapter 8 SDRAM Controller

8-27

8.5.5 SGRAM Operation

SGRAM operation is very similar to that of SDRAM. In fact, SGRAM devices can be used as a
replacement for SDRAMs in a system by connecting their DSF pins to a low level. There are some
differences regarding their size and special features which are described next.

(1) Addressing
The available SGRAM memory sizes are 8M and 16M bits (the data width is 32 bits), thus

supporting a smaller addressing range than SDRAMs. The SGRAM devices are used by
configuring the control register (SDCCRn) with a row size of 11 bits and a column size of 8 bits.
The TX3927 supports both of these SGRAM memory sizes. For the 8M-bit device, ADDR5-
ADDR13 and ADDR16 of the TX3927 are connected to A0-A8 and BA, respectively, of the
device. For the 16M-bit device, ADDR5-ADDR14 and ADDR17 are connected to A0-A9 and BA,
respectively, of the device. In both cases, the precharge bit ADDR13 or ADDR14 is set to low or
high in the column address depending on whether auto-precharge is enabled.

In order to get contiguous SGRAM memory from one channel to the next, the 16M-bit device
should be used. (The 8M-bit device is smaller than the base address selection field in the control
register.)

(2) Write per bit (WPB) and block write (BW) features
Each feature is enabled by setting the corresponding bit to “1” in the SDRAM timing register

(SDCTR1). Once enabled the feature will affect write accesses to all channels that are enabled with
SGRAM. If both features are enabled then both features are applied to the same write access.

The write per bit function is initialized with the loading of the mask register in the SGRAM.
This uses a Special Mode Register Set (SMRS) command, i.e., the Load Mask command of the
TX3927. Similarly, the write block function is initialized with the Load Color command. These
commands can be executed at any time to update the internal registers of the SGRAM. Note that
the channel mask bits (SDCMSK) in the command register (SDCCMD) should be correctly set
before the SMRS command is executed.

Unlike SDRAMs, there are unique timings associated with a BW that must be observed. (The
WPB feature is unencumbered by special constraints.) The two parameters of concern are tBPL,
block write to precharge delay, and tBWC, block write cycle time. The first parameter governs how
quickly a precharge can be executed after a BW and varies from 1tCK to 2tCK depending on the
clock rate of the device. The second parameter governs how quickly contiguous BWs can be
executed during a burst and varies from 1tCK to 2tCK depending on the clock rate of the device.

tBPL applies to single writes and burst writes and is controlled by setting the write recovery time
in the SDRAM timing register (SDCTR1). For burst writes with auto-precharge, this parameter
should be set to a value appropriate for the memory used, in the same way as with SDRAMs.

tBWC applies to burst writes and, in general, is fixed to 1tCK. However, if the slow write option
is enabled in the SDRAM timing register (SDCTR1), then tBWC becomes 2tCK.

The DMA address increment feature can be used in conjunction with a BW.

Chapter 8 SDRAM Controller

8-28

The DSF signal is asserted during the execution of an SMRS command and at the appropriate
times during the execution of the WPB and BW features. The DSF pin is shared with a PIO feature
(PIO[1]) so it must be enabled properly by the TX3927 pin configuration register (PCFG). The
DSF signal should only be expected to be asserted during clock cycles in which it is used by the
SGRAM.

8.5.6 Notes on Programming

• Make sure the SDRAM timing register for SDRAM/SGRAM (SDCTR1) is programmed with
the correct timing values before the MRS command is issued. Make sure the SDRAM timing
register for DIMM flash memory (SDCTR2) is updated with the correct values to allow for
efficient accesses. The SDRAM timing register for SMROM (SDCTR3) requires special
consideration during boot, as described in “8.5.3(1) Initialization, boot, and refresh.”

• The three SDRAM timing registers (SDCTR1 to SDCTR3) contain timing parameters that
apply, respectively, to all SDRAM/SGRAM, DIMM flash memory, and SMROM devices in
the system. Thus they must be programmed to satisfy the requirements for the slowest
devices.

• The TX3927 has a write buffer. The TX39/H2 core does not write to memory directly at a
store instruction. It writes only to the write buffer and continues to handle the next instruction.
The write buffer writes data to the target memory when the bus is empty. Thus there are a time
gap between a store instruction being executed and the data actually being written to memory.
To guarantee that the execution of a command from the command register (SDCCMD) (or the
SGRAM load mask (SDCSMRS1) or load color (SDCSMRS2) register) has completed in the
TX3927, the write buffer must be flushed. This can be accomplished by simply reading back
the command register after it is written (the read-back from an address recently written does
not complete until the write buffer has been flushed). The “lw” instruction that performs the
read-back causes the pipeline to stall, thus ensuring the command will be executed in a correct
sequence.

• Note that the boot address in 64M-bit SMROM devices will be non-zero (0x400000) while it
will 0 for 32M-bit SMROM devices. Refer to the SMROM section for details.

• Unused SDCLK signals can be disabled through programming bits [26:22] in the Pin
Configuration (PCFG) register. SDCLK[0] must not be disabled when an SDRAM is used
because it goes to the internal feedback.

Chapter 8 SDRAM Controller

8-29

8. SDRAM Controller

8.6 Timing Diagrams
The timing waveforms shown in this section are subjected to the following restriction:

(1) For single 32-bit writes, ACK* is asserted at the same time data is written to memory. However, for
burst writes or a 32-bit write to 16-bit memory, ACK* is asserted two clock cycles prior to the writing
of data to memory. For all reads, ACK* asserts on the same cycle that data is valid and read from
memory. ACK* is also shown for a DIMM flash memory write, but it is asserted at the end of the bus
cycle.

8.6.1 SDRAM Single Read Operation in 32-bit Bus Mode

Figure 8.6.1 Single Read from 32-bit SDRAM (tCLK = 15, tRCD = 2, tCASL = 2)

DATA [31 : 0]

0f f

87654321

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

7fff 7bff

Chapter 8 SDRAM Controller

8-30

8.6.2 SDRAM Single Write Operation in 32-bit Bus Mode

Figure 8.6.2 Single Write to 32-bit SDRAM (tCLK = 15, tRCD = 2, tRAS = 4)

DATA [31 : 0]

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

7ff7 7bff

f 0 f

789abcde

Chapter 8 SDRAM Controller

8-31

Figure 8.6.3 Single Write to 32-bit SDRAM (tCLK = 15, tRCD = 2, tRAS = 3)

DATA [31 : 0]

7ff7

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

0 f

789abcde

7bff

f

Chapter 8 SDRAM Controller

8-32

8.6.3 SDRAM Burst Read Operation in 32-bit Bus Mode

Figure 8.6.4 Burst Read from 32-bit SDRAM (4 Words, tCLK = 15, tRCD = 2, tCASL = 2)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

0001 0004 0005 0006 0007 0008

f0f

fffffbef 00000418 fffffbe700000410DATA [31 : 0]

Chapter 8 SDRAM Controller

8-33

8.6.4 SDRAM Burst Write Operation in 32-bit Bus Mode

Figure 8.6.5 Burst Write to 32-bit SDRAM (4 Words, tCLK = 15, tRCD = 2, tRAS = 4)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

000003f0 fffffc0f 000003f8 fffffc07

0000 0100 0101 0102

ff 0

DATA [31 : 0]

0503

Chapter 8 SDRAM Controller

8-34

8.6.5 SDRAM Read in 32-bit Bus Mode (Crossing Page Boundary)

Figure 8.6.6 Read From 32-bit SDRAM (Crossing Page Boundary)
(4th Word Crossing Page Boundary, tCLK = 15, tRCD = 2, tCASL = 2)

AD
D

R
[1

9
: 5

]

SD
C

LK C
S*

R
AS

*

C
AS

*

W
E*

C
KE O
E*

D
Q

M
 [3

 :
0]

D
AT

A
[3

1
: 0

]

AC
K*

01
00

01
01

00
00

00
02

00
01

00
00

00
ff

00
fe

07
ff

00
fd

f

00
00

0
ffe

00
00

7
00

1f
fff

8
ffe

00
00

f

f
0

Chapter 8 SDRAM Controller

8-35

8.6.6 SDRAM Write in 32-bit Bus Mode (Crossing Page Boundary)

Figure 8.6.7 Write to 32-bit SDRAM (Crossing Page Boundary)
(2nd Word Crossing Page Boundary, tCLK = 15, tRCD = 2, tRAS = 4)

SD
C

LK C
S*

AD
D

R
[1

9
: 5

]

R
AS

*

C
AS

*

W
E*

C
KE O
E*

D
Q

M
 [3

 :
0]

D
AT

A
[3

1
: 0

]

AC
K*

00
01

00
00

00
01

00
00

f

ffe
00

00
f

00
ff

0

00
00

0
f

00
1f

fff
8

00
00

03
ffe

00
00

f

04
02

Chapter 8 SDRAM Controller

8-36

8.6.7 SDRAM Slow Burst Write Operation in 32-bit Bus Mode

Figure 8.6.8 Slow Burst Write to 32-bit SDRAM (4 Words, tCLK = 15, tRCD = 2, tRAS = 4)

SD
C

LK C
S*

AD
D

R
[1

9
: 5

]

R
AS

*

C
AS

*

W
E*

C
KE O
E*

D
Q

M
 [3

 :
0]

D
AT

A
[3

1
: 0

]

AC
K*

f

00
c0

e

00
c2

0

00
00

00
c1

d

0
04

05
06

07
0c

0d
0e

0f
08

09
0a

0b

7
b

00
01

02
03

04
c3

f

Chapter 8 SDRAM Controller

8-37

8.6.8 SDRAM Single Read Operation in 16-bit Bus Mode

Figure 8.6.9 Single Read from 16-bit SDRAM (tCLK = 15, tRCD = 2, tCASL = 2)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

7800 7a017a00

f

xxxx8765 xxxx4321

c f

DATA [31 : 0]

Chapter 8 SDRAM Controller

8-38

8.6.9 SDRAM Single Write Operation in 16-bit Bus Mode

Figure 8.6.10 Single Write to 16-bit SDRAM (tCLK = 15, tRCD = 2, tRAS = 4)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

7800 7a817a80

f

xxxx789a xxxxbcdeDATA [31 : 0]

c f

Chapter 8 SDRAM Controller

8-39

8.6.10 DIMM Flash Memory Single Read Operation in 32-bit Bus Mode

Figure 8.6.11 Single Read from 32-bit DIMM Flash Memory (tCLK = 15, Wait = 4)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

9abcdef0DATA [31 : 0]

00010020

f

Chapter 8 SDRAM Controller

8-40

8.6.11 DIMM Flash Memory Single Write Operation in 32-bit Bus Mode

Figure 8.6.12 Single Write to 32-bit DIMM Flash Memory (tCLK = 15, Wait = 3)

DATA [31 : 0]

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

0 ff

00019abcdef0

00010020

Chapter 8 SDRAM Controller

8-41

8.6.12 SMROM Single Read Operation in 32-bit Bus Mode

Figure 8.6.13 Single Read from 32-bit SMROM (tCLK = 15, tRCD = 2, tCASL = 5)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

0000

eb800051

0051

f

DATA [31 : 0]

Chapter 8 SDRAM Controller

8-42

8.6.13 SMROM Burst Read Operation in 32-bit Bus Mode

Figure 8.6.14 Burst Read from 32-bit SMROM (8 Words, tCLK = 15, tRCD = 2, tCASL = 5)

SD
C

LK C
S*

AD
D

R
[1

9
: 5

]

R
AS

*

C
AS

*

W
E*

C
KE O
E*

D
Q

M
 [3

 :
0]

D
AT

A
[3

1
: 0

]

AC
K*

00
01

00
f8

f

c0
80

00
fd

c0
c0

00
fc

00
fc

c0
00

00
ff

c0
40

00
fe

c1
80

00
f9

c1
c0

00
f8

c1
00

00
fb

c1
40

00
fa

Chapter 8 SDRAM Controller

8-43

8.6.14 Low Power and Power-down Mode

Figure 8.6.15 Enter Low Power Mode (tCLK = 15, Ch. 0 = SDRAM, Ch. 1 = SMROM)

SDCLK

CS [1]*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

f

DATA [31 : 0]

CS [0]*

Chapter 8 SDRAM Controller

8-44

Figure 8.6.16 Enter Power-down Mode (tCLK = 15, Ch. 0 = SDRAM, Ch. 1 = SMROM)

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

f

DATA [31 : 0]

CS [0]*

SDCLK

CS [1]*

Chapter 8 SDRAM Controller

8-45

Figure 8.6.17 Auto-Exit from Power-down Modes (tCLK = 15, Ch. 0 = SDRAM, Ch. 1 = SMROM)

SD
C

LK

C
S

[1
] *

AD
D

R
[1

9
: 5

]

R
AS

*

C
AS

*

W
E*

C
KE O
E*

D
Q

M
 [3

 :
0]

D
AT

A
[3

1
: 0

]

AC
K*

12
34

56
78

00
00

00
06

f
0

f

C
S

[0
] *

Chapter 8 SDRAM Controller

8-46

8.6.15 SGRAM in 32-bit Bus Mode

Figure 8.6.18 SMRS of Mask Register in 32-bit SGRAM

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

f

DATA [31 : 0]

DSF

0020

55aa33cc

Chapter 8 SDRAM Controller

8-47

Figure 8.6.19 SMRS of Color Register in 32-bit SGRAM

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

f

DATA [31 : 0]

DSF

0040

aa55cc33

Chapter 8 SDRAM Controller

8-48

Figure 8.6.20 Simultaneous WPB and BW to 32-bit SGRAM (Non-burst, tRCD = 2, tRAS = 3, tBPL = 1)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

f

DATA [31 : 0]

DSF

0000 000f

0f

ffffffff

Chapter 8 SDRAM Controller

8-49

8.6.16 External DMA Operation (Big Endian)

Figure 8.6.21 Big Endian External DMA Transfer: Single Address from 16-bit I/O to 16-bit SDRAM
(GBE[3:0]* = 3: Even Address Write)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

DATA [31 : 0]

0002 0086 0087

fc

xxxxffff

Chapter 8 SDRAM Controller

8-50

Figure 8.6.22 Big Endian External DMA Transfer: Single Address from 16-bit I/O to 16-bit SDRAM
(GBE[3:0]* = C: Odd Address Write)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

DATA [31 : 0]

0002 0086 0087

cf

xxxxfef7

Chapter 8 SDRAM Controller

8-51

8.6.17 External DMA Operation (Little Endian)

Figure 8.6.23 Little Endian External DMA Transfer: Single Address from 16-bit I/O to 16-bit SDRAM
(GBE[3:0]* = 3: Odd Address Write)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

DATA [31 : 0]

0002 0086 0087

cf

xxxxffff

Chapter 8 SDRAM Controller

8-52

Figure 8.6.24 Little Endian External DMA Transfer: Single Address from 16-bit I/O to 16-bit SDRAM
(GBE[3:0]* = C: Even Address Write)

SDCLK

CS*

ADDR
[19 : 5]

RAS*

CAS*

WE*

CKE

OE*

DQM [3 : 0]

ACK*

DATA [31 : 0]

0002 0086 0087

fc

xxxxfef7

Chapter 8 SDRAM Controller

8.7 Examples of Using SDRAM
Figure 8.7.1 shows an example of using SDRAM (× 16 bits). Figure 8.7.2 shows an example of using 100-

pin DIMM SDRAM.

Figure 8.7.1 Example of Using SDRAM (× 16 bits) (32-bit Data Bus)

Figure 8.7.2

D [31:16]

DQM [3:0]

ADDR [19:5]

SDCS*[0]
RAS*
CAS*
WE*

SDKLK [0]
CKE

DATA [31:0]

TX3927

ADDR [17:5]

 UDQM LDQM

A [12:0]
BS0
BS1

CS*
RAS*
CAS*
WE*

CLK
CKE

DQ [15:0]

SDRAM (×16 bit)

D [15:0]

DQM [3] DQM [2] DQM [1] DQM [0]

ADDR [19]
ADDR [18]

 UDQM LDQM

A [12:0]
BS0
BS1

CS*
RAS*
CAS*
WE*

CLK
CKE

DQ [15:0]

ADDR [19:5]

DQMB [3:0]

SDCS [0]
SDCS [1]

RAS*
CAS*
WE*

CKE

SDKLK [0]

DATA [31:0]

TX3927

A [13:0]
BA0
BA1

DQMB [3:0]

S0
S1
S2
S3

RAS*
CAS*
WE*

CKE0
CKE1
CK0
CK1

SDRAM DIMM100

ADDR [19]

ADDR [17:5]

ADDR [18]
8-53

Example of Using SDRAM (100-pin DIMM)

DQ [31:0]

Chapter 8 SDRAM Controller

8-54

Chapter 9 External Bus Controller

9-1

9. External Bus Controller

9.1 Features
The external bus controller (ROMC) generates all the signals and timings required to access ROMs,

SRAMs, and I/O peripherals.

Its features include:

• Operates at up to 66 MHz.

• 8 channels - each independently configurable with 32-bit channel control registers

• Supports accesses to ROM, mask ROM, page mode ROM, EPROM, EEPROM, SRAM, and flash
memory.

• Supports accesses to I/O peripherals.

• 16-bit or 32-bit data bus selectable on a per channel basis

• Full- or half-speed bus mode selectable on a per channel basis

• Supports memory sizes from 1 Mbyte to 1 Gbyte in 32-bit bus mode and 1 Mbyte to 512 Mbytes in 16-
bit bus mode.

• Multiplexed address inputs (ADDR[19:2]). The ACE* output is provided to latch the upper address
(bits 29 to 20) externally.

• G-Bus burst lengths of 4, 8, 16, and 32 words

• Page sizes of 4, 8, and 16 words in page mode

• Programmable setup and hold times for the address, chip enable, write enable, and output enable
signals.

• Supports external acknowledge (ACK*) and external Ready signals.

• Supports a boot memory device on Channel 0.

BOOT16: Selects the data bus width (16-bit or 32-bit).

BOOTAI: Selects ACK* output or ACK* input mode.

BOOTBC: Selects whether the BWE* pin is used as byte enable or byte write enable.

BOOTME[1:0]: Master enable and boot speed

• Supports global options.

CHANHS: Selects the SYSCLK speed (half speed or full speed).

ACEHOLD: Selects the address hold time for the ACE* signal (whether to change the address
coincident with ACE* or after a delay of one clock cycle).

• Programmable timing per channel

• Programmable wait time per channel (0 to 63 cycles)

Chapter 9 External Bus Controller

9-2

9.2 Block Diagram

Figure 9.2.1 ROMC Connections within the TX3927

Figure 9.2.2 ROMC Block Diagram

Boot option

Half
Configuration Control

G-Bus Interface
EBIF

ROMC

OE*

ACK*
ADDR

Control

CE*[7:0]
BWE*[3:0]/BE*[3:0]

SWE*

Boot option
OE*

ACK*
ADDR

ACE*

G-Bus

EBIF Interface

C

B

O

ROMC

G-Bus

ACEHLD
CHANHS
BOOT16
BOOTME
BOOTBE
BOOTAD
RESET*

Register Address
Decoder

Host Interface
Timing Control

Timing
Control

Mask ROM

Page ROM

EPROM

EEPROM

Flash ROM

SRAM
EBIF

Channel Control
Register

Address
Decoder

CH0

S

A

A
E

A

Channel Control
Register

Address
Decoder

CH7
E*[7:0]
E*

WE*
WE*[3:0]/BE*[3:0]
CK*/READY
DDR

BIF CONTROL
CE*

Chapter 9 External Bus Controller

9-3

9.3 Registers

9.3.1 Register Map

The base address of the ROMC is 0xFFFE_9000. All registers of the ROMC can only be word-
accessed. Any other type of access will produce unexpected results.

For the bits not defined, write the values shown in the figures.

Table 9.3.1 ROM Controller Registers

Address Register Mnemonic Register Name
0xFFFE_9000 RCCR0 ROM Channel Control Register 0
0xFFFE_9004 RCCR1 ROM Channel Control Register 1
0xFFFE_9008 RCCR2 ROM Channel Control Register 2
0xFFFE_900C RCCR3 ROM Channel Control Register 3
0xFFFE_9010 RCCR4 ROM Channel Control Register 4
0xFFFE_9014 RCCR5 ROM Channel Control Register 5
0xFFFE_9018 RCCR6 ROM Channel Control Register 6
0xFFFE_901C RCCR7 ROM Channel Control Register 7

The ROMC has eight ROM Channel Control Registers. The eight registers only differ in the channel
number and address; they all have the same functions, except that the initial values for Channel 0
depends on whether half-speed ROM or full-speed ROM mode is selected.

Channels 2 to 7 share the chip select signals with the SDRAM Controller. SDRAM and ROM
channels with an identical number may not be enabled at the same time.

Chapter 9 External Bus Controller

9-4

9.3.2 ROM Channel Control Registers (RCCR0-RCCR7) 0xFFFE_9000 (ch.0)
0xFFFE_9004 (ch.1)
0xFFFE_9008 (ch.2)
0xFFFE_900C (ch.3)
0xFFFE_9010 (ch.4)
0xFFFE_9014 (ch.5)
0xFFFE_9018 (ch.6)
0xFFFE_901C (ch.7)

Channel 0 can be used to control a boot memory device. Therefore, the initial values for ROM
Channel Control Register 0 are set by the values of the boot signals.

31 20 19 18 17 16
RBA RPM RPWT

R/W R/W R/W : Type
0x1FC 0 0 1 1 : Initial value

15 12 11 8 7 6 5 4 3 2 0
RWT RCS 16BUS RDY RBC RHS RME RSHWT

R/W R/W R/W R/W R/W R/W R/W R/W : Type
1/0 1/0 1/0 BAI/0 0 0 1/0 0 B16/0 0 BBC/0 BME0/0 BME1/0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
31:20 RBA Base Address ROM Control Base Address (initial value: 0x1FC)

Specifies the physical base address of the channel.
19:18 RPM Page Mode

Page Size
ROM Control Page Mode Page Size (initial value: 00)
Specifies the page size for word burst page mode.
00: Not configured for page mode
01: 4-word burst page mode
10: 8-word burst page mode
11: 16-word burst page mode

17:16 RPWT Page Mode
Wait Time

ROM Control Page Mode Wait Time (initial value: 11)
In page mode, specifies the number of wait states to be taken by non-first transfers of
a burst.
00: 0 wait states 10: 2 wait states
01: 1 wait state 11: 3 wait states
In non-page mode, RPWT is used in conjunction with RWT to specify the number of
wait states (the value of BAI) in the range of 0 to 62. (Refer to the description of RWT.)

15:12 RWT Normal Mode
Wait Time

ROM Control Normal Mode Wait Time (initial value: 111(BAI) for Channel 0 and 0000
for Channels 1 to 7)
In page mode, specifies the number of wait states to be taken by all single transfers or
the first transfer of a burst.
0000: 0 wait states 0100: 4 wait states 1000: 8 wait states 1100: 12 wait states
0001: 1 wait state 0101: 5 wait states 1001: 9 wait states 1101: 13 wait states
0010: 2 wait states 0110: 6 wait states 1010: 10 wait states 1110: 14 wait states
0011: 3 wait states 0111: 7 wait states 1011: 11 wait states 1111: 15 wait states
In non-page mode, RWT is used in conjunction with RPWT to specify the number of
wait states in the range of 0 to 62.
RPWT [1:0] : RWT [3:0]
000000: 0 wait states 010000: 16 wait states 110000: 48 wait states
000001: 1 wait state 010001: 17 wait states 110001: 49 wait states
 : : :
001110: 14 wait states 011110: 30 wait states 111110: 62 wait states
001111: 15 wait states 011111: 31 wait states 111111: External ACK* mode
Note 1: The LSB for Channel 0 is set with the inverted value of boot signal BAI*

(ADDR[7] pin).
Note 2: When RPM=00 and RDY=0, setting RPWT0:RWT0 to 0x3f causes the ROMC

to enter ACK* input mode, instead of the longest wait time in ACK* output
mode being selected.

Note 3: In READY mode, RWT[0] is used to select ACK*/READY Dynamic or Static
mode. In that case, the number of wait states is always even.

Figure 9.3.1 ROM Channel Control Registers (1/2)

Chapter 9 External Bus Controller

9-5

Bits Mnemonic Field Name Description
11:8 RCS Channel Size ROM Control Channel Size (initial value: 0010 for Channel 0 and 0000 for Channels

1 to 7)
Specifies the memory size the channel can access, beginning with the base a
assress set in the RBA field.
0000: 1 Mbyte 0101: 32 Mbytes *1010: 1 Gbyte
0001: 2 Mbytes 0110: 64 Mbytes 1011-1111: Reserved
0010: 4 Mbytes 0111: 128 Mbytes
0011: 8 Mbytes 1000: 256 Mbytes
0100: 16 Mbytes 1001: 512 Mbytes
* When the memory bus width is 16 bits, the maximum memory size for a channel is

512 Mbytes, not 1G byte.
7 16BUS Bus Width ROM Control 16-Bit Width Bus Width (initial value: B16 value for Channel 0 and 0

for Channels 1 to 7)
Controls the width of memory accesses for the channel.
0: 32-bit bus
1: 16-bit bus
Note: This bit for channel 0 is set with the inverted value of boot signal BOOT16*

(ADDR[13] pin).
6 RDY Ready Input

Active
ROM Control Ready Input Active (initial value: 0)
Selects the memory access mode: ACK or READY.
0: Disables READY mode. (ACK mode)
1: Enables READY mode. (READY mode)
In READY mode, the RPM0 field must be set to 0.

5 RBC Byte Control ROM Byte Control (initial value: BBC value for Channel 0 and 0 for Channels 1 to 7)
Specifies whether to use the BWE[3:0] signals as byte write enable signals
(BWE[3:0]) which become active only for write cycles or as byte enable signals
which become active for both read and write cycles.
0: Byte enable (BE[3:0])
1: Byte write enable (BWE[3:0])
Note: This bit for Channel 0 is set with the value of boot signal BBC (ADDR[6] pin).

4 RHS Half Speed Bus ROM Control Half-Speed Bus (initial value: BME0 value for Channel 0 and 0 for
Channels 1 to 7)
Controls the frequency at which the bus runs with respect to the G-Bus clock.
For half-speed bus accesses, the ADDR, ACK*, CE* and OE* signals might be
delayed by half a cycle with respect to the half-speed reference clock. For details,
see Section 19.9.
0: Full speed
1: Half speed
Note: This bit for Channel 0 is set with the inverted value of boot signal BME[0]

(ADDR[8] pin).
3 RME Master Enable ROM Control Master Enable (initial value: BME1 value for Channel 0 and 0 for

Channels 1 to 7)
Enables or disables the channel.
0: Disable the channel.
1: Enable the channel.
Note: This bit for Channel 0 is set with the inverted value of boot signal BME[1]

(ADDR[9] pin).
2:0 RSHWT Setup/Hold Wait

Time
ROM Control Setup/Hold Wait Time (initial value: 000)
Specifies the chip-enable turn-on delay, which is when the chip enable signal should
be asserted relative to the address, and the write-enable/output-enable turn-on
delay, which is when the write enable or output enable signal should be asserted
relative to the chip enable signal.
*000: Disabled 100: 4 wait states
 001: 1 wait states 101: 5 wait states
 010: 2 wait states 110: 6 wait states
 011: 3 wait states 111: 7 wait states
* This bit should be set to 0 for burst accesses and page mode.

Figure 9.3.2 ROM Channel Control Registers (2/2)

Chapter 9 External Bus Controller

9-6

9.4 Operation

9.4.1 Bootup Options

Channel 0 can be used to control a boot memory device and can be configured through boot options
during reset initialization of the TMPR3927. The following provides a description of the boot options.
For a complete description of boot-mode settings via external pins (boot pins), refer to "3.4 Initial
Setting Signals."

BOOTME
Enables or disables Channel 0 and specifies the bus speed (half/full speed). The values presented

on boot signals BME[1:0] (ADDR[9:8] pins) are set in the RME and RHS bits of ROM Channel
Control Register 0.

00: Disables Channel 0 as the boot channel. (When BME[1:0]=00)

01: Disables Channel 0 as the boot channel. (When BME[1:0]=01)

10: Enables Channel 0 as the boot channel in half-speed mode
(The SYSCLK frequency is half that of the G-Bus frequency.)
(When BME[1:0]=10)

11: Enables Channel 0 as the boot channel in full-speed mode
(The SYSCLK frequency is equal to the G-Bus frequency.)
(When BME[1:0]=11)

BOOT16
Control the width of memory accesses for Channel 0. The inverted value of boot signal

BOOT16* (ADDR[13] pin) is set in the 16Bus bit of ROM Channel Control Register 0.

0: 32-bit wide upon bootup. (When BOOT16*=1)

1: 16-bit wide upon bootup. (When BOOT16*=0)

BOOTAI
Specifies whether the ACK* signal for Channel 0 is internally or externally generated. The

inverted value of boot signal BAI* (ADDR[7] pin) is set in bit 12 of ROM Channel Control
Register 0.

0: Internal ACK mode upon bootup. (When BAI*=1)

1: External ACK mode upon bootup. (When BAI*=0)

BOOTBC
Controls whether the BWE[3:0] signals are used as byte enable signals (BE[3:0]) or byte write

enable signals (BWE[3:0]) when accessing a memory device on Channel 0. The value of boot
signal BBC (ADDR[6] pin) is set in the RBC bit of ROM Channel Control Register 0.

0: Used as byte enable signals. (When BBC=0)

1: Used as byte write enable signals. (When BBC=1)

Chapter 9 External Bus Controller

9-7

9.4.2 Global Options

In addition to those described in "9.4.1 Bootup Options," the ROMC provides the two options.

CHANHS
Specifies the SYSCLK output frequency. The inverted value of boot signal CHANHS*

(ADDR[15] pin) is set in the RHS bit of the Chip Configuration Register (CCFG).

0: Full speed (equal to the G-Bus frequency).

1: Half speed (half the G-Bus frequency). The half-speed option must be selected if at least
one channel is run at half speed.

ACEHOLD
Specifies the address hold time relative to the ACE* signal. This option is set by the ACEHOLD

bit of the Chip Configuration Register (CCFG).

0: Addresses are made available, coincident with the ACE* signal.

1: Addresses are made available one clock cycle after deassertion of the ACE* signal.

9.4.3 ROM Channel Control Registers

The ROM Channel Control Registers must be accessed using 32-bit reads and writes. There is no
priority among the channels. Care must be taken to ensure that more than one channel is not
programmed for to the same address region.

9.4.4 Clock Options

Each channel can be independently programmed to operate with a full-speed or half-speed clock.
When Channel 0 is used to control boot memory, SYSCLK is always generated at the frequency
specified for Channel 0, regardless of the value of CHANHS at boot time.

If both full- and half-speed clocks are necessary, set SYSCLK to half speed and use one of the
SDCLK outputs as a full-speed clock.

The following table shows how boot signals BME[1:0] and CHANHS affect the SYSCLK frequency.

BME[1] BME[0] CHANHS SYSCLK ROMC Channel 0
1 0 0 1/2 1/2
1 0 1 1/2 1/2
1 1 0 1/2 Full

Use ROMC Channel 0
for boot memory.

1 1 1 Full Full
0 0 0 1/2 
0 0 1 Full 
0 1 0 1/2 

Use SDRAMC Channel
0 for boot memory.

0 1 1 Full 

Chapter 9 External Bus Controller

9-8

9.4.5 Base Address and Channel Size

The base address of a channel must be aligned on a boundary that is an integer multiple of the
selected size. For example, a 64-Mbyte channel size must begin on a 64-Mbyte boundary. When the size
of a channel is programmed to 64 Mbytes, the lower six bits of the base address (RBA) field, or bits 25
to 20 of its ROM Channel Control Register, are ignored. (The minimum resolution of channel size is 1
Mbyte.) If the base address (RBA) filed is inadvertently programmed as 0x150 with a size of 64
Mbytes, then the actual base address becomes 0x140, as shown below. This results in the assignment of
addresses 0x9400_0000 to 0x97ff_ffff (or 0xb400_0000 to 0xb7ff_ffff) to this channel.

RBA Value 000101010000

 Ignored when the channel size is programmed to 64 Mbytes

9.4.6 Operating Modes

The ROMC provides two major operating modes, ACK*/READY static and ACK*/READY
Dynamic. The function of the ACK*/READY pin depends on the mode of operation selected for the
ROMC channels. In Static mode, the ACK*/READY pin is always an input. In Dynamic mode, the
ACK*READY pin is dynamically configured as input or output, depending on which channel is
accessed and how that channel is programmed. There are four submodes, Normal, Page, External
ACK*, and READY, each separately selectable on a per channel basis.

9.4.6.1 ACK*/READY Dynamic Mode
The ROMC is configured for this mode when no channel is programmed with RDY=1 and

RWT[0]=1.

In this mode, the ACK*/READY pin is automatically used either as input or output on a per
channel basis. When a channel is programmed for Normal or Page submode, the ACK*/READY
pin acts as an output (and uses the internally generated ACK*) whenever that channel is accessed.
When a channel is programmed for External ACK* or READY submode, the ACK*/READY pin
acts as an input whenever that channel is accessed. Refer to the timing diagrams to prevent signal
conflicts when the pin changes its direction.

9.4.6.2 ACK*/READY Static Mode
The ROMC is configured for this mode when any one of the channels is programmed with

RDY=1 and RWT[0]=1.

In this mode, the ACK*/READY pin is always an input. Thus, even when a channel is
programmed for Normal or Page submode, the internal ACK* signal is not made visible
externally. For this reason, in cases where any channel usage causes the ROMC to be configured
for ACK*/READY Static mode, the ACK*/READY pin must be connected to a device with an
open-drain node.

9.4.6.3 Normal Submode
A channel is configured for this mode when the associated ROM Channel Control Register is

programmed as follow:

RPM = 00
RDY = 0
RPWT:RWT != 0x3f

Chapter 9 External Bus Controller

9-9

In this mode, the ACK*/READY pin is used as the ACK* output. The RPWT and RWT fields
together specify the number of wait states to be taken by each transfer. Since RPWT:RWT=0x3f
results in External ACK* mode, the number of wait states on Normal-mode transfers can be
between 0 and 62, inclusive.

9.4.6.4 External ACK* Submode
A channel is configured for this mode when the associated ROM Channel Control Register is

programmed as follows:

RPM = 00
RDY = 0
RPWT:RWT = 0x3f

In this mode, the ACK*/READY pin is used as an ACK* input, and the external device must
issue the ACK* signal to terminate a memory cycle. The ROMC internally synchronize the ACK*
signal. For details, refer to "9.4.9.2 ACK* Input Timing."

9.4.6.5 Page Submode
A channel is configured for this mode when the associated ROM Channel Control Register is

programmed as follws:

RPM != 00
RDY = 0

In this mode, the ACK*/READY pin is used as an ACK* output. The RPWT and RWT fields
specify the number of wait states to be taken. In particular, this mode conforms to the
requirements for page-mode ROMs. The 4-bit RWT field specifies the number of wait states (0 to
15) to be taken by all single-transfers and the first transfer of a burst. The 2-bit RPWT field
specifies the number of wait states (0 to 3) to be taken by accesses beyond the first during a burst
transfer.

The RPM field controls the page-mode burst size. If it is less than the CPU burst size, multiple
page-mode burst cycles will be used. In this case, the wait states specified in the 4-bit RWT field
are inserted for each burst cycle. In Page mode, the number of wait states specified by the RWT
field should be greater than or equal to that specified by the RPWT field.

9.4.6.6 READY Submode
A channel is configured for this mode when the associated ROM Channel Contorl Reigster is

programmed as follows:
RPM = 00
RDY = 1

In this mode, the ACK*/READY pin is used as a READY input, and the external device must
issue the READY signal to terminate a memory cycle. The ROMC internally synchronize the
READY signal. For details, refer to "9.4.10 READY Input Timing."

The TX3927 examines the READY input after the wait period programmed in RPWT:RWT
expires. RWT[0] is used to select either ACK*/READY Static or Dynamic mode; hence it does
not participate in determining the number of wait states. Therefore, possible wait state counts for
READY mode are 0, 2, 4, 6, ... 62.

Burst accesses are dis allowed in READY mode.

Chapter 9 External Bus Controller

9-10

9.4.7 16-Bit Data Bus Operation

A channel configured for a 16-bit data bus can access a byte or halfword data item in a single-
transfer cycle. The transfer of a word data item requires two bus cycles. A burst request to a 16-bit
channel always causes two 16-bit accesses to be performed, regardless of the requested data size
(byte, halfword or any combinations of non-word data size)

The maximum memory size that can be assigned to a channel in 16-bit bus mode is 512MB, not
1GB.

9.4.8 SHWT Option

The SHWT option is selected when the RSHWT field is set to a non-zero value. This option
uniformly extends the setup and hold times listed below to support slow I/O devices.

Setup: ADDR to CE, CE to OE, and CE to BWE/BE.

Hold: CE to ADDR, OE to CE, and BWE/BE to CE.

When this option is enabled for a channel, that channel will have an equal, requirement for all of the
above setup/hold times, each setup or hold property cannot be programmed separately.

The SHWT option cannot be used in Page mode. All the other modes support the SHWT option, but
it makes burst accesses unusable.

The TX3927 executes burst accesses for the following cases. The RSHWT field should be set to "0"
if any burst accesses can occur for a relevant memory channel.

(1) TX3927 instruction fetches

(2) Cache write-back when the data cache employs a write-back mode

(3) DMA access with a transfer size (XFSZ) of 4 or more words, unless the DBINH or SBINH field of
the Channel Control Register (CCR) is programmed prohibit burst accesses for the relevant
memory

(4) The following accesses from an external PCI master when the TBL_OFIFO or TBL_IFIFO field of
the PCI Target Burst Length Register (TBL) is programmed with a size larger than one
doubleword.
a) Read (including a single read)
b) Burst write exceeding the specified size

Chapter 9 External Bus Controller

9-11

9.4.9 ACK*/READY Signal Timing

9.4.9.1 ACK* Output Timing
The external device can use the ACK* signal as a timing reference for reads and writes when it

is an output.

During a read cycle, data is always latched on the rising edge of the clock after the assertion of
ACK*.

During a write cycle, data will remain valid for two clock cycles after ACK* is recognized as
asserted on the rising edge of the clock (i.e., one clock cycle after SWE* or BWE* is deasserted.

9.4.9.2 ACK* Input Timing
The ROMC internally synchronizes the ACK* signal when it is an input. Due to internal state

machine restrictions, ACK* cannot be recognized in back-to-back cycles. Once ACK* is
recognized, the earliest it can be recognized again is two clock cycles later for a read and four
clock cycles later for a write.

The timing at which the ROMC starts sampling ACK* differs between read and write cycles, as
shown below. ACK* is continuously sampled on the rising edge of the clock thereafter.

• Read cycle

The first rising edge of the clock after OE* is asserted low

• Write cycle

The rising edge of the clock where SWE* is asserted low

Figure 9.4.1 Timing for Starting Sampling ACK* During a Read Cycle

Figure 9.4.2 Timing for Starting Sampling ACK* During a Write Cycle

During a read cycle, data will be latched two clock cycles after the ACK* signal is recognized.

During a write cycle, data will remain valid for four clock cycles after ACK* is recognized as
asserted. (i.e., one clock cycle after SWE* or BWE* is deasserted).

SYSCLK/SDCLK

OE*

Start sampling ACK*

SYSCLK/SDCLK

SWE*

Start sampling ACK*

Chapter 9 External Bus Controller

9-12

9.4.10 READY Input Timing

When the ACK*/READY pin is configured as a READY input, the description of the ACK* input
timing in "9.4.9.2 ACK* Input Timing" also applies to the READY input, with two exceptions. First,
READY is active high while ACK* is active low. Secondly, in READY mode, wait states can be
inserted as specified by RPWT:RWT, so that the READY input is examined after the wait period
expires. For details, refer to "9.4.6.6 READY Submode."

The timing at which the ROMC starts sampling READY differs between read and write cycles, as
shown below. READY is continuously sampled on the rising edge of the clock thereafter.

• Read cycle

(1) When the number of wait states is 0 (RPWT:RWT = 0)
The first rising edge of the clock after OE* is asserted low

(2) When the number of wait states is n, which is a non-zero value (RPWT:RWT != 0)
The nth rising edge of the clock after OE* is asserted low

• Write cycle

(1) When the number of wait states is 0 (RPWT:RWT = 0)
The rising edge of the clock where SWE* is asserted low

(2) When the number of wait states is n, which is a non-zero value (RPWT:RWT != 0)
The (n-1)th rising edge of the clock after SWE* is asserted low

Figure 9.4.3 Timing for Starting the Sampling READY During a Read Cycle

Figure 9.4.4 Timing for Starting Sampling of READY During a Write Cycle

9.4.10.1 ACK*/READY Turnaround Timing
In ACK*/READY Static mode, the ACK*/READY pin is always an input. In ACK*/READY

Dynamic mode, the ACK*/READY pin is usually an output except when a channel is configured
for a submode that requires the pin to be an input. The ACK* pin goes into the high-impedance
state in the same clock cycle when the CE* signal is asserted. The ACK* signal is actively driven
again one clock cycle after CE* is deasserted.

SYSCLK/SDCLK

OE*

0 wait
states

2 wait
states

4 wait
states

6 wait
states

8 wait
states

SYSCLK/SDCLK

SWE*

0 wait
states

2 wait
states

4 wait
states

6 wait
states

8 wait
states

Chapter 9 External Bus Controller

9-13

9.4.11 Addressing

Using a 32-bit address internally, the TX3927 address space encompasses 4 Gbytes. Externally, the
TX3927 provides the multiplexed address output pins named ADDR[19:2].

In 32-bit bus mode, internal address bits [19:2] are directly routed to the ADDR[19:2] pins. The
upper address bits [29:20] are multiplexed over the ADDR[19:10] pins. In 32-bit bus mode the
maximum memory size is 1GB.

In 16-bit bus mode, internal address bit [1] is generated, based on the internal byte enable and
endianness, and routed to the ADDR[2] pin. Internal address bits [18:2] are directly routed to the
ADDR[19:3] pins. The upper internal address bits [28:19] are multiplexed over the ADDR[19:10] pins.
In 16-bit bus mode, the maximum memory size is 512MB.

Refer to "9.4.12 ACE* Operation" for mode on address multiplexing.

The following figures show the correspondence between the internal address bits (GAIN[31:0]) and
the externalized address pins (ADDR[19:2]):

1) 32-bit bus mode
Internal address (GAIN[31:0])

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

External address (ADDR[19:2])

2) 16-bit bus mode
Internal address (GAIN[31:0])

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

19 18 17 16 15 14 13 12 11 10 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

External address (ADDR[19:2])

9.4.12 ACE* Operation

The ACE* signal makes it possible to demultiplex the address on ADDR[19:2]. To generated a full
address, an external latch must be used to latch the first (upper) ten bits of the address signals using the
active-low ACE* (Address Clock Enable) signal together with the rising edge of the system clock
(SYSCLK). Alternatively, ACE* can be used directly as a latch enable signal.

After reset, the ACE* signal always goes active during the first clock cycle. In subsequent cycles, the
first ten bits of the new address are compared to those of the preceding address. If they do not match,
the upper address is output and ACE* is activated. In 32-bit bus mode, ACE* will never be active if the
RCS field is programmed for a channel size of 1 MB since the upper ten bits of the address do not
participate in address decoding. If the RCS field is programmed for 1-MB channel size in 16-bit bus
mode, ACE* will go active only when ADDR[20] is not used for address decoding for a chip select.

By default, the address is held stable one clock after the rising edge of ACE*. This hold time can be
eliminated by clearing the ACEHOLD bit of the Chip Configuration Register (CCFG). The hold-time
bit applies to all the channels.

Chapter 9 External Bus Controller

9-14

9.5 Timing Diagrams
Note the following, when referring to the timing diagrams in this section:

1. SYSCLK/SDCLK in the timing diagrams indicates the state of SYSCLK or SDCLK[4:0]. SDCLK[4:0]
always operate at full speed, while SYSCLK can be used in either full-speed or half-speed mode. All
relevant signals are synchronous to the half or full speed clock, depending on the channel configuration.

2. All timing diagrams show both the BWE* and BE* signals. Either one of those is mode available at any
given time from the BWE* pin, depending on the setting of the ROM Channel Control Register.

3. All burst cycles shown start on page boundaries. This is true except when CWF (Critical Word First) is
enabled. The address order may be different in 4-word critical-word-first bursts.

4. Wait states are indicated as SWx in the diagrams. Setup and hold states programmed by SHWT are
indicated as ASx (setup from address valid to CE falling), CSx (setup from CE falling to OE/SWE
falling), AHx (hold from CE rising to address change), and CHx (hold from OE/SWE rising to CE
rising). Synchronization states for external input signals are indicated as ESx. Address clock enable
states are indicated as ACEx. All other states are indicated as Sx. In cases where two states overlap the
non-Sx state is indicated.

5. The ACK* pin can be an input or output in Dynamic mode. When switching from an output to input, it
enters the high-impedance state coincident with the assertion of CE*. The middle-level lines in the
diagrams represent the high-impedance state. When switching ACK* from an input to output, the
TX3927 starts driving ACK* one clock after CE* is deasserted. It should be noted that in the case of a
32-bit access to a 16-bit memory in External ACK* (READY) mode, CE* is deasserted between two
half-word accesses.

6. External ACK* (READY) signal is shown as active for one clock cycle. External ACK* (READY)
may, however, remain active for more than one clock cycle as long as the following requirements are
satisfied:

• In the case of External ACK* and READY single-transfer accesses, the ACK* pin may remain
active until the end of the cycle where CE* is deasserted.

• Depending on the mode of the ACK* pin (Dynamic or Static), the external device must either drive
it high or tri-state it to meet the requirements described in Note 5 above.

• In the case of External ACK* burst cycles, the external device may keep the signal active for up to
3 clock cycles for a read and up to 5 clock cycles for a write. If the signal remains active longer,
the TX3927 recognizes it as a next valid ACK*.

Note: The ACK* (READY) pin has an internal pull-up resistor. However, because the
resistance is large, an external resistor can also be attached.

Chapter 9 External Bus Controller

9-15

9.5.1 ACE* Signal Operation

Figure 9.5.1 ACE* with Hold Time

Figure 9.5.2 ACE* without Hold Time

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE

DATA [31:0]

ACK*

f

SYCLK/SDCLK

1

1 0

ACE1 ACE2

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE

DATA [31:0]

ACK*

1

SYCLK/SDCLK

ACE1

1

0

0

Chapter 9 External Bus Controller

9-16

9.5.2 Normal Mode 32-bit Write Operation

Figure 9.5.3 Normal Mode 32-bit Bus Operation (32-bit Single Write, 1 Wait State)

S1

f
0

S2
S3

f
f

0

f

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

SW
1

Chapter 9 External Bus Controller

9-17

9.5.3 Normal Mode 32-bit Operation

Figure 9.5.4 Normal Mode 32-bit Bus Operation (32-bit Single Read, 1 Wait State)

f

S1

f
0

S2
S3

f

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

SW
1

Chapter 9 External Bus Controller

9-18

Figure 9.5.5 Normal Mode 32-bit Bus Operation (4-word Burst Read, 1 Wait State)

S1 SW1 S2 S1 SW1 S2 S1 SW1 S2 S1 SW1 S2 S3

SYSCLK/SDCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE

DATA [31:0]

ACK*

f0

0 1 2 3

f

f

Chapter 9 External Bus Controller

9-19

Figure 9.5.6 Normal Mode 32-bit Bus Operation (4-word Burst Write, 1 Wait State)

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

D
AT

A
[3

1:
0]

AC
K*

S1
SW

1
S2

f

S3
S1

SW
1

S2
S3

S1
SW

1
S2

S3
S1

SW
1

S2
S3

2
1

0
3

f
0

f
0

f
0

f
0

f

f
0

Chapter 9 External Bus Controller

9-20

9.5.4 Normal Mode 16-bit Bus Operation

Figure 9.5.7 Normal Mode 16-bit Bus Operation (32-bit Single Write, No Wait State)

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

S1
S3

S2

f
c

S1
S3

S2

f

f
f

c
f

c

f
c0

1

Chapter 9 External Bus Controller

9-21

Figure 9.5.8 Normal Mode 16-bit Bus Operation (32-bit Single Read, No Wait State)

SYSCLK/SDCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE*

DATA [31:0]

S1 S2 S1 S3S2

ACK*

f f

0 1

f

c f c

Chapter 9 External Bus Controller

9-22

Figure 9.5.9 Normal Mode 16-bit Bus Operation (16-bit Single Write, No Wait State)

S1

f
c

S2
S3

f
f

c

f

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

Chapter 9 External Bus Controller

9-23

Figure 9.5.10 Normal Mode 16-bit Bus Operation (16-bit Single Read, No Wait State)

S1

f

S2
S3

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

c

f

f

Chapter 9 External Bus Controller

9-24

9.5.5 Normal Mode 16-bit Burst Operation

Figure 9.5.11 Normal Mode 16-bit Bus Operation (4-word Burst Read, No Wait State)

SY
C

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

D
AT

A
[3

1:
0]

AC
K*

S1
S2

S1
S2

S1
S2

S1
S2

S1
S2

S1
S2

S1
S2

S1
S2

S3

0
1

2
3

4
5

6

f

f
c

f

7

Chapter 9 External Bus Controller

9-25

SY
SC

LK
/S

D
C

LK C
E *

AD
D

R
 [1

9:
2]

AC
E *

O
E *

SW
E *

BW
E *

D
AT

A
[1

5:
0]

AC
K *

c
f

c
f

c
f

c
f

c
f

c
f

c
f

c
f

S1
S3

S2
S1

S3
S2

S1
S3

S2
S1

S3
S2

S1
S3

S2
S1

S3
S2

S1
S3

S2
S1

S3
S2

0
1

2
3

4
5

6
7

BE
*

f

f

f
c

Figure 9.5.12 Normal Mode 16-bit Bus Operation (4-word Burst Write, No Wait Stets)

Chapter 9 External Bus Controller

9-26

9.5.6 Page Mode 32-bit Burst Operation

Figure 9.5.13 Page Mode 32-bit Bus Operation (8-word Burst Read, 1 Wait State, No Page Wait State)

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

D
AT

A
[3

1:
0]

AC
K*

S1
SW

1
S2

S1
S2

S1
S2

S1
S2

S1
SW

1
S2

S1
S2

S1
S2

S3

0
1

2
3

f
f

7

S1
S2

5
6

4

f 0

Chapter 9 External Bus Controller

9-27

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E

*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K*

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

S
1

S
3

S
2

0
1

2
3

4
5

6
7

BE
*

f

f

f
c

SW
1

SW
1

0
f

0
f

0
f

f
0

f
0

f
0

f
0

f
0

Figure 9.5.14 Page Mode 32-bit Bus Operation (8-word Burst Write, 1 Wait State, No Page Wait State)

Chapter 9 External Bus Controller

9-28

9.5.7 External ACK* Mode 32-bit Operation

Note 1: The TX3927 places the ACK* pin in the high-impedance state in S1.

Note 2: The external device must assert ACK* (low) before the end of ES1. In the above diagram ACK* is
asserted in ES1 to clarify when the drive is switched. If ACK* is asserted before the end of S1, S1
is immediately followed by ES2, with no ES1 state (no wait states inserted).

Note 3: The external device must deasserts ACK* (high) in ES2. If assertion of ACK* is delayed, extra
wait states are inserted. The ACK* signal is allowed to remain low for more than one clock in
certain situations. For details, refer to "9.5 Timing Diagrams" and "9.4.9.2 ACK* Input Timing."

Figure 9.5.15 External ACK* Mode 32-bit Bus Operation (32-bit Single Write, 1 Wait State)

Figure 9.5.16 External ACK* Mode 32-bit Bus Operation (32-bit Single Read, 1 Wait State)

SYSCLK/SDCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE*

DATA [31:0]

S1 ES2ES1 ES3 S3S2

ACK*

0 ff

f 0 f

SYSCLK/SDCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE*

DATA [31:0]

S1 ES2ES1 S2 S3

ACK*

f 0 f

f

Chapter 9 External Bus Controller

9-29

Figure 9.5.17 External ACK* Mode 32-bit Bus Operation (4-word Burst Read, 1 Wait State)

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

D
AT

A
[3

1:
0]

AC
K*

S1
ES

1
ES

2

f

f
0

f

S2
S1

ES
1

ES
2

S2
S1

ES
1

ES
2

S2
S1

ES
1

ES
2

S2
S3

3
2

1
0

Chapter 9 External Bus Controller

9-30

SY
SC

LK
/S

D
C

LK

C
E

*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E*

D
AT

A
[1

5:
0]

AC
K*

0
f

f

S1
ES

1
S3

S2

0

BE
*

f

f

f
0

ES
2

ES
3

S2
S3

S1
ES

1
ES

2
ES

3
S2

S3
S1

ES
1

ES
2

ES
3

S2
S3

S1
ES

1
ES

2
ES

3

1
2

3

0
f

0
f

0

Figure 9.5.18 External ACK* Mode 32-bit Bus Operation (4-word Burst Write, 1 Wait State)

Chapter 9 External Bus Controller

9-31

Figure 9.5.19 External ACK* Mode 32-bit Bus Operation (32-bit Single Write, 2 Wait States, SHWT=2)

Figure 9.5.20 External ACK* Mode 32-bit Bus Operation (32-bit Single Read, 1 Wait State, SHWT=2)

AS1 AS2 CS1

f

CS2 SW1 ES1 ES2 ES3 S2 CH1 CH2 AH1 AH2

SYSCLK/SDCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE

DATA [31:0]

ACK*

f 0

f0

f

AS1 AS2 CS1

f

CS2 S1 ES1 ES2 S2 CH1 CH2 AH1 AH2

SYSCLK/SDCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

BE

DATA [31:0]

ACK*

f

f0

Chapter 9 External Bus Controller

9-32

9.5.8 External ACK* Mode 16-bit Operation

SY
SC

LK
/S

D
C

LK C
E

*

AD
D

R
 [1

9:
2]

AC
E

*

O
E

*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K*

AS
1

C
S2

C
S1

SW
1

ES
2

ES
1

ES
3

C
H

S2

0

BE
*

f

f

f

AS
2

f

C
H

AS
1

AH
2

AS
2

C
S1

AH
1

C
S2

ES
1

SW
1

ES
2

S2
ES

3
AH

1
AH

2
C

H
1

C
H

2

1

c
f

c

f
c

c

N
ot

e:
 T

he
 T

X3
92

7
dr

iv
es

 th
e

AC
K*

 s
ig

na
l i

n
th

e
AH

2,
 A

S
1

an
d

AS
2

st
at

es

Figure 9.5.21 External ACK* Mode 16-bit Bus Operation (32-bit Single Write, 2 Wait States, SHWT=2)

Chapter 9 External Bus Controller

9-33

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K*

AS
1

C
S2

C
S1

S1
ES

2
ES

1
S2

C
H

C
H

0

BE
*

f

AS
2

AH
2

C
S1

AS
2

C
S2

S1
AS

1
ES

1
S2

ES
2

C
H

1
AH

1
C

H
2

AH
2

1

f
c

c

AH
1

f

f

N
ot

e:
 T

he
 T

X3
92

7
dr

iv
es

 th
e

AC
K *

 s
ig

na
l i

n
th

e
AH

2,
 A

S1
 a

nd
 A

S2
 s

ta
te

s

Figure 9.5.22 External ACK* Mode 16-bit Bus Operation (32-bit Single Read 1 Wait State, SHWT=2)

Chapter 9 External Bus Controller

9-34

9.5.9 READY Mode 32-bit Operation

Figure 9.5.23 READY Mode 32-bit Bus Operation (32-bit Single Write, 2 Wait States, SHWT=1)

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

AS
1

SW
1

C
S1

ES
1

f
f

f

ES
2

S2
ES

3
C

H
1

AH
1

f

0 0

Chapter 9 External Bus Controller

9-35

Figure 9.5.24 READY Mode 32-bit Bus Operation (32-bit Single Read, 1 Wait State, SHWT=1)

SY
SC

LK
/S

D
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E* BE

*

D
AT

A
[3

1:
0]

AC
K*

AS
1

S1
C

S1
ES

1

f
0

ES
2

C
H

1
S2

AH
1

f

f

Chapter 9 External Bus Controller

9-36

9.6 Examples of Using Flash ROM and SRAM
Figure 9.6.1 and Figure 9.6.2 show examples of using flash ROM. Figure 9.6.3 shows an example of using

SRAM.

Figure 9.6.1 Example of Using Flash ROM (×16 bits) (32-bit Data Bus)

Figure 9.6.2 Example of Using Flash ROM (×16 bits) (16-bit Data Bus)

ADDR [19:2]

ACE*

CE*[0]
SWE*

OE*

DATA [31:0]

TX3927

ADDR [19:2]
A [17:0]

A18

CE*
WE*
OE*

D [15:0]

ADDR [10] ADDR [20]

A [17:0]

A18

CE*
WE*
OE*

D [15:0]

Flash ROM (×16 bit)

D [31:16] D [15:0]

ADDR [19:2]

ACE*

CE*[0]
SWE*

OE*

DATA [31:0]

TX3927

ADDR [19:2]

ADDR [10] ADDR [20]

A [17:0]

A18

CE*
WE*
OE*

D [15:0]

Flash ROM (×16 bit)

DATA [15:0]

Chapter 9 External Bus Controller

9-37

Figure 9.6.3 Example of Using SRAM (×16 bits) (32-bit Data Bus)

D [31:16]

BWE* [3:0]

ADDR [19:2]

CE*[0]
SWE*

OE*

DATA [31:0]

TX3927

ADDR [19:2]

 UB LB

A [17:0]

CS*
WE*
OE*

D [15:0]

SRAM (×16 bit)

D [15:0]

 UB LB

A [17:0]

CS*
WE*
OE*

D [15:0]

BWE* [3] BWE* [2] BWE* [1] BWE* [0]

Chapter 9 External Bus Controller

9-38

Chapter 10 DMA Controller

10-1

10. DMA Controller

10.1 Features
The TX3927 DMA Controller (DMAC) handles data transfers between memory and I/O peripherals and

from memory to memory.

The DMA Controller features the following:

• 4 DMA channels

• Supports linked-list command chaining on all channels.

• Single- and dual-address transfers

• Memory-to-memory transfers
Supports burst reads and writes of up to 8 words (provided data is word-aligned).

• Channel priorities are individually determined for channels configured for snooping and non-snooping
operations.

• 24-bit signed address increment registers for both source and destination addresses

• 24-bit byte transfer counters per channel

• Supports 8-, 16-, and 32-bit I/O peripherals.
16-bit peripherals can use both single- and dual-address transfers.
8-bit peripherals can use only dual-address transfers.

• The DMA acknowledge pins are available for use as the read/write transfer strobe for off-chip
peripherals using single-address transfers.
For single-address transfers, the I/O peripheral width must be equal to the memory width.

Chapter 10 DMA Controller

10-2

10.2 Block Diagram

Figure 10.2.1 TX3927 DMAC Block Diagram

TX39/H2 Core

Bus Request

Bus Grant
Bus Mastership
Acknowledge

Bus Release Request

Control

Address

Data

Control Block

MCR

Ch.0 CHAR0
SAR0
DAR0

CNTR0
SAI0
DAI0
CCR0
CSR0

Ch.1 CHAR1
SAR1
DAR1

CNTR1
SAI1
DAI1
CCR1
CSR1

Ch.2 CHAR2
SAR2
DAR2

CNTR2
SAI2
DAI2
CCR2
CSR2

Ch.3 CHAR3
SAR3
DAR3

CNTR3
SAI3
DAI3
CCR3
CSR3

DMAC

FIFO

DMAREQ0

DMAACK0

SIRXDREQ0

SIRXDACK0

DREQ0

DACK0

To external pin

To SIO Channel 0
(Receive)

M
ul

tip
le

xe
r

PCFG.INTDMA[0]

DMAREQ1

DMAACK1

SIRXDREQ1

SIRXDACK1

DREQ1

DACK1

To external pin

To SIO Channel 1
(Receive)

M
ul

tip
le

xe
r

PCFG.INTDMA[1]

DMAREQ2

DMAACK2

SITXDREQ0

SITXDACK0

DREQ2

DACK2

To external pin

To SIO Channel 0
(transmit)

M
ul

tip
le

xe
r

PCFG.INTDMA[2]

DMAREQ3

DMAACK3

SITXDREQ1

SITXDACK1

DREQ3

DACK3

To external pin

To SIO Channel 1
(transmit)

M
ul

tip
le

xe
r

PCFG.INTDMA[3]

Chapter 10 DMA Controller

10-3

10.3 Registers

10.3.1 Register Map
The base address of the DMAC registers is 0xFFFE_B000. All registers in the DMAC can only be

word-accessed. Any other type of access will produce an undefined result.

For the bits not defined in this section, the values shown in the figures must be written.

Table 10.3.1 DMA Controller Registers

Address Register Mnemonic Register name
0xFFFE_B0A4 MCR Master Control Register
0xFFFE_B0A0 TDHR Temporary Data Holding Register *
0xFFFE_B09C DBR7 Data Buffer Register 7*
0xFFFE_B098 DBR6 Data Buffer Register 6*
0xFFFE_B094 DBR5 Data Buffer Register 5*
0xFFFE_B090 DBR4 Data Buffer Register 4*
0xFFFE_B08C DBR3 Data Buffer Register 3*
0xFFFE_B088 DBR2 Data Buffer Register 2*
0xFFFE_B084 DBR1 Data Buffer Register 1*
0xFFFE_B080 DBR0 Data Buffer Register 0*
0xFFFE_B07C CSR3 Channel Status Register 3
0xFFFE_B078 CCR3 Channel Control Register 3
0xFFFE_B074 DAI3 Destination Address Increment Register Channel 3
0xFFFE_B070 SAI3 Source Address Increment Register Channel 3
0xFFFE_B06C CNTR3 Count Register 3
0xFFFE_B068 DAR3 Destination Address Register 3
0xFFFE_B064 SAR3 Source Address Register 3
0xFFFE_B060 CHAR3 Chained Address Register 3
0xFFFE_B05C CSR2 Channel Status Register 2
0xFFFE_B058 CCR2 Channel Control Register 2
0xFFFE_B054 DAI2 Destination Address Increment Register 2
0xFFFE_B050 SAI2 Source Address Increment Register 2
0xFFFE_B04C CNTR2 Count Register 2
0xFFFE_B048 DAR2 Destination Address Register 2
0xFFFE_B044 SAR2 Source Address Register 2
0xFFFE_B040 CHTR2 Chained Address Register 2
0xFFFE_B03C CSR1 Channel Status Register 1
0xFFFE_B038 CCR1 Channel Control Register 1
0xFFFE_B034 DAI1 Destination Address Increment Register 1
0xFFFE_B030 SAI1 Source Address Increment Register 1
0xFFFE_B02C CNTR1 Count Register 1
0xFFFE_B028 DAR1 Destination Address Register 1
0xFFFE_B024 SAR1 Source Address Register 1
0xFFFE_B020 CHTR1 Chained Address Register 1
0xFFFE_B01C CSR0 Channel Status Register 0
0xFFFE_B018 CCR0 Channel Control Register 0
0xFFFE_B014 DAI0 Destination Address Increment Register 0
0xFFFE_B010 SAI0 Source Address Increment Register 0
0xFFFE_B00C CNTR0 Count Register 0
0xFFFE_B008 DAR0 Destination Address Register 0
0xFFFE_B004 SAR0 Source Address Register 0
0xFFFE_B000 CHAR0 Chained Address Register 0

Note: The temporary data holding register and the data buffer registers are read-only registers used
for debugging purposes. If a DMA transfer is aborted or halted, the contents of these registers
can be read via software to execute the subsequent transfer operation.

Chapter 10 DMA Controller

10-4

10.3.2 Master Control Register (MCR) 0xFFFE_B0A4

This register contains control and status bits for all DMAC channels.

31 30 29 28 27 26 25 24 23 18 17 16
EIS3 EIS2 EIS1 EIS0 DIS3 DIS2 DIS1 DIS0 0 FIFOVC

R R R R R R R R R : Type
0 0 0 0 0 0 0 0 00 : Initial value

15 14 13 11 10 8 7 6 3 2 1 0
FIFOVC FIFWP FIFRP RSFIF FIFUM LE RRPT MSTEN

R R R R/W R/W R/W R/W R/W : Type
00 000 000 0 0000 0 0 0 : Initial value

Bits Mnemonic Field Name Description
31 EIS3 Error Interrupt

Status for
Channel 3

Error Interrupt Status for Channel 3 (initial value: 0x0)
Indicates whether an error interrupt condition has occurred on Channel 3. This bit is
the logical AND of the Interrupt Enable on Error bit of the Channel Control Register 3
(CCR3.INTENE) and the Abnormal Chain Completion bit of the Channel Status
Register 3 (CSR3.ABCHC).
1: An error interrupt condition has occurred.
0: An error interrupt condition has not occurred.

30 EIS2 Error Interrupt
Status for
Channel 2

Error Interrupt Status for Channel 2 (initial value: 0x0)
Indicates whether an error interrupt condition has occurred on Channel 2. This bit is
the logical AND of the Interrupt Enable on Error bit of the Channel Control Register 2
(CCR2.INTENE) and the Abnormal Chain Completion bit of the Channel Status
Register 2 (CSR2.ABCHC).
1: An error interrupt condition has occurred.
0: An error interrupt condition has not occurred.

29 EIS1 Error Interrupt
Status for
Channel 1

Error Interrupt Status for Channel 1 (initial value: 0x0)
Indicates whether an error interrupt condition has occurred on Channel 1. This bit is
the logical AND of the Interrupt Enable on Error bit of the Channel Control Register 1
(CCR1.INTENE) and the Abnormal Chain Completion bit of the Channel Status
Register 1 (CSR1.ABCHC).
1: An error interrupt condition has occurred.
0: An error interrupt condition has not occurred.

28 EIS0 Error Interrupt
Status for
Channel 0

Error Interrupt Status for Channel 0 (initial value: 0x0)
Indicates whether an error interrupt condition has occurred on Channel 0. This bit is
the logical AND of the Interrupt Enable on Error bit of the Channel Control Register 0
(CCR0.INTENE) and the Abnormal Chain Completion bit of the Channel Status
Register 0 (CSR0.ABCHC).
1: An error interrupt condition has occurred.
0: An error interrupt condition has not occurred.

27 DIS3 Done Interrupt
Status for
Channel 3

Done Interrupt Status for Channel 3 (initial value: 0x0)
Indicates whether a transfer-done interrupt condition has occurred on Channel 3. The
value of this bit is determined from the interrupt enable bits of the Channel Control
Register 3 (CCR3.INTENC and CCR3.INTENT) and the normal completion bits of the
Channel Status Register 3 (CSR3.NCHNC and CSR3.NTRNFC) as follows:
(CCR3.INTENC & CSR3.NCHNC) | (CCR3.INTENT & CSR3.NTRNFC)
1: A transfer-done interrupt condition has occurred.
0: A transfer-done interrupt condition has not occurred.

26 DIS2 Done Interrupt
Status for
Channel 2

Done Interrupt Status for Channel 2 (initial value: 0x0)
Indicates whether a transfer-done interrupt condition has occurred on Channel 2. The
value of this bit is determined from the interrupt enable bits of the Channel Control
Register 2 (CCR2.INTENC and CCR2.INTENT) and the normal completion bits of the
Channel Status Register 2 (CSR2.NCHNC and CSR2.NTRNFC) as follows:
(CCR2.INTENC & CSR2.NCHNC) | (CCR2.INTENT & CSR2.NTRNFC)
1: A transfer-done interrupt condition has occurred.
0: A transfer-done interrupt condition has not occurred.

Figure 10.3.1 Master Control Register (1/2)

Chapter 10 DMA Controller

10-5

Bits Mnemonic Field Name Description
25 DIS1 Done Interrupt

Status for
Channel 1

Done Interrupt Status for Channel 1 (initial value: 0x0)
Indicates whether a transfer-done interrupt condition has occurred on Channel 1. The
value of this bit is determined from the interrupt enable bits of the Channel Control
Register 1 (CCR1.INTENC and CCR1.INTENT) and the normal completion bits of the
Channel Status Register 1 (CSR1.NCHNC and CSR1.NTRNFC) as follows:
(CCR1.INTENC & CSR1.NCHNC) | (CCR1.INTENT & CSR1.NTRNFC)
1: A transfer-done interrupt condition has occurred.
0: A transfer-done interrupt condition has not occurred.

24 DIS0 Done Interrupt
Status for
Channel 0

Done Interrupt Status for Channel 0 (initial value: 0x0)
Indicates whether a transfer-done interrupt condition has occurred on Channel 0. The
value of this bit is determined from the interrupt enable bits of the Channel Control
Register 0 (CCR0.INTENC and CCR0.INTENT) and the normal completion bits of the
Channel Status Register 0 (CSR0.NCHNC and CSR0.NTRNFC) as follows:
(CCR0.INTENC & CSR0.NCHNC) | (CCR0.INTENT & CSR0.NTRNFC)
1: A transfer-done interrupt condition has occurred.
0: A transfer-done interrupt condition has not occurred.

17:14 FIFOVC FIFO Valid Entry
Count

FIFO Valid Entry Count (initial value: 0x0)
These read-only bits contain the number of data items present in the FIFO. This
information is provided for a software procedure to recover any data in the FIFO in the
event a transfer is halted by clearing the Transfer Active (XTACT) bit of the Channel
Control Register.

13:11 FIFWP FIFO Write
Pointer

FIFO Write Pointer (initial value: 000)
These read-only bits point to the next FIFO location to be written to. The write pointer
is provided only to maintain symmetry with the read pointer, and is not needed for
software recovery in the event a transfer is halted by clearing the Transfer Active
(XTACT) bit of the Channel Control Register cleared.

10:8 FIFRP FIFO Read
Pointer

FIFO Read Pointer (initial value: 000)
These read-only bits point to the next FIFO location to be read out. This information is
provided for software recovery in the event a transfer is halted by clearing the Transfer
Active bit.

7 RSFIF Reset FIFO Reset FIFO (initial value: 0)
Resets the FIFO.
Setting this bit to 1 initializes the FIFO read pointer, write pointer and valid entry count
to zero.

6:3 FIFUM FIFO Use Mask FIFO Use Mask (initial value: 0000)
These four bits control the usability of the 8-word FIFO for memory-to-memory
transfers. Bit 3 corresponds to Channel 0, bit 4 to Channel 1, bit 5 to Channel 2, and
bit 6 to Channel 3. Multiple channels can share the FIFO if none of them needs to
retain the FIFO data between DMA bus cycles. There is no way to detect a violation by
hardware; in case of a violation, correct operation is not guaranteed. If a channel is
configured for dual-address mode with 4- or 8-word transfer size, the corresponding
FIFUM bit must be set to 1.

2 LE Little Endian Little Endian (initial value: 0)
Controls the endian mode of the DMAC. It must be the same as that specified with the
ENDIAN boot signal.
1: The DMAC operates in little-endian mode.
0: The DMAC operates in big-endian mode.

1 RRPT Round Robin
Priority

Round Robin Priority (initial value: 0)
Sets the priority mode.
1: Round robin priority. The channel which was most recently serviced inherits the

lowest priority. After the highest-priority channel is serviced, priority is passed to the
next highest-priority channel.

0: Fixed priority. Channel 0 has the highest priority, then 1, 2 and Channel 3 has the
lowest priority.

Note: The priority is set up separately for a group of channels enabled for snooping
and for a group of channels with no snooping.

0 MSTEN MSTEN Master
Enable

Master Enable (initial value: 0)
Enables the DMAC.
1: Enabled (Dreqs is recognized)
0: Disabled (Dreqs is not recognized)
Note: When the DMAC is disabled, all its internal logic is reset, including the bus

interface logic and the state machine.

Figure 10.3.1 Master Control Register (2/2)

Chapter 10 DMA Controller

10-6

10.3.3 Channel Control Registers (CCRn) 0xFFFE_B018 (ch. 0),
0xFFFE_B038 (ch. 1),
0xFFFE_B058 (ch. 2),
0xFFFE_B078 (ch. 3),

31 27 26 25 24 23 22 21 20 19 18 17 16
0 DBINH SBINH CHRST RVBYTE AckPOL REQPL EGREQ CHDN DNCTL EXTRQ

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 0 1 0 0 0 0 0 00 0 : Initial value

15 13 12 11 10 9 8 7 6 5 4 2 1 0
INTRQD INTENE INTENC INTENT CHNEN XTACT SNOP DSTINC SRCINC XFSZ MEMIO ONEAD

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W : Type
000 0 0 0 0 0 0 0 0 000 0 0 : Initial value

Bits Mnemonic Field Name Description
26 DBINH Destination Burst

Inhibit
Destination Burst Inhibit (initial value: 0)
Controls whether to use burst transfers or single transfers for destination write cycles
in dual-address transfers when the transfer size (XFSZ) field is programmed for
burst transfers.
This bit does not affect single-address transfers or chaining operations.
1: Channel does not burst to memory.
0: Channel will burst to memory.
To use the burst capability, the destination address alignment and the byte transfer
count must meet certain requirements.

25 SBINH Source Burst
Inhibit

Source Burst Inhibit (initial value: 0)
Controls whether to use burst transfers or single transfers for source read cycles in
dual-address transfers when the transfer size (XFSZ) field is programmed for burst
transfers.
This bit does not affect single-address transfers or chaining operations.
1: Channel does not burst from memory.
0: Channel will burst from memory.
To use the burst capability, the source address alignment and the byte transfer
count must meet certain requirements.

24 CHRST Channel Reset Channel Reset (initial value: 1)
Initializes the channel.
1: Clears all the status bits, the Transfer Active bit and the Chain Enable bit as well

as resets all internal logic and states for the channel. This bit must be cleared by
software prior to executing DMA transfers.

0: Enables the channel for DMA operation.
23 RVBYTE Reverse Bytes Reverse Bytes (initial value: 0)

Controls whether to reverse the byte order or not.
1: Reverses the byte order for dual-address transfers of 32 bits or more.
0: Does not reverse the byte order.

22 ACKPOL Acknowledge
Polarity

Acknowledge Polarity (initial value: 0)
Selects the polarity of the DMA acknowledge signal (DMAACKn).
1: Active-high
0: Active-low

21 REQPL REQPL Request
Polarity

Request Polarity (initial value: 0)
Selects the polarity of the DMA request signal (DMAREQn).
1: Active-high
0: Active-low

20 EGREQ Edge Request Edge Request (initial value: 0)
Controls the edge/level sensitivity for the DMA request signal (DMAREQn).
1: The external DMA request signal is edge-triggered. The channel starts a DMA

transfer each time an active edge is applied to the DMAREQn pin. In edge-
triggered mode, before next DMA transfer is requested, the DMAREQn pin must
be deasserted.

0: The external DMA request signal is level-sensitive.

Figure 10.3.2 Channel Control Registers (1/3)

Chapter 10 DMA Controller

10-7

Bits Mnemonic Field Name Description
19 CHDN Chain Done Chain Done (initial value: 0)

1: DMADONE* controls chained transfers instead of one DMA process. As an
output, DMADONE* will be asserted when DMA data chaining completes. As an
input, assertion of DMADONE* will cause the active channel to stop the chaining.

0: DMADONE* controls one DMA process instead of chained transfers. As an
outputs DMADONE* will be asserted upon completion of a DMA process. As an
input, assertion of DMADONE* will cause the channel to stop the entire DMA
transaction (the current transfer and the entire chaining operation).

18:17 DNCTL Done Control Done Control (initial value: 00)
Enables or disables the validity of the DMADONE* signal.
00: DMADONE* is used neither as an output nor as an input.
01: DMADONE* is not used as an output. As an input, DMADONE* will cause the

current DMA process or chaining operation to terminate.
10: As an output, DMADONE* is asserted upon completion of a DMA process or

chaining operation. DMADONE* is not used (i.e., ignored) as an input.
11: When the channel is active, DMADONE* is used as an open-drain output. It is

asserted upon completion of a DMA process or chaining operation. As an input,
DMADONE* will cause the current DMA process or chaining operation to
terminate.

Note: Care must be taken when using open-drain mode because an external pull-up
resistor will cause the transition time of the output driver to increase.

16 EXTRQ External Request External Request (initial value: 0)
Selects the transfer request mode.
1: Assertion of the external DMA request signal requests DMA service.
0: Internally generated request transfers. This mode is used for memory-to-memory

transfers.
15:13 INTRQD Internal Request

Delay
Internal Request Delay (initial value: 000)
Limits the amount of bus utilization by setting an interval between two internally
generated transfer requests.
000: Minimum interval (Even in this case, the bus is once released and then

reacquired.)
001: 16 clock cycles
010: 32 clock cycles
011: 64 clock cycles
100: 128 clock cycles
101: 256 clock cycles
110: 512 clock cycles
111: 1024 clock cycles

12 INTENE Interrupt Enable
on Error

Interrupt Enable on Error (initial value: 0)
1: Enables DMA interrupts for errors.
0: Disable DMA interrupts for errors.

11 INTENC Interrupt Enable
on Chain Done

Interrupt Enable on Chain Done (initial value: 0)
1: Enables DMA interrupts for chaining.
0: Disables DMA interrupts for chaining.

10 INTENT Interrupt Enable
on Transfer Done

Interrupt Enable on Transfer Done (initial value: 0)
1: Enables DMA interrupts for end-of-transfer.
0: Disables DMA interrupts for end-of-transfer.

9 CHNEN Chain Enable Chain Enable (initial value: 0)
Enables DMA data chaining.
1: Immediately upon completion of the transfers, the channel’s registers are

reloaded from the address specified in the Chained Address Register. Transfers
then continue uninterrupted.

0: The channel does not chain.
8 XTACT Transfer Active Transfer a Active (initial value: 0)

1: Starts DMA transfer on the channel. Prior to executing a DMA transfer, set
appropriate parameters in the register and then write a 1 to this bit. Writing a 0 to
this bit causes the transfer to halt gracefully; then resetting it to 1 restarts the
transfer. This bit is automatically cleared when the transfer completes normally or
halts due to an error.

Figure 10.3.2 Channel Control Registers (2/3)

Chapter 10 DMA Controller

10-8

Bits Mnemonic Field Name Description
7 SNOP Snoop Snoop (initial value: 0)

Controls whether to request bus mastership involving snoop operations.
1: Uses snooping bus operations (GSREQ). Snooping is enabled during DMA write

cycles to maintain coherency between the data cache and main memory.
0: Uses non-snooping bus operations (GHPGREQ).
Note: This bit must be cleared when the data cache uses write-back mode.

6 DSTINC Mixed
Destination
Increment

Mixed Destination Increment (initial value: 0)
Controls how to increment the destination address.
1: After each transfer increments the destination address by the value of the

Destination Address Increment Register at odd word boundaries and by 4 bytes at
even word boundaries.

0: After each transfer always increments the destination address by the value of the
Destination Address Increment Register.

Note: The destination address is also incremented during burst cycles. However,
only memory devices connected to the SDRAM Controller can use non-
standard increments (other than 4) for burst transfers. The increment can be
between 0 and 255 words (1020 bytes).

5 SRCINC Mixed Source
Increment

Mixed Source Increment (initial value: 0)
Controls how to increment the source address.
1: After each transfer, increments the source address by the value of the Source

Address Increment Register at odd word boundaries and by 4 bytes at even word
boundaries.

0: After each transfer, always increments the source address by the value of the
Source Address Increment Register.

Note: The source address is also incremented during burst cycles. However, only
memory devices connected to the SDRAM Controller can use non-standard
increments (other than 4) for burst transfers. The increment can be between 0
and 255 words (1020 bytes).

4:2 XFSZ Transfer Size Transfer Size (initial value: 000)
Specifies the data transfer size for a DMA request.
000: 8 bits. Valid for dual-address transfers.
001: 16 bits. Valid for dual- and single-address transfers between memory and I/O

peripherals.
010: 1 word. Valid for dual- and single-address transfers between memory and I/O

peripherals.
011: Reserved
100: 4 words. Valid for dual-address transfers when the MCR FIFUM bit for this

channel is set, and for single-address transfers between memory and I/O
peripherals.

101: 8 words. Valid for dual-address transfers when the MCR FIFUM bit for this
channel is set, and for single-address transfers between memory and I/O
peripherals.

110: 16 words. Valid for single-address transfers between memory and I/O
peripherals.

111: 32 words. Valid for single-address transfers between memory and I/O
peripherals.

1 MEMIO Memory to I/O Memory to I/O (initial value: 0)
Selects the direction of single-address transfers. (This bit does not affect dual-
address transfers.)
1: Memory to I/O
0: I/O to memory

0 ONEAD One Address One Address (initial value: 0)
Controls whether to run single-address or dual-address transfers.
1: Single-address transfers
0: Dual-address transfers

Figure 10.3.2 Channel Control Registers (3/3)
Note: Bit 7 (SNOP) must be cleared when the data cache uses write-back mode.

Chapter 10 DMA Controller

10-9

10.3.4 Channel Status Registers (CSRn) 0xFFFE_B01C (ch. 0),
0xFFFE_B03C (ch. 1),
0xFFFE_B05C (ch. 2),
0xFFFE_B07C (ch. 3)

Reading a Channel Status Register has no effect on the value of any of its bits. Writing a 0 to any of
the bits also has no effect on the bit. Writing a 1 to a bit will clear that bit except for the Channel Active
(CHNACT) bit, the Abnormal Chain Completion (ABCHC) bit and the Internal Wait Counter (WAITC)
field. The Channel Active (CHNACT) bit is read-only and contains a copy of the XTACT bit of the
corresponding Channel Control Register (CCRn). The Abnormal Chain Completion (ABCHC) bit is the
logical OR of all the error bits (CFERR, CHERR, DESERR and SORERR). To clear this bit, all the
error bits must be cleared.

31 24 23 16
0 WAITC

R : Type
0x00 : Initial value

15 14 13 9 8 7 6 5 4 3 2 1 0
WAITC 0 CHNACT ABCHC NCHNC NTRNFC EXTDN CFERR CHERR DESERR SORERR

R R R R/WC R/WC R/WC R/WC R/WC R/WC R/WC : Type
00 0 0 0 0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
23:14 WAITC Internal Wait

Counter
Internal Wait Counter (initial value: 0x000)
This read-only field allows software to track the elapsed time for the interval taken
between DMA bus cycles.

8 CHNACT CHNACT
Channel Active

Channel Active (initial value: 0)
This bit contains a copy of the XTACT bit of the Channel Control Register (CCRn).

7 ABCHC Abnormal Chain
Completion

Abnormal Chain Completion (initial value: 0)
Indicates an occurrence of an error. This bit contains the logical OR of all the error
bits (CFERR, CHERR, DESERR and SORERR).
1: The chaining operation has terminated with an error.
0: The chaining operation has not encountered an error since the error bits were last

cleared.
6 NCHNC Normal Chain

Completion
Normal Chain Completion (initial value: 0)
1: The chaining operation has completed normally.
0: The chaining operation has not completed normally since this bit was last cleared.

5 NTRNFC Normal Transfer
Completion

Normal Transfer Completion (initial value: 0)
Indicates whether a DMA transfer has been completed normally by either a software
command or the DMADONE* hardware signal.
1: The DMA transfer has completed normally.
0: The DMA transfer has not completed since this bit was last cleared.

4 EXTDN External Done
Asserted

External Done Asserted (initial value: 0)
Indicates whether the DMADONE* signal has been asserted externally.
1: The external DMADONE* signal has been asserted.
0: The external DMADONE* signal has not been asserted

3 CFERR Configuration
Error

Configuration Error (initial value: 0)
Indicates whether a configuration error has occurred. A configuration error results
when channel settings are inconsistent with the current command.
1: A configuration error is present.
0: No configuration error exists.

2 CHERR Chain Bus Error Chain Bus Error (initial value: 0)
Indicates whether a bus error has occurred due to no response from memory during
a chaining operation.
1: A bus error has occurred.
0: No bus error has occurred.

Figure 10.3.3 Channel Status Registers (1/2)

Chapter 10 DMA Controller

10-10

Bits Mnemonic Field Name Description
1 DESERR Destination Bus

Error
Destination Bus Error (initial value: 0)
Indicates whether a bus error has occurred during a destination write bus cycle.
1: A bus error has occurred.
0: No bus error has occurred.

0 SORERR Source Bus Error Source Bus Error (initial value: 0)
Indicates whether a bus error has occurred during a source read or write bus cycle.
1: A bus error has occurred.
0: No bus error has occurred.

Figure 10.3.3 Channel Status Registers (2/2)

Chapter 10 DMA Controller

10-11

10.3.5 Source Address Registers (SARn) 0xFFFE_B004 (ch. 0),
0xFFFE_B024 (ch. 1),
0xFFFE_B044 (ch. 2),
0xFFFE_B064 (ch. 3)

31 16
SADDR

R/W : Type
 : Initial value

15 0
SADDR

R/W : Type
 : Initial value

Bits Mnemonic Field Name Description
31:0 SADDR Source Address Source Address (initial value: undefined)

The Source Address Register is loaded with the physical address of the source for
dual-address transfers. For single-address transfers, this register is loaded with the
memory address, whether the transfer is from memory to I/O or from I/O to memory.
The address must be aligned, depending on the transfer size. For example, if the
transfer size is a 32-bit word, the low-order two bits of the address must be 0.

Figure 10.3.4 Source Address Registers

Chapter 10 DMA Controller

10-12

10.3.6 Destination Address Registers (DARn) 0xFFFE_B008 (ch. 0),
0xFFFE_B028 (ch. 1),
0xFFFE_B048 (ch. 2),
0xFFFE_B068 (ch. 3)

31 16
DADDR

R/W : Type
 : Initial value

15 0
DADDR

R/W : Type
 : Initial value

Bits Mnemonic Field Name Description
31:0 DADDR Destination

Address
Destination Address Registers (initial value: undefined)
The Destination Address Register is loaded with the physical address of the
destination for dual-address transfers. It is not used for single-address transfers.
The address must be aligned, depending on the transfer size. For example, if the
transfer size is a 32-bit word, the low-order two bits of the address must be 0.

Figure 10.3.5 Destination Address Registers

Chapter 10 DMA Controller

10-13

10.3.7 Chained Address Registers (CHARn) 0xFFFE_B000 (ch. 0),
0xFFFE_B020 (ch. 1),
0xFFFE_B040 (ch. 2),
0xFFFE_B060 (ch. 3)

31 16
CHAR

R/W : Type
 : Initial value

15 2 1 0
CHAR 0

R/W : Type
 : Initial value

Bits Mnemonic Field Name Description
31:2 CHAR Chained Address Chained Address

This register is loaded with the physical starting address of the data block from which
the DMAC registers will be reloaded. When the current transfer completes, if the
CHNEN bit in the CCRn register is set, eight words are read from this address and
loaded into the CHARn, SARn, DARn, CNTRn, SAIn, DAIn, CCRn and CSRn
registers for the channel. If the new CCRn.XTACT value is 1, the next transfer starts
immediately.

Note: The low-order two bits of the Chain Address Register (CHARn) must be 0; otherwise, a
configuration error occurs, if the Master Enable bit (MCR.MSTEN) is 1, the Channel Reset bit
(CCRn.CHRST) is 0, and the Transfer Active bit (CCRn.XTACT) is 1.

If the chained address is aligned on an odd 4-word boundary, a chain refill is distributed over two
consecutive 4-word bursts. If the chained address is aligned on a modulo-8 word boundary, a
chain refill is accomplished in a 8-word burst. Even if the chain address is not aligned on a
modulo-4 word boundary, the DMAC recognizes the situation and achieves a chain refill as a
sequence of four single reads from misaligned addresses and one 4-word burst read from a 4-
word-aligned address.

Figure 10.3.6 Chain Address Registers

Chapter 10 DMA Controller

10-14

10.3.8 Source Address Increment Registers (SAIn) 0xFFFE_B010 (ch. 0),
0xFFFE_B030 (ch. 1),
0xFFFE_B050 (ch. 2),
0xFFFE_B070 (ch. 3)

31 24 23 16
0 SADING

R/W : Type
 : Initial value

15 0
SADINC

R/W : Type
 : Initial value

Bits Mnemonic Field Name Description
23:0 SADINC Source Address

Increment
Source Address Increment (initial value: undefined)
This register is loaded with a 24-bit signed byte count to be added to the source
address after each transfer. The increment must be an integer multiple of the
transfer size. If the Mixed Source Increment (SRCINC) bit in the CCR register is set,
this value is added to addresses at odd word boundaries; the fixed increment of four
is added to addresses at even word boundaries.

Figure 10.3.7 Source Address Increment Registers

Chapter 10 DMA Controller

10-15

10.3.9 Destination Address Increment Registers (DAIn) 0xFFFE_B014 (ch. 0),
0xFFFE_B034 (ch. 1),
0xFFFE_B054 (ch. 2),
0xFFFE_B074 (ch. 3)

31 24 23 16
0 DADINC

R/W : Type
 : Initial value

15 0
DADINC

R/W : Type
 : Initial value

Bits Mnemonic Field Name Description
23:0 DADINC Destination

Address
Increment

Destination Address Increment (initial value: undefined)
This register is loaded with 24-bit signed byte count to be added to the destination
address after each transfer. The increment must be an integer multiple of the
transfer size. If the Mixed Destination Increment (DSTINC) bit in the CCR register is
set, this value is added to addresses at odd word boundaries; the fixed increment of
four is added to addresses at even word boundaries.

Figure 10.3.8 Destination Address Increment Registers

Chapter 10 DMA Controller

10-16

10.3.10 Count Registers (CNTRn) 0xFFFE_B00C (ch. 0),
0xFFFE_B02C (ch. 1),
0xFFFE_B04C (ch. 2),
0xFFFE_B06C (ch. 3)

31 24 23 16
0 CNTR

R/W : Type
 : Initial value

15 0
CNTR

R/W : Type
 : Initial value

Bits Mnemonic Field Name Description
23:0 CNTR Count Count Register (initial value: undefined)

Contains the number of bytes left in the DMA transaction for respective channels.
The count is a 24-bit unsigned value, decremented for each successful transfer. It
must be an integer multiple of the transfer size.

Figure 10.3.9 Count Registers

Chapter 10 DMA Controller

10-17

10.4 Operation
The TX3927 DMA Controller (DMAC) consists of four independent, programmable channels. Each

channel has a set of eight 32-bit registers called CHARn, SARn, DARn, CNTRn, SAIn, DAIn, CCRn and
CSRn. Additionally, the Master Control Register (MCR) contains control bits that affect the operation of all
the DMA channels. The DMA Controller also has a temporary data holding register and an 8-word data
buffer used in dual-address transfers. All the registers can only be accessed as full 32-bit words.

The DMAC supports dual- and single-address transfers. In dual-address mode, any data transfer takes
place in two DMA bus cycles. In this mode, the data is read from the source address and placed in the
internal buffer. The data is then written to the destination address.

The single-address transfer mode consists of one DMA bus cycle, which allows data to be transferred
directly from the source address to the destination address without going through the DMAC.

• Data flow

(1) Dual-address mode

• First bus cycle: Source address to DMAC

• Second bus cycle: DMAC to destination address

(2) Single-address mode

• First bus cycle: Source address to destination address

Each channel supports chained DMA operations. DMA data chaining allows the DMAC to reload a
channel’s registers from memory upon completion of the transfer, so the next transfer can then continue
uninterrupted.

10.4.1 Dual-Address Transfers

Dual-address transfers require at least one read bus cycle and one write bus cycle to execute.

If a channel is programmed with a transfer size of 8, 16 or 32 bits, one data item is transferred once
for each bus transaction. The data being transferred is read into the temporary data buffer before being
written to the destination. Note that, however, the data buffer might not retain useful information
between two DMA requests.

The source and destination addresses are incremented by the signed value specified in the address
increment registers (SAIn and DAIn). Each time a channel transfers the amount of data specified in the
XFSZ field of the Channel Control Register (CCRn), the Count Register (CNTRn) is decremented by
the number of bytes transferred. The transfer continues until the Count Register reaches 0. If the Chain
Enable bit (CCRn.CHNEN) is set, the channel will chain when the Count Register has decremented to
zero.

Both source and destination addresses have a mixed increment option. If it is enabled, the address is
incremented by the value specified in the address increment registers (SAIn or DAIn) at odd word
boundaries and incremented by four at even word boundaries. (The value of the A2 bit determines
whether the current address is on an odd or even boundary.) The mixed address increment must not be
used with a transfer size of less than 32 bits.

Dual-address transfers support of four- and eight-word bursts. To use the burst capability, the source
and destination addresses, the address increments, and the byte transfer count must be word-aligned. If
any of them is not word-aligned, a configuration error results, and the DMA operation is aborted. In

Chapter 10 DMA Controller

10-18

dual-address burst transfer mode, the data is temporarily read into the internal 8-word buffer. This
buffer can be shared between multiple active channels, provided that each channel takes care of the data
in the buffer during the current bus transaction. If a channel leaves any data in the buffer, it might get
overwritten by new data read from another channel during the next bus transaction. (Refer to "10.4.10
Notes on Using the DMAC FIFO.")

For dual-address transfers with a transfer size of four or eight words, the addresses of data being
transferred may not be aligned on a modulo-4 or modulo-8 word boundary. If the addresses are
misaligned, the DMAC will recognize the situation and read the data in groups of words using single
transfers until the contents of the Source Address Register is on a modulo-4 word boundary, or the
Count Register decrements to zero, or the amount of data equal to the transfer size is stored in the
buffer. Single-transfers also occur on the destination side if the destination address is not properly
aligned. Such single reads and writes can take place at the beginning and end of a DMA transfer when
dual-address bursting is enabled. Once the address is on a word boundary, the DMAC performs a burst
transfer.

When the source address is modulo-4 word aligned and there are at least four words left to read, the
DMAC executes a burst read, placing them into the buffer. The burst size will be eight words if the
transfer size is programmed as eight words, AND the source address is modulo-8 word aligned, AND
there are at least eight words left to transfer, AND the buffer is empty. If any of these conditions is not
met, the burst size will be four words. For the last data that is misaligned or short of the burst size,
single transfers will be used. The DMAC will never read or write an unintended word; it always honors
the programmer’s specifications. The DMAC will perform bursts only when the address is aligned to
the burst size.

In dual-address transfer mode, burst reads take place when all of the following conditions are
satisfied.

(1) 8-word burst reads

• The transfer size is eight words.

• The source address is aligned on a modulo-8 word boundary.

• There are at least eight words left to read.

• The FIFO is enabled.

• The FIFO is empty.

(2) 4-word burst reads

• The transfer size is four or eight words.

• The source address is aligned on a modulo-4 word boundary.

• There are at least four words left to read.

• The FIFO is enabled.

• The FIFO has empty space for four words.

When any of the following conditions are detected, the DMAC uses 4-word burst reads even when
the transfer size is programmed as eight words:

• The source address is aligned on an odd 4-word boundary.

• There are four or more words of data left to read, but less than eight words.

• The FIFO has empty space only for four words.

The write phase of a dual-address transfer follows the same basic steps as the read phase. The data is

Chapter 10 DMA Controller

10-19

written to the destination after all data is read into the buffer from the source. The transfer count is
decremented at the end of each read operation; so it will be zero when the last write operation is about
to start. When the count is zero, all words in the buffer are written out to memory, using either burst or
single writes. When the count is not zero, the DMAC performs single writes until the destination
address is on a modulo-4 word boundary.

If four or more words remain in the buffer, the DMAC runs a 4-word burst write to the memory.
Otherwise, the bus operation ends. As is the case with the read phase, the DMAC uses burst-writes
except on misaligned addresses at the beginning and end of a transfer. Unlike reads, however, the
DMAC can perform two 4-word burst writes back-to-back in a bus transaction. The DMAC performs a
8-word burst write if the transfer size is eight words, AND the destination address is modulo-8 word
aligned, AND there are eight words of data in the FIFO, AND the FIFO is enabled for the channel (the
MCR.FIFUM bit is set to 1). The DMAC performs two 4-word burst writes if the destination address is
aligned on an odd 4-word boundary (and all of the other conditions above are met).

It should be noted that multiple channels can share the 8-word buffer only when their initial source
and destination addresses have the same alignment with respect to the transfer size. In other words,
(source address MOD transfer size) and (destination address MOD transfer size) must be initially equal.

If a bus error occurs during a dual-address burst transfer, the DMAC terminates the bus operation and
clears the buffer.

10.4.2 Chaining Operations

The DMAC uses a linked-list method for DMA data chaining. Data chaining can be used by a
channel to automatically initiate the next DMA transfer immediately upon completion of the current
transfer. If the Chain Enable bit of the Channel Register (CCRn.CHNEN) is set when the transfer count
reaches 0 (or the external DMA-done signal, DMADONE*, is asserted), the DMAC automatically reads
eight words from the address pointed to by the Chained Address Register and reloads the CHARn,
SARn, DARn, CNTRn, SAIn, DAIn, CCRn and CSRn registers for the channel in this order.

Transfers then continue interrupted, as specified by the new parameters, provided that the Transfer
Active bit (CCRn.XTACT) is set. This process continues until the Chain Enable bit (CCRn.CHNEN) or
the Transfer Active bit (CCRn.XTACT) is cleared as a result of reloading the channel’s register (unless
errors occur or DMADONE* is asserted).

For chaining operations, the refilling of the channel’s registers use burst operations, in the same way
as a dual-address transfer. A register refill always takes place as a 8-word transfer.

If the chained address is modulo-8 word aligned, the DMAC will perform an 8-word burst read to
refill all the registers for a channel. If the chained address is modulo-4 word aligned, the DMAC will
perform two 4-word bursts consecutively. If the chained address is neither modulo-4 word nor modulo-
8 word aligned, the DMAC will perform single reads until the address increments to a modulo-4 word
boundary, then a 4-word burst read, and finally single reads until it has read a total of eight words.

Chapter 10 DMA Controller

10-20

10.4.3 Single-Address Transfers

During the single-address read cycle, the DMAC controls the transfer of data from memory to an I/O
device. The DMAC reads data from the address specified in the Source Address Register, but does not
buffer the transferred data. The off-chip I/O device must use the ACK* signal as a read strobe and
captures the data on the rising edge of the clock where ACK* is asserted.

During the single-address write cycle, the DMAC controls the transfer of data from an I/O device to
memory. The DMAC writes the data to the address specified in the Source Address Register. The
DMAC asserts ACK* to indicate to the off-chip I/O device that a request is now being serviced. The I/O
device must place data on the data bus when it receives the DMAACK* signal.

For burst write transfers, the off-chip device must supply the next data within two clock cycles after
ACK* is asserted. This process continues until the burst is complete. There is no way to slow down the
memory operation for DMA transfers; so the system designer must ensure that any off-chip device that
will participate in single-address DMA transfers can keep up with the memory access rate.

Note: The TX3927 does not drive the data bus during single-address mode DMA transfers.

10.4.4 DMA Channel Termination by the External DMADONE* Input

The DMADONE* pin can be configured as an input, output, bidirectional or don't-care pin on a per
channel basis. When channel is programmed to use the DMADONE* pin, DMADONE* responds to the
DMAACK signal. If DMADONE* is configured as don't-care for all active channels, it can be used for
its alternate function, or timer output (TIMER[0]).

When DMADONE* is programmed as an output for a channel, it is asserted low by the TX3927
when the channel completes a DMA transfer or the entire chained transfers, depending on the setting of
the Chain Done bit (CHDN) in the Channel Control Register (CCRn).

DMADONE* will be asserted for one clock cycle, coincident with the last clock cycle where
DMAACK is asserted. If the Chain Done bit is set, DMADONE* will be asserted when DMAACK is
asserted for completion of the chained transfer. In that case, no more DMA transfer takes place until the
channel is reprogrammed.

If the Chain Done bit is cleared, DMADONE* will be asserted when DMAACK is asserted at the end
of each DMA transfer. If the Chain Enable bit is set, the DMAC will reload the channel’s registers from
the address pointed to by the Chain Address Register (CHARn), so the channel will chain.

When DMADONE* is programmed as an input for a channel, the external device can assert it (low)
to terminate the entire DMA transfer while DMAACK is asserted. Even if chaining is enabled, the
chained transfers stop, regardless of the setting of the Chain Done bit in the Channel Control Register
(CCRn.CHDN). It takes three clock cycles for the DMAC to inhibit further DMA operations after the
assertion of DMADONE*. The ongoing DMA bus cycle, whether single or burst, is not discontinued.

In single-address transfer mode, each time the DMAC acquires bus mastership, exactly one bus cycle
is executed. Thus, it is clear when the DMA transfer terminates. That is, the channel will stop once the
current transfer completes, (provided the Count Register has reached 0 with the Chain Done bit
cleared). If the Count Register has not decremented to 0, the DMAC regains bus mastership and
executes the next single-address transfer.

Chapter 10 DMA Controller

10-21

In non-burst dual-address transfer mode, each time the DMAC is granted bus mastership, one read
bus cycle and one write bus cycle are executed. In this mode of operation, when DMADONE* is
asserted externally, the channel will stop after both the read and write bus cycles have been completed.

Dual-address burst transfers are not so straightforword because each time the DMAC assumes bus
mastership, multiple read and write cycles may be executed. This could give rise to situations where the
DMAC is forced to relinquish the bus while valid data still remains in the FIFO buffer. Once the
Transfer Active (CCRn.XTACT) bit is cleared in response to the external DMADONE* signal, no more
reads will occur, but as long as DMADONE* is asserted during a read bus cycle, the DMAC will
properly take care of the corresponding write cycle before terminating the DMA transfer.

However, should the assertion of DMADONE* be delayed until a write cycle, the channel will stop
immediately after the current write cycle. Therefore, a DMA transfer requiring multiple write bus cycles
will end prematurely while partial data remains in the FIFO buffer. It must be noted that this data can be
retrieved later only when it is left intact until the channel regains bus mastership. This is possible only
when the FIFO buffer is dedicated for use by that channel. If this is the case, then the channel’s registers
can be examined via software to determine where to deliver the data remaining in the FIFO buffer.

When DMADONE* is programmed as bidrectional, it is configured as an open-drain output when
that channel is active. Therefore, the DMADONE* requires an external pull-up resistor. In all other
respects, the pin function is exactly the same as described above. Simultaneous assertion of
DMADONE* by external logic and the TX3927 causes the External Done Asserted bit in the Channel
Status Register (CSRn.EXTDN) to be set.

10.4.5 Restrictions on Non-standard Increment Values

The TX3927 DMAC provides a great flexibility in defining address increment values to support
various kinds of DMA transfers. However, burst DMA transfers have restrictions. When the transfer
size is programmed to 8, 16 or 32 bits (or non-burst transfers), the source and destination address
increments have no particular restrictions except alignment requirements. For a transfer size of 8 bits,
there is no restriction on increment values. For a transfer size of 16 bits, address increment values must
be even (i.e., the least-significant bit must be 0). For a transfer size of 32 bits, address increment value
must be an integer multiple of four (i.e., the two least-significant bits must be 0). After each DMA
transfer, the increment values programmed in the SAIn and DAIn registers are sign-extended and added
to the current source and destination addresses respectively. For example, it is possible to read every
third word in one memory and write them to every fifth word location in another memory.

The situation is more complicated for burst transfers. For single-address burst operations, the DMAC
calculates the address using the value of the Source Address Increment Register for each transfer of a
word and places the address on the internal bus. However, the on-chip ROM and SDRAM Controllers
automatically increment addresses internally to improve the burst performance. Because the ROM
Controller can handle addresses in increments of four during bursts, single-address burst DMA transfers
can not be executed properly, if the source address increment is not four.

The SDRAM Controller supports unsigned increment values from 0 to 255 words (0 to 1020 bytes).
Therefore, high-speed burst capability of SDRAM devices is available only for a sequence of addresses
with an equal row address. This means most address increment values possible with the DMAC are
compatible only with non-burst SDRAM operations.

Chapter 10 DMA Controller

10-22

10.4.6 Restrictions on Dual-Address Burst Transfers

Dual-address mode has more restrictions than single-address mode for using burst transfers.
Generally in dual-address mode, burst operations must occur with an address increment of four (even
when bursting to SDRAM). If the source or destination address increment is not four, single transfers
need to be used.

Another restriction on using burst transfers in dual-address mode is that the address must come to be
aligned on the burst size at least once as it is incremented. This is not required in single-address mode.
This restriction is part of the conditions required for the DMAC to successfully terminate burst
transfers. Here too, using the standard increment value (4 bytes) causes no problem.

The TX3927 DMAC contains separate burst inhibit bits for source and destination addresses per
channel. If the source or destination burst inhibit bit is set, the DMAC performs single transfers during
source read or destination write cycles, respectively, even if 4- or 8-word burst transfers are specified
with proper address alignment and increments. This helps to avoid violating the above restrictions when
the address increment is not the standard 4 bytes.

When the DMA Channel is programmed to perform dual-address transfers with 4-word bursts, a
DMA request (DMAREQ) will never cause more than four words to be read at a time, whereas
situations in which five or more words are written from the internal FIFO buffer to the destination exist.
This is because five or more words may be buffered in the FIFO during the course of a DMA transfer
due to differing alignments between the source and destination addresses. In response to the last
DMAREQ request, the DMAC reads the last one to four words into the FIFO and then writes the entire
contents of the FIFO (one to seven words) to the destination. The FIFO is eight-word deep; due to
programmability limitation of the DMAC, the maximum burst size in dual-address mode is eight words.

10.4.7 DMA Transfers with On-Chip I/O Peripherals

DMA transfers to and from on-chip peripherals can only occur in dual-address mode. Single-address
mode is not supported.

When the TX3927 is acting as a PCI initiator, DMA transfers with memory devices on the PCI bus
take place via the PCI Controller (PCIC). The initiator interface must be programmed with dual-address
mode. When the TX3927 is a PCI target, the PCIC takes over DMA transfers without using the DMAC.

When the TX3927 is the PCI initiator, the DMAC cannot perform burst transfers to the PCIC.
Therefore, bits 26 (DBINH) and 25 (SBINH) of the Channel Control Register (CCRn) must be set to 1
to inhibit bursts. For example, when the TX3927 transfers data between SDRAM and a device on the
PCI bus as an initiator, burst transfers can occur from the source SDRAM, but not to the destination
device; thus the Channel Control Register must be programmed as CCRn.DBINH=1 and
CCRn.SBINH=0. Because burst transfers use the FIFO in the DMAC, the FIFO must be enabled for the
relevant channel by setting its FIFUM bit of the Master Control Register (MCR).

The TX3927 supports the use of SIO ports as DMA requesters. For details, refer to "13.4.19 DMA
Transfer Mode."

Chapter 10 DMA Controller

10-23

10.4.8 Timing for an External DMA Request (DMAREQ)

When the off-chip peripheral requires DMA service, it asserts the external DMA request signal
(DMAREQ) for a channel. The DMAREQ signal is internally cycled based on GBUSCLK (which runs
at half CPU operating frequency).

External DMA request pins can be configured for either edge or level sensitivity. If programmed as
edge-triggered, once the DMAC channel starts a DMA transfer, the next DMA request can be
recognized (i.e., one clock cycle before DMAACK is asserted). If programmed as level-sensitive, the
DMA channel recognizes the next DMA request two clock cycles before DMAACK is asserted. (Refer
to "10.5 Timing Diagrams.")

The request on the level-sensitive DMAREQ pin must remain asserted until the DMA transfer starts.

10.4.9 Configuration Errors

A configuration error results when a DMA channel is activated by bit 8 (Transfer Active) of the
Channel Control Register (CCRn) in the following circumstances:

(1) The two least-significant bits of the Chained Address Register (CHARn) are non-zero.

(2) The XFSZ field of the CCRn register specifies a transfer size of 8 bits (000) in single-address
mode.

(3) The XFSZ field of the CCRn register specifies a transfer size of 16 or 32 words (11x) in dual-
address mode.

(4) The XFSZ field of the CCRn register contains a reserved value (011).

(5) Either of the following conditions is detected when byte order reversing is enabled by bit 23 of the
CCRn register:
1) Single-address mode is selected.
2) Dual-address mode is selected, with the XFSZ field of the CCRn register programmed for a

transfer size of 8 or 16 bits (00x).

(6) Any of the following conditions is detected when the transfer size is 16 bits:
1) The least-significant bit of the Source Address Register (SARn) is 1.
2) The least-significant bit of the Source Address Increment Register (SAIn) is 1.
3) The least-significant bit of the Destination Address Register (DARn) is 1 in dual-address mode.
4) The least-significant bit of the Destination Address Increment Register (DAIn) is 1 in dual-

address mode.

(7) The least-significant bit of the Count Register (CNTRn) is 1 when the transfer size is 16 bits.

(8) Any of the following conditions is detected when the transfer size is 32 bits:
1) The two least-significant bits of the Source Address Register (SARn) are non-zero.
2) The two least-significant bits of the Source Address Increment Register (SAIn) are non-zero.
3) The two least-significant bits of the Destination Address Register (DARn) are non-zero in dual-

address mode.
4) The two least-significant bits of the Destination Address Increment Register (DAIn) non-zero in

dual-address mode.

(9) The two least-significant bits of the Count Register (CNTRn) non-zero when the transfer size is 32
bits.

Chapter 10 DMA Controller

10-24

10.4.10 Notes on Using the DMAC FIFO

When the data transfer size is programmed to more than one word, the DMAC attempts to use burst
transfers to improve data throughput. For burst transfers to occur, addresses must be aligned on a
boundary equal to the data transfer size. If this condition is not satisfied, the DMAC only transfers data
up to the boundary in the first DMA transaction. Thus, the number of transferred words will be less than
the programmed transfer size.

If the source and destination addresses have disparate word alignments, partial data is temporarily
buffered in the FIFO. Because the FIFO can be shared by multiple channels, the data in the FIFO may
be overwritten. To prevent this situation, the source and destination addresses must be properly aligned
to the same-sized boundary.

Example 1: DMA operations where one word of data is left in the FIFO temporarily

Program settings:
• 4-word transfer size
• SAR: 0x00800004
• DAR: 0x00800108

Operation:

(1) First DMA transfer
a. Because the source address 0x00800004 is not aligned to a 4-word boundary, the DMAC

performs single reads for the first three words, until a 4-word boundary is reached
(immediately before 0x00800010).

b.Because the destination address 0x00800108 is not aligned to a 4-word boundary, the
DMAC performs single writes for the first two words; i.e., until a 4-word boundary is
reached (immediately before 0x00800110). Consequently, one word of data is left in the
FIFO.

(2) Second DMA transfer
a. Because 0x00800010 is aligned to a 4-word boundary, the DMAC performs a burst read for

the next four words.
b.Because 0x00800110 is aligned to a 4-word boundary, the DMAC performs a 4 words burst

write.

(3) Third and subsequent DMA transfers
Same as (2).

Read Write

0x00800004 0x00800108

0x00800008 0x0080010c ←First read:
Up to a 4-word boundary → 0x0080000c 0x00800110

First write:
Up to a 4-word boundary

0x00800010 0x00800114

0x00800014 0x00800118

0x00800018 0x0080011c ←

→ 0x0080001c 0x00800120

Second write:
Burst-write up to a 4-word boundarySecond read:

Burst-read up to a 4-word
boundary 0x00800020 0x00800124

0x00800024 0x00800128

0x00800028 0x0080012c

1 word left in the FIFO

Chapter 10 DMA Controller

10-25

Example 2: DMA operation where three words of data is left in the FIFO temporarily

Program settings:
• 4-word transfer size
• SAR: 0x00800008
• DAR: 0x00800104

Operation:

(1) First DMA transfer
a. Because the source address 0x00800008 is not aligned to a 4-word boundary, the DMAC

performs single reads for the first words; i.e., until a 4-word boundary is reached
(immediately before 0x00800010).

b.Because the destination address 0x00800104 is not aligned to a 4-word boundary, the
DMAC attempts to perform single writes for three words up to a 4-word boundary
(immediately before 0x00800110). However, because only two words of data are present in
the FIFO, the DMAC writes two words and stops short of a 4-word boundary. Therefore,
no data remains in the FIFO.

(2) Second DMA transfer
a. Because 0x00800010 is aligned to a 4-word boundary, the DMAC performs a burst read for

the next four words.
b.Because 0x0080010c is not aligned to a 4-word boundary, the DMAC performs a single

write for one word until a 4-word boundary is reached (immediately before 0x00800110).
Consequently, three words of data is left in the FIFO.

(3) Third DMA transfer
a. Because 0x00800020 is aligned to a 4-word boundary, the DMAC performs a burst read for

the next four words.
b.Because 0x00800110 is aligned to a 4-word boundary, the DMAC performs a burst write

for the four words.

(4) Third and subsequent DMA transfers
Same as (3).

Read Write

0x00800008 0x00800104
0x0080000c 0x00800108 ←

First write:
Write the data present in the FIFO.First read:

Up to a 4-word boundary → 0x00800010 0x0080010c ←

0x00800014 0x00800110
Second write:
Up to a 4-word boundary

0x00800018 0x00800114

0x0080001c 0x00800118
→ 0x00800020 0x0080011c ←

Third write:
Burst-write up to a 4-word boundary

Second read:
Burst-read up to a 4-word
boundary 0x00800024 0x00800120

0x00800028 0x00800124
0x0080002c 0x00800128

3 words left in the FIFO

Chapter 10 DMA Controller

10-26

10.5 Timing Diagrams
The following diagrams assume that both the DMAREQ and DMAACK signals are programmed as

active-low.

10.5.1 Single-Address Mode, 32-bit Read Operation (ROM)

Figure 10.5.1 Single-Address Mode Single-Read Timing (Reading 32-bit Data from a 32-bit ROM)

1c040

SDCLK/SYSCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

DATA [31:0]

ACK*

DMAREQ

DMAACK

DMADONE*

00040

f

00000100

Chapter 10 DMA Controller

10-27

Figure 10.5.2 Single-Address Mode Single-Read Timing (Reading 32-bit Data from a 16-bit ROM)

38
08

0

SD
C

LK
/S

YS
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E*

D
AT

A
[1

5:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

00
08

0
00

08
1

f

00
00

01
00

Chapter 10 DMA Controller

10-28

10.5.2 Single-Address Mode, 32-bit Write Operation (SRAM)

Figure 10.5.3 Single-address Mode Single-Write Timing (Writing 32-bit Data to a 32-bit SRAM)

1c040

SDCLK/SYSCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

DATA [31:0]

ACK*

DMAREQ

DMAACK

DMADONE*

00140

f

00000100

0 f

Chapter 10 DMA Controller

10-29

10.5.3 Single-Address Mode, 32-bit Burst-Read Operation (ROM)

1c
04

0

SD
C

LK
/S

YS
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E

*

O
E

*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K

*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E

*

00
04

0
00

04
1

f

00
00

01
00

fff
ffe

ff

00
04

2
00

04
3

00
00

01
08

fff
ffe

f7

Figure 10.5.4 Single-Address Mode Burst-Read Timing (Burst-Read from a 32-bit ROM)

Chapter 10 DMA Controller

10-30

10.5.4 Single-Address Mode, 32-bit Burst-Write Operation (SRAM)

38
08

0

SD
C

LK
/S

YS
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E

*

O
E

*

SW
E*

BW
E*

D
AT

A
[1

5:
0]

AC
K

*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E

*

00
00

00
68

0
00

68
1

00
68

2
00

68
3

00
68

4
00

68
5

00
68

6
00

68
7

f
c

f
c

f
c

f
c

f
c

f
c

f
c

f
c

f

09
00

fff
f

f6
ff

00
00

09
08

fff
f

f6
f7

Figure 10.5.5 Single-Address Mode Burst-Write Timing (Burst-Write to a 16-bit SRAM)

Chapter 10 DMA Controller

10-31

00
14

0

SD
C

LK
/S

YS
C

LK C
E

*

AD
D

R
 [1

9:
2]

AC
E

*

O
E*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K

*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E

*

f

00
00

01
00

00
14

1
00

14
2

00
14

3

f
0

f
0

f
0

f
0

f

fff
ffe

ff
00

00
01

08
fff

ffe
f7

Figure 10.5.6 Single-Address Mode Burst-Write Timing (Writing 32-bit Data to a 32-bit SRAM)

Chapter 10 DMA Controller

10-32

10.5.5 Single-Address Mode, 16-bit Read Operation (ROM)

Figure 10.5.7 Single-Address Mode Single-Read Timing (Reading 16-bit Data from a 16-bit ROM)

38080

SDCLK/SYSCLK

CE*

ADDR [19:2]

ACE*

OE*

SWE*

BWE*

DATA [15:0]

ACK*

DMAREQ

DMAACK

DMADONE*

00080

f

0000

Chapter 10 DMA Controller

10-33

10.5.6 Single-Address Mode, 16-bit Write Operation (SRAM)

Figure 10.5.8 Single-Address Mode Single-Write Timing (Writing 16-bit Data to a 16-bit SRAM)

00
28

0

SD
C

LK
/S

YS
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E*

D
AT

A
[1

5:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

f

00
00

c
f

Chapter 10 DMA Controller

10-34

10.5.7 Single-Address, Half-speed Mode, 32-bit Read Operation (ROM)

Figure 10.5.9 Single-Address Mode Single-Read Timing
(Reading 32-bit Data from a 32-bit Half-speed ROM)

1c
04

1

SD
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

f

fff
ffe

ff

00
04

1

SY
SC

LK

Chapter 10 DMA Controller

10-35

10.5.8 Single-Address, Half-speed Mode, 32-bit Write Operation (SRAM)

Figure 10.5.10 Single-address Mode Single-Write Timing (Writing 32-bit Data to a 32-bit Half-speed SRAM)

f
0

f

1c
04

1

SD
C

LK C
E*

AD
D

R
 [1

9:
2]

AC
E*

O
E*

SW
E*

BW
E*

D
AT

A
[3

1:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

00
00

01
00

00
14

0

SY
SC

LK

Chapter 10 DMA Controller

10-36

10.5.9 Single-Address Mode, 32-bit Read Operation (SDRAM)

Figure 10.5.11 Single-address Mode Single-Read Timing (Reading 32-bit Data from a 32-bit SDRAM)

0000

SDCLK

CS*

ADDR [19:5]

RAS*

OE*

WE*

DQM [3:0]

DATA [31:0]

ACK*

DMAREQ

DMAACK

DMADONE*

0040

f

00000100

CAS*

CKE*

0 f

Chapter 10 DMA Controller

10-37

10.5.10 Single-Address Mode, 32-bit Write Operation (SDRAM)

Figure 10.5.12 Single-Address Mode Single-Write Timing (Writing 32-bit Data to a 32-bit SDRAM)

0001

SDCLK

CS*

ADDR [19:5]

RAS*

OE*

WE*

DQM [3:0]

DATA [31:0]

ACK*

DMAREQ

DMAACK

DMADONE*

0040

f

00000100

CAS*

CKE*

0 f

Chapter 10 DMA Controller

10-38

10.5.11 Single-Address Mode, 16-bit Burst-Read Operation (SDRAM)

Figure 10.5.13 Single-Address Mode Burst-Read Timing (Burst-Read from a 16-bit SDRAM)

0000

SDCLK

CS*

ADDR [19:5]

RAS*

OE*

WE*

DQM [3:0]

DATA [15:0]

ACK*

DMAREQ

DMAACK

DMADONE*

f

CAS*

CKE*

c f

0088 0089 008a 008b 008c 008d 008e 008f 0090

0000 0110 ffff feef 0000 0118 ffff fee7

Chapter 10 DMA Controller

10-39

10.5.12 Single-Address Mode, 32-bit Burst-Read Operation (SDRAM)

Figure 10.5.14 Single-Address Mode Burst-Read Timing (Burst-Read from a 32-bit SDRAM)

00
00

SD
C

LK C
S*

AD
D

R
 [1

9:
5]

R
AS

*

O
E*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[3

1:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

00
40

f

00
00

01
00

C
AS

*

C
KE

*

0
f

00
41

00
42

00
43

00
44

fff
ffe

ff
00

00
01

08
fff

ffe
f7

Chapter 10 DMA Controller

10-40

10.5.13 Single-Address Mode, 32-bit Burst-Write Operation (SDRAM)

Figure 10.5.15 Single-address Mode Burst-Write Timing (Burst-Write to a 32-bit SDRAM)

00
01

SD
C

LK C
S*

AD
D

R
 [1

9:
5]

R
AS

*

O
E*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[3

1:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

00
40

f

00
00

01
00

C
AS

*

C
KE

*

0
f

00
41

00
42

00
43

fff
ffe

ff
fff

ffe
f7

00
00

01
08

Chapter 10 DMA Controller

10-41

10.5.14 Single-Address Mode, 32-bit Last Single-Read Operation (SDRAM)

Figure 10.5.16 Single-Address Mode Single-Read Timing (Reading 32-bit Data from a 32-bit SDRAM)

0000

SDCLK

CS*

ADDR [19:5]

RAS*

OE*

WE*

DQM [3:0]

DATA [31:0]

ACK*

DMAREQ

DMAACK

DMADONE*

0041

f

fffffeff

CAS*

CKE*

0 f

Chapter 10 DMA Controller

10-42

10.5.15 Single-Address Mode, 16-bit Read Operation (SDRAM)

Figure 10.5.17 Single-Address Mode Single-Read Timing (Reading 16-bit Data from a 16-bit SDRAM)

00
00

SD
C

LK C
S*

AD
D

R
 [1

9:
5]

R
AS

*

O
E*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[1

5:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

00
80

f

C
AS

*

C
KE

*

c
f

00
81

01
00

Chapter 10 DMA Controller

10-43

10.5.16 Single-Address Mode, 16-bit Write Operation (SDRAM)

Figure 10.5.18 Single-Address Single-Write Timing (Writing 16-bit Data to a 16-bit SDRAM)

0002

SDCLK

CS*

ADDR [19:5]

RAS*

OE*

WE*

DQM [3 : 0]

DATA [15:0]

ACK*

DMAREQ

DMAACK

DMADONE*

0080

f

0000

CAS*

CKE*

c f

0081

f

Chapter 10 DMA Controller

10-44

10.5.17 Single-Address Mode, 32-bit Read Operation (SDRAM)

Figure 10.5.19 Single-Address Single-Read Timing (Reading 32-bit Data from a 16-bit SDRAM)

00
00

SD
C

LK C
S*

AD
D

R
 [1

9:
5]

R
AS

*

O
E*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[1

5:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E*

00
80

f

C
AS

*

C
KE

*

c
f

00
81

00
00

01
00

Chapter 10 DMA Controller

10-45

10.5.18 Single-Address Mode, 32-bit Write Operation (SDRAM)

Figure 10.5.20 Single-Address Single-Write Timing (Writing 32-bit Data to a 16-bit SDRAM)

0006

SDCLK

CS*

ADDR [19:5]

RAS*

OE*

WE*

DQM [3:0]

DATA [15:0]

ACK*

DMAREQ

DMAACK

DMADONE*

0082

f

ffff

CAS*

CKE*

c f

0083

f6ff

Chapter 10 DMA Controller

10-46

10.5.19 Single-Address Mode, 32-bit Burst-Write Operation (SDRAM)

00
06

SD
C

LK C
S

*

AD
D

R
 [1

9:
5]

R
AS

*

O
E*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[1

5:
0]

AC
K*

D
M

AR
EQ

D
M

AA
C

K

D
M

AD
O

N
E

*

00
88

f

00
00

C
AS

*

C
KE

*

c
f

00
89

00
8a

00
8b

00
8f

09
10

fff
f

f6
ef

00
8c

00
8d

00
8e

00
00

09
18

fff
f

f6
e7

Figure 10.5.21 Single-Address Mode Burst-Write Timing (Burst-Write to a 16-bit SDRAM)

Chapter 10 DMA Controller

10-47

10.5.20 Dual-Address Mode Burst Operation (SRAM to SRAM)

Figure 10.5.22 Dual-Address Mode Read/Write Timing (8-word Burst Transfer between 32-bit SRAMs)

Figure 10.5.23 Dual-Address Mode Read/Write Timing (4-word Burst Transfer between 32-bit SRAMs)

X X X X X X X

SDCLK

CE*

ADDR [19:2]

ACE*

DATA [31:0]

SWE*

ACK*

DMAREQ

DMAACK

DMADONE*

OE*

BWE*

40 41 42 43 44 45 46 47 80 81 82 83 84 85 86 87

f

Valid Valid Valid Valid Valid Valid Valid Valid

f f f f f f f f

V V V V V V V V

SDCLK

CE*

ADDR [19:2]

ACE*

DATA [31:0]

SWE*

ACK*

DMAREQ

DMAACK

DMADONE*

OE*

BWE*

1c04C 40 42 43 80 81 82 83

f

Valid

f

41

0 f0 f0 f0

V V V V Valid Valid Valid

Chapter 10 DMA Controller

10-48

10.5.21 Dual-Address Mode Burst Operation (SRAM to SDRAM)

Figure 10.5.24 Dual-Address Mode Read/Write Timing
(4-word Burst Transfer from a 32-bit SRAM to a 32-bit SDRAM)

X X X

SDCLK

CE*

ADDR [19:2]

DQM[3:0]

DATA [31:0]

SWE*

ACK*

DMAREQ

DMAACK

DMADONE*

ACE*

BWE*

0cc03 863 3 b 13 1b

f

CS*

0cc020cc010cc00

RAS*

CAS*

WE*

CKE

OE*

V V V V Valid VVV

f 0 f

Chapter 10 DMA Controller

10-49

10.5.22 Dual-Address Mode Burst Operation (SDRAM to SRAM)

Figure 10.5.25 Dual-Address Mode Read/Write Timing
(8-word Burst Transfer from a 32-bit SDRAM to a 32-bit SRAM)

SDCLK

CE*

ADDR [19:2]

DQM[3:0]

DATA [31:0]

SWE*

ACK*

DMAREQ

DMAACK

DMADONE*

ACE*

BWE*

10800

f

CS*

RAS*

CAS*

WE*

CKE

OE*

Valid

0 f

10801 10802 10803 10804 10805 10806 10807

f

V

Valid Valid Valid Valid Valid Valid Valid

f f f f f f f f

Chapter 10 DMA Controller

10-50

10.5.23 Dual-Address Mode Burst Operation (SDRAM to SDRAM)

Figure 10.5.26 Dual-Address Mode Read/Write Timing (8-word Burst Transfer between 32-bit SDRAMs)

Figure 10.5.27 Dual-Address Mode Read/Write Timing (4-word Burst Transfer between 32-bit SDRAMs)

SDCLK

CS*

CE*

ADDR[19:2] 7 207 20f 217 21f 227 22f 237 23f 7 40f407 43f

RAS*

CAS*

WE*

CKE

OE*

DQM[3:0]

DATA[31:0]

f 0 f 0 f

V V V V V V V V Valid V V V V V V V

ACK*

DMAREQ

DMAACK

DMADONE*

417 41f 427 42f 437

SDCLK

CE*

ADDR [19 : 2]

DQM[3 : 0]

DATA [31 : 0]

ACK*

DMAREQ

DMAACK

DMADONE*

7 427 42f 437 43f

CS*

2372277

RAS*

CAS*

WE*

CKE

OE*

V V V Valid VVV

0 0 f

22f

f

23f

V

f

Chapter 10 DMA Controller

10-51

10.5.24 Dual-Address Mode Non-burst Operation (SDRAM to ROMC Device)

Figure 10.5.28 Dual-Address Mode Read/Write Timing
(4-word Transfer from a 32-bit Burst-Mode SDRAM to a 32-bit Non-burst ROMC Device)

SDCLK

CS*

CE*

ADDR[19:2] 207 1c000 0

RAS*

CAS*

WE*

CKE

OE*

DQM[3:0]

DATA[31:0]

f 0 f

V V V V Valid

ACK*

DMAREQ

DMAACK

DMADONE*

2f 37 3f 0 0 0

Valid Valid Valid

ACE*

SWE*

BWE* f 0 f 0 f 0 f 0 f

Chapter 10 DMA Controller

10-52

10.5.25 Dual-Address Mode Non-burst Operation (ROMC Device to SDRAM)

Figure 10.5.29 Dual-Address Read/Write Timing
(4-word Transfer from a 32-bit Non-burst ROMC Device to a 32-bit Burst-Mode SDRAM)

SDCLK

CS*

CE*

ADDR[19:2] 0 0

RAS*

CAS*

WE*

CKE

OE*

DQM[3:0]

DATA[31:0]

f0f

V

ACK*

DMAREQ

DMAACK

DMADONE*

2f

ACE*

SWE*

BWE* f

0 0 27 37 3f

V V V Valid V V V

Chapter 11 Interrupt Controller (IRC)

11-1

11. Interrupt Controller (IRC)

11.1 Features
The integrated Interrupt Controller (IRC) of the TX3927 coordinates all interrupt sources, both from on-

chip peripherals and off-chip inputs, and provides interrupt requests to the TX39/H2 processor core with
programmable priority levels.

The IRC has the following features:

• 8 internal interrupts and up to 6 external interrupts.

• Each interrupt source can be assigned one of eight priority levels (0-7).

• Each external interrupt pin can be individually programmed as either edge- or level-detected.

11.2 Block Diagram

Figure 11.2.1 TX3927 IRC block diagram

The interrupt detection block monitors the states of the external interrupt request pins, INT[5:0]. Each
interrupt pin can be individually programmed as either edge- or level-triggered and as either active-high or
active-low. The Interrupt Control Mode Register 0 (IRCR0) specifies the trigger mode.

The IRC collects interrupt events from on- and off-chip peripherals and prioritizes them. After
determining the highest-priority interrupt, the IRC drives the interrupt request lines to the TX39/H2 core to
inform it of the interrupt request.

TX39/H2 Core

Interrupt Request

Non-maskable
Interrupt Request

Interrupt Levels

Interrupt Masks

Priority Handling

Interrupt
Detection

Block

IRC

6

1

2

3

1

1

PCIC

SIO

TMR

DMA

PIO/Flag

Watchdog Timer Interrupt

Non-maskable Interrupt Signal
(NMI*)

External Interrupt
Signals (INT[5:0])

6

Internal Interrupt
Signals

TMR2
CCFG.WR

Bus Error on Write

Chapter 11 Interrupt Controller (IRC)

11-2

11.3 Registers

11.3.1 Register Map
The base address of the IRC registers is 0xFFFE_C000. All registers of the IRC can only be word-

accessed. For the bits not defined in this section, the values shown in the figures must be written.

Table 11.3.1 IRC Registers

Address Register Mnemonic Register Name
0xFFFE_C0A0 IRCSR Interrupt Current Status Register
0xFFFE_C080 IRSSR Interrupt Source Status Register
0xFFFE_C060 IRSCR Interrupt Status/Control Register
0xFFFE_C040 IRIMR Interrupt Mask Register
0xFFFE_C02C IRILR7 Interrupt Level Register 7
0xFFFE_C028 IRILR6 Interrupt Level Register 6
0xFFFE_C024 IRILR5 Interrupt Level Register 5
0xFFFE_C020 IRILR4 Interrupt Level Register 4
0xFFFE_C01C IRILR3 Interrupt Level Register 3
0xFFFE_C018 IRILR2 Interrupt Level Register 2
0xFFFE_C014 IRILR1 Interrupt Level Register 1
0xFFFE_C010 IRILR0 Interrupt Level Register 0
0xFFFE_C008 IRCR1 Interrupt Control Mode Register 1
0xFFFE_C004 IRCR0 Interrupt Control Mode Register 0
0xFFFE_C000 IRCER Interrupt Control Enable Register

Chapter 11 Interrupt Controller (IRC)

11-3

11.3.2 Interrupt Control Enable Register (IRCER) 0xFFFE_C000

31 16
0

: Type
: Initial value

15 1 0
0 ICE

R/W : Type
0 : Initial value

Bits Mnemonic Field Name Description
0 ICE Interrupt Control

Enable
Interrupt Control Enable (initial value: 0)
Enables or disables interrupts detection.
0: Disabled
1: Enabled

Figure 11.3.1 Interrupt Control Enable Register

Chapter 11 Interrupt Controller (IRC)

11-4

11.3.3 Interrupt Control Mode Register 0 (IRCR0) 0xFFFE_C004

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IC7 IC6 IC5 IC4 IC3 IC2 IC1 IC0

R/W R/W R/W R/W R/W R/W R/W R/W : Type
00 00 00 00 00 00 00 00 : Initial value

Bits Mnemonic Field Name Description
15:14 IC7 Interrupt Source

Control 7
Interrupt Source Control 7 (initial value: 00)
Specifies the polarity and trigger mode for SIO[1] interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

13:12 IC6 Interrupt Source
Control 6

Interrupt Source Control 6 (initial value: 00)
Specifies the polarity and trigger mode for SIO[0] interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

11:10 IC5 Interrupt Source
Control 5

Interrupt Source Control 5 (initial value: 00)
Specifies the polarity and trigger mode for INT[5] interrupts.
00: Low level
01: High level
10: Falling edge
11: Rising edge

9:8 IC4 Interrupt Source
Control 4

Interrupt Source Control 4 (initial value: 00)
Specifies the polarity and trigger mode for INT[4] interrupts.
00: Low level
01: High level
10: Falling edge
11: Rising edge

7:6 IC3 Interrupt Source
Control 3

Interrupt Source Control 3 (initial value: 00)
Specifies the polarity and trigger mode for INT[3] interrupts.
00: Low level
01: High level
10: Falling edge
11: Rising edge

5:4 IC2 Interrupt Source
Control 2

Interrupt Source Control 2 (initial value: 00)
Specifies the polarity and trigger mode for INT[2] interrupts.
00: Low level
01: High level
10: Falling edge
11: Rising edge

3:2 IC1 Interrupt Source
Control 1

Interrupt Source Control 1 (initial value: 00)
Specifies the polarity and trigger mode for INT[1] interrupts.
00: Low level
01: High level
10: Falling edge
11: Rising edge

Note: IC7 and IC6 must be set to 00 for low-level detection.

Figure 11.3.2 Interrupt Control Mode Register 0 (1/2)

Chapter 11 Interrupt Controller (IRC)

11-5

Bits Mnemonic Field Name Description
1:0 IC0 Interrupt Source

Control 0
Interrupt Source Control 0 (initial value: 00)
Specifies the polarity and trigger mode for INT[0] interrupts.
00: Low level
01: High level
10: Falling edge
11: Rising edge

Figure 11.3.2 Interrupt Control Mode Register 0 (2/2)

Chapter 11 Interrupt Controller (IRC)

11-6

11.3.4 Interrupt Control Mode Register 1 (IRCR1) 0xFFFE_C008

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IC15 IC14 IC13 0 0 0 0 IC10 IC9 IC8

R/W R/W R/W R/W R/W R/W : Type
00 00 00 00 00 00 : Initial value

Bits Mnemonic Field Name Description
15:14 IC15 Interrupt Source

Control 15
Interrupt Source Control 15 (initial value: 00)
Specifies the polarity and trigger mode for TMR[2] interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

13:12 IC14 Interrupt Source
Control 14

Interrupt Source Control 14 (initial value: 00)
Specifies the polarity and trigger mode for TMR[1] interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

11:10 IC13 Interrupt Source
Control 13

Interrupt Source Control 13 (initial value: 00)
Specifies the polarity and trigger mode for TMR[0] interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

5:4 IC10 Interrupt Source
Control 10

Interrupt Source Control 10 (initial value: 00)
Specifies the polarity and trigger mode for PCI interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

3:2 IC9 Interrupt Source
Control 9

Interrupt Source Control 9 (initial value: 00)
Specifies the polarity and trigger mode for PIO/Flag interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

1:0 IC8 Interrupt Source
Control 8

Interrupt Source Control 8 (initial value: 00)
Specifies the polarity and trigger mode for DMA interrupts.
00: Low level
01: Don’t use.
10: Don’t use.
11: Don’t use.

Note: IC15 to IC8 must be set to 00 for low-level detection.

Figure 11.3.3 Interrupt Control Mode Register 1

Chapter 11 Interrupt Controller (IRC)

11-7

11.3.5 Interrupt Level Register 0 (IRILR0) 0xFFFE_C010

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL1 0 IL0

R/W R/W : Type
000 000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL1 Interrupt Level 1 Interrupt Level of INT[1] (initial value: 000)

Specifies the interrupt priority level for the INT[1] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

2:0 IL0 Interrupt Level 0 Interrupt Level of INT[0] (initial value: 000)
Specifies the interrupt priority level for the INT[0] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.4 Interrupt Level Register 0

Chapter 11 Interrupt Controller (IRC)

11-8

11.3.6 Interrupt Level Register 1 (IRILR1) 0xFFFE_C014

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL3 0 IL2

R/W R/W : Type
000 000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL3 Interrupt Level 3 Interrupt Level of INT[3] (initial value: 000)

Specifies the interrupt priority level for the INT[1] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

2:0 IL2 Interrupt Level 2 Interrupt Level of INT[2] (initial value: 000)
Specifies the interrupt priority level for the INT[1] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.5 Interrupt Level Register 1

Chapter 11 Interrupt Controller (IRC)

11-9

11.3.7 Interrupt Level Register 2 (IRILR2) 0xFFFE_C018

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL5 0 IL4

R/W R/W : Type
000 000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL5 Interrupt Level 5 Interrupt Level of INT[5] (initial value: 000)

Specifies the interrupt priority level for the INT[5] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

2:0 IL4 Interrupt Level 4 Interrupt Level of INT[4] (initial value: 000)
Specifies the interrupt priority level for the INT[4] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.6 Interrupt Level Register 2

Chapter 11 Interrupt Controller (IRC)

11-10

11.3.8 Interrupt Level Register 3 (IRILR3) 0xFFFE_C01C

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL7 0 IL6

R/W R/W : Type
000 000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL7 Interrupt Level 7 Interrupt Level of INT[7] (initial value: 000)

Specifies the interrupt priority level for the SIO[1] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

2:0 IL6 Interrupt Level 6 Interrupt Level of INT[6] (initial value: 000)
Specifies the interrupt priority level for the SIO[0] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.7 Interrupt Level Register 3

Chapter 11 Interrupt Controller (IRC)

11-11

11.3.9 Interrupt Level Register 4 (IRILR4) 0xFFFE_C020

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL9 0 IL8

R/W R/W : Type
000 000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL9 Interrupt Level 9 Interrupt Level of INT[9] (initial value: 000)

Specifies the interrupt priority level for the PIO/Flag interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

2:0 IL8 Interrupt Level 8 Interrupt Level of INT[8] (initial value: 000)
Specifies the interrupt priority level for the DMA interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.8 Interrupt Level Register 4

Chapter 11 Interrupt Controller (IRC)

11-12

11.3.10 Interrupt Level Register 5 (IRILR5) 0xFFFE_C024

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 000 0 IL10

R/W : Type
000 : Initial value

Bits Mnemonic Field Name Description
2:0 IL10 Interrupt Level 10 Interrupt Level of INT[10] (initial value: 000)

Specifies the interrupt priority level for the PCI interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.9 Interrupt Level Register 5

Chapter 11 Interrupt Controller (IRC)

11-13

11.3.11 Interrupt Level Register 6 (IRILR6) 0xFFFE_C028

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL13 0 000

R/W : Type
000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL13 Interrupt Level 13 Interrupt Level of INT[13] (initial value: 000)

Specifies the interrupt priority level for the TMR[0] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.10 Interrupt Level Register 6

Chapter 11 Interrupt Controller (IRC)

11-14

11.3.12 Interrupt Level Register 7 (IRILR7) 0xFFFE_C02C

31 16
0

: Type
: Initial value

15 11 10 8 7 3 2 0
0 IL15 0 IL14

R/W R/W : Type
000 000 : Initial value

Bits Mnemonic Field Name Description
10:8 IL15 Interrupt Level 15 Interrupt Level of INT[15] (initial value: 000)

Specifies the interrupt priority level for the TMR[2] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

2:0 IL14 Interrupt Level 14 Interrupt Level of INT[14] (initial value: 000)
Specifies the interrupt priority level for the TMR[1] interrupt.
000: Interrupt level 0 (interrupts disabled)
001: Interrupt level 1
010: Interrupt level 2
011: Interrupt level 3
100: Interrupt level 4
101: Interrupt level 5
110: Interrupt level 6
111: Interrupt level 7

Figure 11.3.11 Interrupt Level Register 7

Chapter 11 Interrupt Controller (IRC)

11-15

11.3.13 Interrupt Mask Register (IRIMR) 0xFFFE_C040

31 16
0

: Type
: Initial value

15 3 2 0
0 IML

R/W : Type
0 : Initial value

Bits Mnemonic Field Name Description
2:0 IML Interrupt Mask

Level
Interrupt Mask Level (initial value: 000)
Specifies an interrupt mask level. When an interrupt request has a priority lower
than the value in the mask, the processor ignores that interrupt request.
000: Interrupt mask level 0 (all interrupts disabled)
001: Interrupt mask level 1 (levels 1-7 recognized)
010: Interrupt mask level 2 (levels 2-7 recognized)
011: Interrupt mask level 3 (levels 3-7 recognized)
100: Interrupt mask level 4 (levels 4-7 recognized)
101: Interrupt mask level 5 (levels 5-7 recognized)
110: Interrupt mask level 6 (levels 6-7 recognized)
111: Interrupt mask level 7 (only level 7 recognized)

Figure 11.3.12 Interrupt Mask Register

Chapter 11 Interrupt Controller (IRC)

11-16

11.3.14 Interrupt Status/Control Register (IRSCR) 0xFFFE_C060

31 16
0

: Type
: Initial value

15 9 8 7 4 3 0
0 EICIrE 0 EICIr

R/W R/W : Type
0 0000 : Initial value

Bits Mnemonic Field Name Description
8 EIClrE Interrupt Clear

Enable
Edge Interrupt Clear Enable for Sources (Initial value: 0)
Clears the source of interrupt specified in the EIClr field.
0: The specified interrupt is unaffected.
1: The specified interrupt is cleared.
This bit is immediately to cleared "0" after "1" is written. This bit returns a "0" on a
read.

3:0 EIClr Interrupt Clear for
Sources

Edge Interrupt Clear for Sources (initial value: 0x0)
Specifies the source of interrupt to be cleared.
1111: TMR[2]
1110: TMR[1]
1101: TMR[0]
1100: (Reserved)
1011: (Reserved)
1010: PCI
1001: PIO/Flag
1000: DMA
0111: SIO[1]
0110: SIO[0]
0101: INT[5]
0100: INT[4]
0011: INT[3]
0010: INT[2]
0001: INT[1]
0000: INT[0]

Figure 11.3.13 Interrupt Status/Control Register

Chapter 11 Interrupt Controller (IRC)

11-17

11.3.15 Interrupt Source Status Register (IRSSR) 0xFFFE_C080

This register indicates which interrupts are pending, regardless of the settings the Interrupt Level
(IRILR7 to IRILR0) and Interrupt Mask (IRIMR) registers.

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IS15 IS14 IS13 0 0 IS10 IS9 IS8 IS7 IS6 IS5 IS4 IS3 IS2 IS1 IS0

R R R R R R R R R R R R R R R R : Type
− − − − − − − − − − − − − − : Initial value

Bits Mnemonic Field Name Description
15 IS15 Interrupt Status 15 IRINTREQ[15] Status

Shows the status of the TMR[2] interrupt.
1: Interrupt pending
0: No interrupt pending

14 IS14 Interrupt Status 14 IRINTREQ[14] Status
Shows the status of the TMR[1] interrupt.
1: Interrupt pending
0: No interrupt pending

13 IS13 Interrupt Status 13 IRINTREQ[13] Status
Shows the status of the TMR[0] interrupt.
1: Interrupt pending
0: No interrupt pending

10 IS10 Interrupt Status 10 IRINTREQ[10] Status
Shows the status of the PCI interrupt.
1: Interrupt pending
0: No interrupt pending

9 IS9 Interrupt Status 9 IRINTREQ[9] Status
Shows the status of the PIO/Flag interrupt.
1: Interrupt pending
0: No interrupt pending

8 IS8 Interrupt Status 8 IRINTREQ[8] Status
Shows the status of the DMA interrupt.
1: Interrupt pending
0: No interrupt pending

7 IS7 Interrupt Status 7 IRINTREQ[7] Status
Shows the status of the SIO[1] interrupt.
1: Interrupt pending
0: No interrupt pending

6 IS6 Interrupt Status 6 IRINTREQ[6] Status
Shows the status of the SIO[0] interrupt.
1: Interrupt pending
0: No interrupt pending

5 IS5 Interrupt Status 5 IRINTREQ[5] Status
Shows the status of the INT[5] interrupt.
1: Interrupt pending
0: No interrupt pending

4 IS4 Interrupt Status 4 IRINTREQ[4] Status
Shows the status of the INT[4] interrupt.
1: Interrupt pending
0: No interrupt pending

Figure 11.3.14 Interrupt Source Status Register (1/2)

Chapter 11 Interrupt Controller (IRC)

11-18

Bits Mnemonic Field Name Description
3 IS3 Interrupt Status 3 IRINTREQ[3] Status

Shows the status of the INT[3] interrupt.
1: Interrupt pending
0: No interrupt pending

2 IS2 Interrupt Status 2 IRINTREQ[2] Status
Shows the status of the INT[2] interrupt.
1: Interrupt pending
0: No interrupt pending

1 IS1 Interrupt Status 1 IRINTREQ[1] Status
Shows the status of the INT[1] interrupt.
1: Interrupt pending
0: No interrupt pending

0 IS0 Interrupt Status 0 IRINTREQ[0] Status
Shows the status of the INT[0] interrupt.
1: Interrupt pending
0: No interrupt pending

Figure 11.3.14 Interrupt Source Status Register (2/2)

Chapter 11 Interrupt Controller (IRC)

11-19

11.3.16 Interrupt Current Status Register (IRCSR) 0xFFFE_C0A0

31 17 16
0 IF

R : Type

1 : Initial value

15 11 10 8 7 5 4 0
0 ILV 0 IVL

R R : Type
000 11111 : Initial value

Bits Mnemonic Field Name Description
16 IF Interrupt Flag Interrupt Flag (initial value: 1)

Indicates whether there is any interrupt request or not.
0: An interrupt request detected
1: No interrupt request detected

10:8 ILV Interrupt Level
Vector

Interrupt Level Vector (initial value: 000)
Indicates the interrupt priority level delivered to the TX39/H2 core.
000: Interrupt level 0
001: Interrupt level 1
 : :
111: Interrupt level 7

4:0 IVL Interrupt Vector Interrupt Vector (initial value: 0x1F)
Indicates the source of interrupt delivered to the TX39/H2 core.
00000: INT[0] 01001: PIO/Flag
00001: INT[1] 01010: PCI
00010: INT[2] 01011: (Reserved)
00011: INT[3] 01100: (Reserved)
00100: INT[4] 01101: TMR[0]
00101: INT[5] 01110: TMR[1]
00110: SIO[0] 01111: TMR[2]
00111: SIO[1] 10000-11111: (Reserved)
01000: DMA

Figure 11.3.15 Interrupt Current Status Register

Chapter 11 Interrupt Controller (IRC)

11-20

11.4 Operation

11.4.1 Interrupt Sources

The TX3927 Interrupt Controller (IRC) recognizes eight internal interrupts and up to six external
interrupts. Of the six external interrupts, INT[5:4] share device pins with the SIO. Refer to "3.3 Pin
Multiplexing" for how the pin functions of these multiplexed pins are assigned.

Table 11.4.1 shows the interrupt sources the TX3927 supports. The Interrupt Controller arbitrates
between interrupt requests from these sources and passes the highest-priority request to the TX39/H2
core. When an interrupt is taken, the TX39/H2 core’s Cause register identifies the cause of the interrupt;
while the IP[5] bit in the Cause register is set to 1 to indicate an occurrence of an interrupt, the IP[4:0]
field captures the interrupt vector associated with its source, as shown below. When an interrupt occurs,
processing branches to an appropriate interrupt exception vector address. The address depends on the
value of the BEV bit in the TX39/H2 core's Status register. If BEV is 0, control is transferred to
physical address 0x00000080. If BEV is 1, control is transferred to physical address 0x1FC00180.

Table 11.4.1

Priority* Interrupt Vector IP [5:0] Interrupt Source
Highest 0 100000 INT[0]

1 100001 INT[1]
2 100010 INT[2]
3 100011 INT[3]
4 100100 INT[4]
5 100101 INT[5]
6 100110 SIO[0]
7 100111 SIO[1]
8 101000 DMA
9 101001 PIO

10 101010 PCI
11 101011 (Reserved)
12 101100 (Reserved)
13 101101 TMR[0]
14 101110 TMR[1]

Lowest 15 101111 TMR[2]

Note: An interrupt with a lower interrupt vector is given a higher priority if multiple interrupt requests
having an equal priority level occur at the same time.

11.4.2 Interrupt Detection

To enable interrupts, the ICE bit of the Interrupt Control Enable Register (IRCER) must be set after
initializing the other IRC registers. The IRCR0 and IRCR1 registers are used to select an interrupt
detection mode from high and low level-sensitive, and rising and falling edge-triggered. The default is
low level-sensitive. All the on-chip interrupt sources must always be programmed for to low-level
detection.

When the IRC detects an interrupt request, it notifies the TX39/H2 core of the interrupt, which in turn
records its interrupt vector in the IP field of its Cause register. If more than one interrupt request occurs
simultaneously, the IRC delivers the highest-priority interrupt to the TX39/H2 core, based on its register
settings. Software is responsible for clearing interrupt requests. If the interrupt source is programmed as
high or low level-detected, the external circuitry asserting the interrupt request must be manipulated to
deassert the request. If the interrupt source is programmed as rising or falling edge-detected, writing its
interrupt vector to the EIClr field of the IRSCR register with EIClrE=1 causes the interrupt request to be

Chapter 11 Interrupt Controller (IRC)

11-21

cleared.

Interrupt requests from on-chip peripheral modules must also be cleared through software.

11.4.3 Interrupt Priorities

• Eight levels of interrupt priorities are provided, numbered from 0 (000) to 7 (111). Priority levels
can be programmed in the IRILR7 to IRILR0 registers, which contain a 3-bit priority-level field for
each of the interrupt sources. Level 7 has the highest-priority, and level 1 the lowest. If any
interrupt is programmed as 000, then that interrupt is effectively disabled. The response to
simultaneous occurrence of equal priority interrupts is determined by a hardware priority-within-
level resolver, according to interrupt vectors.

• The IRIMR register is available to mask interrupts. The 3-bit IML field of this register specifies the
mask level. Interrupt requests having a priority level lower than the value in the IML field are
masked. Those having the same priority level as the IML value are not masked. If the IML field is
set to "000", all interrupts are globally disabled.

• If two or more interrupt requests occurs simultaneously, the IRC determines the highest-priority
interrupt according to their programmed priority levels and the hardware-assigned interrupt
vectors.

• A higher-priority interrupt always interrupts the servicing of a low-priority interrupt, causing the
IRC to deliver a new interrupt vector to the TX39/H2 core. An interrupt is never interrupted by
another interrupt of lower or equal priority, even by an interrupt with a smaller interrupt vector.

• The servicing of an interrupt may not be interrupted by another interrupt of equal or lower priority
just by resetting the priority level of the current interrupt to 0 or a lower value in the Interrupt
Level Register; i.e., resetting the priority level of the current interrupt to 0 does not affect the
interrupt vector, if another interrupt of equal or lower priority is being requested at that time.

If the user wants to interrupt the processing of the current interrupt by setting its priority level to 0,
it is required to once change the interrupt mask level in the IRIMR register to a value that will
mask the current interrupt and then change it back to the original value.

For example:

(1) IRIMR: Set the interrupt mask level to 7 (i.e., disable all interrupts), or any level that can
mask the current interrupt.

(2) IRILR: Set the interrupt level for the current interrupt to 0 (disable the current interrupt).

(3) IRIMR: Restore the original interrupt mask level.

The order of steps 1 and 2 is not significant.

Note: On the other hand, raising the interrupt mask level in the IML field of the IRIMR
register will cause all lower-priority interrupts to be masked; consequently, interrupt
vectors of any lower-priority interrupts will never be delivered.

Chapter 11 Interrupt Controller (IRC)

11-22

Chapter 12 PCI Controller (PCIC)

12-1

12. PCI Controller (PCIC)

*** Notation used in this chapter ***

Note: In the TX39/H2 core documentation, the following terms are used to describe the size of data:

Byte = 8 bits
Halfword = 16 bits
Word = 32 bits

However, the PCI specification loosely uses these terms:

Byte = 8 bits
Word = 16 bits
Doubleword (D-word) = 32 bits

To be consistent with much of the PCI literature, this chapter refers to a 16-bit quantity as a word and
a 32-bit quantity as a doubleword.

12.1 Features
The TX3927 PCI Controller (PCIC) is an embedded PCI core. The TX39/H2 processor core of the

TX3927 uses the on-chip local bus (G-Bus) to access the PCIC.

The PCIC provides interface with a PCI bus and transfers data between the PCI bus and the local bus
using the integrated memory controllers (SDRAMC and ROMC).

• Compliant with PCI Local Bus Specification, Revision 2.1 (32-bit bus/33 MHz)

• Support for initiator, target and bus arbiter functions

• Support for up to four external PCI masters

• Selectable PCI clock directions

Note: Because the TX39/H2 core can not retry a bus cycle, a PCI transaction request does not
cause TX3927 internal bus operations to terminate. If a PCI target device has the same
access characteristics, a deadlock situation might occur (with both sides repeatedly
issuing retries). Deadlock avoidance is possible through the programming of transaction
time-outs so as to generate a bus error.

12.1.1 PCI Interface Features

• 0- to 33-MHz PCI clock

• Independent initiator and target controllers

• Full PCI configuration registers with enhanced capability

• Programmable address mapping between the local bus (G-Bus) and the PCI bus

• Independent local bus (G-Bus) and PCI bus clocks

Chapter 12 PCI Controller (PCIC)

12-2

12.1.2 PCI Initiator Features

• Single-word transactions between the local bus (G-Bus) and the PCI bus

• Support for memory, I/O, configuration, special-cycle and interrupt-acknowledge transactions

• PCI write transactions from the local bus (G-Bus)

• Direct and Indirect data transfer modes

12.1.3 PCI Target Features

• Automatic data streaming between the PCI bus and the local bus (G-Bus)
This allows the PCIC to transfer blocks of data larger than the FIFO depth, without requiring CPU
or additional external logic

• Two 16 × 32-bit FIFOs

• Capable of zero-wait-state burst reads and writes

• Programmable burst lengths for the local bus (G-Bus) and the PCI bus, and memory prefetching of
PCI bus reads

• Concurrent reads and writes by the PCI bus and the local bus (G-Bus)

• PCI write transactions from the PCI bus

• Support for fast back-to-back transactions

• Support for big-endian byte swapping

12.1.4 PCI Arbiter and Bus Parking Features

• Integrated PCI bus arbiter that supports up to four external PCI bus masters

• Programmable fairness algorithm: Two level, round-robin arbitration algorithm, with four PCI bus
request/grant pairs

• Bus master parking using a Most Recently Used (MRU) algorithm

• Autonomous PCI bus arbiter/parking module

• Automatic disabling of an unused slot and broken masters after power-on reset

• Supports disabling the internal PCI bus arbiter to use an external arbiter

• PCI bus parking

Chapter 12 PCI Controller (PCIC)

12-3

12.2 Block Diagram

Figure 12.2.1 PCIC Block Diagram

PCI Bus Arbiter/Parking

Bus Request/Retry

PIO Ports

Initiator
State Machine

Error Detection
Handling, Parity
Generation and

Checking

Retry Timer

Latency Timer

Target State
Machine

Error Detection
Handling, Parity
Generation and

Checking

PCI Read
Retry Tag

Target Streaming
Mechanism

IFIFO

OFIFO

Target module

Initiator Module

Local Bus Arbiter,
Local Bus Interface

G
-B

us

PCIC

PCI Bus

Configuration Registers

TX39/H2 Core

Memory
Controllers
(SDRAMC/

ROMC)

Chapter 12 PCI Controller (PCIC)

12-4

12.3 Registers
The PCIC has two types of registers: PCI configuration space registers and local bus special registers:

1. PCI configuration space registers (0xFFFE_D0FF to 0xFFFE_D000)

• PCI configuration header space registers

• Initiator configuration space registers

• Target configuration space registers

All of the PCI configuration space registers can be accessed by both the TX39/H core and PCI bus
masters. However, if the EPCAD bit of the Local Bus Control (LBC) register is set, PCI bus masters are
denied access to these register.

2. Local bus special registers (0xFFFE_D1FF to 0xFFFE_D100)

• PCI bus arbiter/parking registers

• Local bus special registers

These registers are not accessible from the PCI bus and must be programmed by the TX39/H2 core.

Reading reserved bits and registers may return undefined values. Software should not write any value to
such bits or registers.

Note: All the internal registers of the PCIC are intrinsically little-endian. Non-32-bit registers are
referenced with different addresses, depending on whether the CPU is in big-endian or
little-endian mode. Such registers can be accessed as byte, word (16-bit), or even
doubleword (32-bit) quantities, but care must be taken for endian differences between the
CPU and the PCIC. In the PCIC register, all multi-byte numeric fields use little-endian
ordering that assigns the lowest address to the lowest-order (rightmost) eight bits.

When reading from a PCIC register, software must mask reserved bits and should not rely
on the value of any reserved bit remaining consistent. Also, writes must preserve the
values of reserved bit positions by first reading the register, merging new values and writing
the result back.

As a result of a hardware RESET*, the internal configuration registers of the PCIC are initialized to
default states. The default states represent a minimum set of functions needed for proper system
initialization, and do not necessarily provide an optimal system configuration. It is the responsibility of the
system designer to program the PCIC registers with appropriate parameters and functions at system
initialization time (typically using BIOS).

Chapter 12 PCI Controller (PCIC)

12-5

12.3.1 Register Map
In this section, the register addresses are shown for both big-endian and little-endian systems. In the

following tables the first address is the address to use when the CPU is in big-endian mode. The address
enclosed in parentheses is the offset from 0xFFFE_D000 when the CPU is in little-endian mode.

Example: The DID register is accessed with address 0xFFFE_D0000 in big-endian mode and
with 0xFFFE_D002 in little-endian mode. This endian difference applies only to
non-32-bit accesses.

Table 12.3.1 PCI Configuration Header Space Registers

Address Mnemonic Register Name
0xFFFE_D03F (+03c) IL PCI Interrupt Line Register
0xFFFE_D03E (+03d) IP PCI Interrupt Pin Register
0xFFFE_D03D (+03e) MG Minimum Grant Register
0xFFFE_D03C (+03f) ML Maximum Latency Register
0xFFFE_D037 (+034) CAPPTR Capabilities Pointer
0xFFFE_D030 (+030)  (Reserved)
0xFFFE_D02E (+02c) SSVID Subsystem Vendor ID Register
0xFFFE_D02C (+02e) SVID System Vendor ID Register
0xFFFE_D028 (+028)  (Reserved)
0xFFFE_D014 (+014) MBA Target Memory Base Address Register
0xFFFE_D010 (+010) IOBA Target I/O Base Address Register
0xFFFE_D00F (+00c)  (Reserved)
0xFFFE_D00E (+00d) MLT Master Latency Timer Register
0xFFFE_D00D (+00e) HT Header Type Register
0xFFFE_D00C (+00f)  (Reserved)
0xFFFE_D00B (+008) RID Revision ID Register
0xFFFE_D00A (+009) RLPI Register-Level Programming Interface Register
0xFFFE_D009 (+00a) SCC Subclass Code Register
0xFFFE_D008 (+00b) CC Class Code Register
0xFFFE_D006 (+004) PCICMD PCI Command Register
0xFFFE_D004 (+006) PCISTAT PCI Status Register
0xFFFE_D002 (+000) VID Vendor ID Register
0xFFFE_D000 (+002) DID Device ID Register

Table 12.3.2 Initiator Configuration Space Registers

Address Mnemonic Register Name
0xFFFE_D068 (+068) ILBIOMAR Initiator Local Bus I/O Mapping Address Register
0xFFFE_D064 (+064) ILBMMAR Initiator Local Bus Memory Mapping Address Register
0xFFFE_D060 (+060) IPBIOMAR Initiator PCI Bus I/O Mapping Address Register
0xFFFE_D05C (+05c) IPBMMAR Initiator PCI Bus Memory Mapping Address Register
0xFFFE_D04C (+04c) RRT Retry/Reconnect Timer Register
0xFFFE_D048 (+048) IIM Initiator Interrupt Mask Register
0xFFFE_D044 (+044) ISTAT Initiator Status Register
0xFFFE_D040 (+040)  (Reserved)

Chapter 12 PCI Controller (PCIC)

12-6

Table 12.3.3 Target Configuration Space Registers

Address Mnemonic Register Name
0xFFFE_D0E4 (+0e4) PWMNGSR Power Management Support Register
0xFFFE_D0E0 (+0e0) PWMNGR Power Management Register
0xFFFE_D0D0 (+0d0) TBL Target Burst Length Register
0xFFFE_D0CC (+0cc) SC_BE Special-Cycle Byte Enable Register
0xFFFE_D0C8 (+0c8) SC_MSG Special-Cycle Message Register
0xFFFE_D0C4 (+0c4) TLBIOMAR Target Local Bus I/O Mapping Address Register
0xFFFE_D0C0 (+0c0) TLBMMAR Target Local Bus Memory Mapping Address Register
0xFFFE_D0BC (+0bc) TLBIAP Target Local Bus IFIFO Address Pointer
0xFFFE_D0B8 (+0b8) TLBOAP Target Local Bus OFIFO Address Pointer
0xFFFE_D0A8 (+0a8) PCIRRDT PCI Read Retry Discard Timer Register
0xFFFE_D0A4 (+0a4) PCIRRT_CMD PCI Read Retry Timer Command Register
0xFFFE_D0A0 (+0a0) PCIRRT PCI Read Retry Tag Register
0xFFFE_D09C (+09c) TCCMD Target Current Command Register
0xFFFE_D098 (+098) TIM Target Interrupt Mask Register
0xFFFE_D094 (+094) TSTAT Target Status Register
0xFFFE_D090 (+090) TC Target Control Register

Table 12.3.4 PCI Bus Arbiter/Parked Master Registers

Address Mnemonic Register Name
0xFFFE_D11C (+11c) PBACS PCI Bus Arbiter Current State Register
0xFFFE_D118 (+118) CPCIBGS Current PCI Bus Grant Status Register
0xFFFE_D114 (+114) CPCIBRS Current PCI Bus Request Status Register
0xFFFE_D110 (+110) BM Broken Master Register
0xFFFE_D10C (+10c) PBAPMIM PCI Bus Arbiter/Parked Master Interrupt Mask Register
0xFFFE_D108 (+108) PBAPMS PCI Bus Arbiter/Parked Master Status Register
0xFFFE_D104 (+104) PBAPMC PCI Bus Arbiter/Parked Master Control Register
0xFFFE_D100 (+100) REQ_TRACE Request Trace Register

Table 12.3.5 Local Bus Special Registers

Address Mnemonic Register Name
0xFFFE_D158 (+158) IPCICBE Initiator Indirect Command/Byte Enable Register
0xFFFE_D154 (+154) IPCIDATA Initiator Indirect Data Register
0xFFFE_D150 (+150) IPCIADDR Initiator Indirect Address Register
0xFFFE_D14C (+14c) IOMAS Initiator I/O Mapping Address Size Register
0xFFFE_D148 (+148) MMAS Initiator Memory Mapping Address Size Register
0xFFFE_D144 (+144) ISCDP Initiator Special-Cycle Data Port Register
0xFFFE_D140 (+140) IIADP Initiator Interrupt-Acknowledge Data Port Register
0xFFFE_D13C (+13c) ICDR Initiator Configuration Data Register
0xFFFE_D138 (+138) ICAR Initiator Configuration Address Register
0xFFFE_D134 (+134) PCISTATIM PCI Status Interrupt Mask Register
0xFFFE_D130 (+130) LBIM Local Bus Interrupt Mask Register
0xFFFE_D12C (+12c) LBSTAT Local Bus Status Register
0xFFFE_D128 (+128) LBC Local Bus Control Register
0xFFFE_D124 (+124) MBAS Target Memory Base Address Size Register
0xFFFE_D120 (+120) IOBAS Target I/O Base Address Size Register

Chapter 12 PCI Controller (PCIC)

12-7

12.3.2 PCI Configuration Header Space Registers

12.3.2.1 Device ID Register (DID) 0xFFFE_D000 (+002)

31 16
DID

R : Type
0x000A : Initial value

15 0

: Type
: Initial value

Bits Mnemonic Field Name Description
31:16 DID Device ID Device ID

This register contains the device identification number assigned to a particular
device.
TX3927=0x000A

Figure 12.3.1 Device ID Register

Chapter 12 PCI Controller (PCIC)

12-8

12.3.2.2 Vendor ID Register (VID) 0xFFFE_D002 (+000)

31 16
DID

: Type
: Initial value

15 0
VID

R : Type
0x102F : Initial value

Bits Mnemonic Field Name Description
15:0 VID Vender ID Vender ID

This register contains the vendor identification number assigned by the PCI SIG.
Toshiba=0x102F

Figure 12.3.2 Vendor ID Register

Chapter 12 PCI Controller (PCIC)

12-9

12.3.2.3 PCI Status Register (PCISTAT) 0xFFFE_D004 (+006)
The 16-bit PCI Status register records status information for PCI bus-related events such as PCI

master-abort, PCI target-abort and data parity errors, and defines the DEVSEL* timing for the
PCIC.

31 30 29 28 27 26 25 24 23 22 21 20 17 16
DECPE SIGSE RECMA RECTA SIGTA DSTIM PERPT FBBCP 0 USPCP CL 0

R/WC R/WC R/WC R/WC R/WC R R/WC R/WL R/WL R : Type
0 0 0 0 0 01 0 0 0 1 : Initial value

15 0
PCICMD

: Type
: Initial value

Bits Mnemonic Field Name Description
31 DECPE Detected Parity

Error
Detected Parity Error (initial value: 0)
Indicates that a parity error has been detected. This bit is set whenever a parity
error is detected by the PCIC initiator or target module even if the Parity Error
Response Enable bit of the PCI Command register (PCICMD.PEREN) is cleared.
1: Parity error detected.

This bit is set in any of the following three cases:
1. The PCIC initiator module detects a data parity error during a PCI read.
2. The PCIC target module detects a data parity error during a PCI write.
3. The PCIC target module detects an address parity error.

0: Parity error not detected.
30 SIGSE Signaled System

Error
Signaled System Error (initial value: 0)
Indicates the SERR* signal state. This bit is set to indicate that the PCIC target has
asserted the SERR* pin to report an address parity error, or a data parity error on a
special-cycle transaction.
1: SERR* asserted.
0: SERR* not asserted.

29 RECMA Received Master-
Abort

Received Master-Abort (initial value: 0)
This bit is set by the PCIC initiator module when its host-to-PCI transaction is
terminated with a master-abort (except for a special-cycle command).

28 RECTA Received Target-
Abort

Received Target-Abort (initial value: 0)
This bit is set by the PCIC initiator module when its transaction is terminated with a
target-abort.
1: Bus master transaction was terminated with a target-abort.
0: Bus master transaction was not terminated with a target-abort.

27 SIGTA Signaled Target-
Abort

Signaled Target-Abort (initial value: 0)
This bit is set by the PCIC target module when it terminates a transaction with a
target-abort.
1: Bus master transaction was terminated with a target-abort.
0: Bus master transaction was not terminated with a target-abort.

26:25 DSTIM DEVSEL Timing Device Select (DEVSEL) Timing (initial value: 01)
The PCI 2.1 specification defines three different timings for the assertion of
DEVSEL: 00b = fast, 01b = medium, 10b = slow, 11b = reserved.
These read-only bits indicate the slowest DEVSEL timing for the PCIC target to
claim an access except for the Configuration Read and Configuration Write
commands. The TX3927 uses the medium DEVSEL timing (01).

Figure 12.3.3 PCI Status Register (1/2)

Chapter 12 PCI Controller (PCIC)

12-10

Bits Mnemonic Field Name Description
24 PERPT Parity Error

Reported
Parity Error Reported (initial value: 0)
This bit is used by the PCIC initiator to report a parity error to the system software.
The target never sets this bit. It is set when all of the following conditions are met:
• The PCIC initiator asserts PERR during a read transaction or samples PERR

asserted by a target agent during a write transaction.
• The PCIC initiator is the bus master for the PCI bus cycle in which the error

occurred.
• The PEREN bit in the PCICMD register is set.

23 FBBCP Fast Back-to-
Back Capable

Fast Back-to-Back Capable (initial value: 0)
This bit indicates whether the PCIC is capable of fast back-to-back transactions.
Applications can set this bit to 1 or 0. The default value is 0.
1: Capable of fast back-to-back transactions.
0: Not capable of fast back-to-back transactions.

21 USPCP Up Speed
Capable

Up Speed Capable (initial value: 0)
This bit enables 66-MHz operation. However, the TX3927 is not 66-MHz capable.

20 CL Capabilities List Capabilities List (initial value: 1)
This bit indicates whether the power management capability is implemented.

Note 1: Bits 31, 30, 29, 28, 27 and 24 are used to record events occurring on the PCI bus. These bits are
set to 1 when the corresponding event occurs. These bits are cleared by writing a 1; writing a 0
has no effect. When these bits are currently cleared, writing a 1 has no effect.

Note 2: In the normal situation, an external PCI initiator should not be able to write to bits 23 and 21 in
this register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.3 PCI Status Register (2/2)

Chapter 12 PCI Controller (PCIC)

12-11

12.3.2.4 PCI Command Register (PCICMD) 0xFFFE_D006 (+004)
This 16-bit register provides basic control over the PCIC's ability to respond to PCI cycles.

31 16
PCISTAT

: Type
: Initial value

15 10 9 8 7 6 5 4 3 2 1 0
0 FBBEN SEEN 0 PEREN 0 MWIEN SCREC MEN MACEN IACEN

R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
9 FBBEN Fast Back-to-

Back Enable
Fast Back-to-Back Enable (initial value: 0)
The PCIC supports fast back-to-back transactions. During a fast back-to-back
transaction, another transaction starts in the clock cycle immediately following the
last data transfer for the last transaction. The FBBEN bit enables or disables fast
back-to-back transactions.
1: Enabled
0: Disabled

8 SEEN SERR* Enable SERR* Enable (initial value: 0)
Enables or disables the SERR* driver of the PCIC. When SEEN=1 and PEREN=1,
SERR* is asserted for error signaling, including PCI bus address parity errors, and
data parity errors on special-cycle transactions. When SEEN=0, SERR* is never
asserted.
1: Enabled
0: Disabled

6 PEREN PERR* Enable Parity Error Response Enable (initial value: 0)
Controls the PCIC's response to PCI address and data parity errors. The PEREN bit
is used with the SEEN bit to enable the assertion of the SERR* pin for error
signaling, including PCI address and data parity errors. If this bit is cleared, the
PCIC ignores all parity errors and behaves as if a nothing is wrong. If this bit is set,
the PCIC asserts PERR* when it detects a parity error.
1: PERR* is asserted upon detection of a parity error. If the SEEN bit is also set,

SERR* is asserted when a PCI address or data parity error occurs.
0: Parity errors are ignored.

4 MWIEN Memory Write
and Invalidate
Enable

Memory Write and Invalidate Enable (initial value: 0)
Controls whether the master device generates the Memory-Write-and-Invalidate
command. This bit has no effect on the TX3927.

3 SCREC Special-Cycle
Recognition

Special-Cycle Recognition (initial value: 0)
1: The PCIC target monitors all special-cycle operations.
0: The PCIC target ignores all special-cycles operations.

2 MEN Master Enable Master Enable (initial value: 0)
1: The PCIC initiator module can act as a bus master.
0: The PCIC initiator module can not act as a bus master.

1 MACEN Memory Access
Enable

Memory Access Enable (initial value: 0)
1: The PCIC target module responds to PCI memory space accesses.
0: The PCIC target module does not respond to PCI memory space accesses.

0 IACEN I/O Access
Enable

I/O Access Enable (initial value: 0)
1: The PCIC target module responds to PCI I/O space accesses.
0: The PCIC target module does not respond to PCI I/O space accesses.

Figure 12.3.4 PCI Command Register

Chapter 12 PCI Controller (PCIC)

12-12

12.3.2.5 Class Code Register (CC) 0xFFFE_D008 (+00b)

31 24 23 16
CC SCC

R/WL : Type
0x06 : Initial value

15 8 7 0
RLPI RID

: Type
: Initial value

Bits Mnemonic Field Name Description
31:24 CC Class Code Class Code for PCIC (initial value: 0x6)

Contains the base class code of the PCIC.
Hardware reset to 06h (=bridge device) for the PCIC.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [31:24] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.5 Class Code Register

Chapter 12 PCI Controller (PCIC)

12-13

12.3.2.6 Subclass Code Register (SCC) 0xFFFE_D009 (+00a)

31 24 23 16
CC SCC

R/WL : Type
0x00 : Initial value

15 8 7 0
RLPI RID

: Type
: Initial value

Bits Mnemonic Field Name Description
23:16 SCC Subclass Code Subclass Code for PCIC (initial value: 0x00)

Contains the subclass code of the PCIC.
Hardware reset to 00h (=host bridge) for the PCIC.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [23:16] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.6 Subclass Code Register

Chapter 12 PCI Controller (PCIC)

12-14

12.3.2.7 Register-Level Programming Interface Register (RLPI) 0xFFFE_D00A (+009)

31 24 23 16
CC SCC

: Type
: Initial value

15 8 7 0
RLPI RID

R : Type
0x00 : Initial value

Bits Mnemonic Field Name Description
15:8 RLPI Register-Level

Programming
Interface

Register-Level Programming Interface (initial value: 0x00)
Where an industry-standard programming interface is available, this bit defines its
classification.
This register is not used in the TX3927. Reading this register return a 0.

Figure 12.3.7 Register-Level Programming Interface Register

Chapter 12 PCI Controller (PCIC)

12-15

12.3.2.8 Revision ID Register (RID) 0xFFFE_D00B (+008)

31 24 23 16
CC SCC

: Type
: Initial value

15 8 7 0
RLPI RID

R/WL : Type
: Initial value

Bits Mnemonic Field Name Description
7:0 RID Revision ID Revision Identification Number for PCIC

Contains the device revision number assigned by Toshiba. Contact the Toshiba
technical staff.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [7:0] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.8 Revision ID Register

Chapter 12 PCI Controller (PCIC)

12-16

12.3.2.9 Header Type Register (HT) 0xFFFE_D00D (+00e)

31 24 23 22 16
0 MFUNS HT

R R : Type
0 0x00 : Initial value

15 8 7 0
MLR CLS

: Type
: Initial value

Bits Mnemonic Field Name Description
23 MFUNS Multi-Function Multi-Function Status (initial value: 0)

0: Indicates a single-function device.
22:16 HT Header Type Header Type (initial value: 0x00)

Defines the PCI configuration space header format. The TX3927 supports 0x00
only.
000000: Header type 0 (not PCI-to-PCI bridge).

Figure 12.3.9 Header Type Register

Chapter 12 PCI Controller (PCIC)

12-17

12.3.2.10 Master Latency Timer Register (MLT) 0xFFFE_D00E (+00d)
The 8-bit MLT register defines the maximum amount of time for which the PCIC, as a bus

master, can hold the PCI bus to burst data. The timer is triggered automatically when the PCIC
becomes the PCI bus master, and is cleared while the PCIC is not asserting FRAME*.

The MLT register begins decrementing when the PCIC asserts FRAME*. If the PCIC completes
a transaction before the timer has expired, the MLT count value is ignored.

If the timer has expired before the PCIC concludes its intended transaction, the PCIC initiates a
termination transaction as soon as its GNT* is negated. The number of PCI clocks programmed in
the MLT register represents the guaranteed time slice allotted to the PCIC (or the total master
latency).

When GNT* is negated after the time slice has run out, the PCIC must immediately relinquish
the bus. The total master latency is the value in bits 15-11 multiplied by 8 (because bits 10-8 are
read-only as zeros).

31 24 23 16
0 HT

: Type
: Initial value

15 11 10 8 7 0
MLT 0 CLS

R : Type
0x1F : Initial value

Bits Mnemonic Field Name Description
15:11 MLT Master Latency

Timer Count
Value

Master Latency Timer Count Value (initial value: 0x1F)
Specifies the total master latency. When GNT* is negated during a burst cycle, the
PCIC must give up the bus within the programmed number of PCI clocks multiplied
by 8.

Figure 12.3.10 Master Latency Timer Register

Chapter 12 PCI Controller (PCIC)

12-18

12.3.2.11 Target I/O Base Address Register (IOBA) 0xFFFE_D010 (+010)

31 16
IBA

R/W : Type
0x0000 : Initial value

15 2 1 0
IBA 0 IMAI

R/W R : Type
0x0000 1 : Initial value

Bits Mnemonic Field Name Description
31:2 IBA I/O Space Base

Address
I/O Space Base Address for Target (initial value: 0x00000000)
Provides the base address of the PCI I/O space assigned to the target. The Target
I/O Base Address Size (IOBAS) register is used to define the size of I/O address
space.

0 IMAI I/O Base
Address Indicator

I/O Space Base Address Indicator (fixed value: 1)
1: Indicates PCI I/O space.

Note: The Target I/O Base Address Size (IOBAS) register must be programmed prior to this register.

Figure 12.3.11 Target I/O Base Address Register

Chapter 12 PCI Controller (PCIC)

12-19

12.3.2.12 Target Memory Base Address Register (MBA) 0xFFFE_D014 (+014)

31 16
IBA

R/W : Type
0x0000 : Initial value

15 4 3 2 1 0
MBA PF MTY MBAI

R/W R R R : Type
0x0000 1 00 0 : Initial value

Bits Mnemonic Field Name Description
31:4 MBA Memory Base

Address
Target Memory Base Address (initial value: 0x0000000)
Provides the base address of the PCI memory space assigned to the target.
The Target Memory Base Address Size (MBAS) register is used to define the
memory space size.

3 PF Prefetchable Prefetchable (fixed value: 1)
1: Memory is prefetchable.
A memory region is prefetchable when the following two conditions are met:

1. The device returns all bytes on reads, regardless of the state of the byte
enables.

2. Reads from this memory space create no side effects.
Linear frame buffers used in graphics devices are an example of prefetchable
memory.

2:1 MTY Memory Type Memory Type (fixed value: 00)
00: The memory space is located anywhere in 32-bit address space.

0 MBAI Memory Base
Address Indicator

Address Space Indicator (fixed value: 0)
0: Indicates PCI memory sapce.

Note: The Target Memory Base Address Size (MBAS) register must be programmed prior to this
register.

Figure 12.3.12 Target Memory Base Address Register

Chapter 12 PCI Controller (PCIC)

12-20

12.3.2.13 System Vendor ID Register (SVID) 0xFFFE_D02C (+02e)

31 16
SVID

R/WL : Type
0x0000 : Initial value

15 0
SSVID

: Type
: Initial value

Bits Mnemonic Field Name Description
31:16 SVID System Vender

ID
System Vender ID Value (initial value: 0x0000)
This register is used to identify the manufacturer of a subsystem or add-in board
containing the PCI device. The system vendor is to obtain a unique identification
number from the PCI SIG.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [31:16] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.13 System Vendor ID Register

Chapter 12 PCI Controller (PCIC)

12-21

12.3.2.14 Subsystem Vendor ID Register (SSVID) 0xFFFE_D02E (+02c)

31 16
SVID

: Type
: Initial value

15 0
SSVID

R/WL : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 SSVID Subsystem

Vender ID
Subsystem Vender ID Value (initial value: 0x0000)
This register is used to identify the manufacturer of a subsystem or add-in board
containing the PCI device. The system vendor is to obtain a unique identification
number from the PCI SIG.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [15:0] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.14 Subsystem Vendor ID Register

Chapter 12 PCI Controller (PCIC)

12-22

12.3.2.15 Capabilities Pointer (CAPPTR) 0xFFFE_D034 (+037)

31 24 23 16

: Type
: Initial value

15 8 7 0
CAPPTR

R : Type
0xE0 : Initial value

Bits Mnemonic Field Name Description
7:0 CAPPTR Capabilities

Pointer
Capabilities Pointer (initial value: 0xE0)
Provides an offset to the starting address of the register block used for the PCI
power management function supported by the TX3927.

Figure 12.3.15 Capabilities Pointer

Chapter 12 PCI Controller (PCIC)

12-23

12.3.2.16 Maximum Latency Register (ML) 0xFFFE_D03C (+03f)
This register specifies how quickly the device needs to gain access to the PCI bus. The

maximum latency value is specified in units of 250 ns (1/4 µs), assuming a 33-MHz PCICLK rate.
This value is used by the configuration software to determine the priority level that the bus arbiter
assigns to the PCIC initiator.

31 24 23 16
ML MG

R/WL : Type
0xFF : Initial value

15 8 7 0
IP IL

: Type
: Initial value

Bits Mnemonic Field Name Description
31:24 ML Maximum

Latency
Maximum Latency Value (initial value: 0xFF)
00h: This register is not used in prioritizing PCI bus accesses.
01h-FFh: Defines how quickly the device requires access to the bus, assuming a

PCICLK rate of 33 MHz. Value is a multiple of 250-ns increments.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [31:24] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.16 Maximum Latency Register

Chapter 12 PCI Controller (PCIC)

12-24

12.3.2.17 Minimum Grant Register (MG) 0xFFFE_D03D (+03e)
This register specifies the length of the burst period required by the device. The minimum grant

value is specified in units of 250 ns (1/4 µs), assuming a 33-MHz PCICLK rate. This value is used
by applications to determine the latency timer value.

31 24 23 16
ML MG

R/WL : Type
0xFF : Initial value

15 8 7 0
IP IL

: Type
: Initial value

Bits Mnemonic Field Name Description
23:16 MG Minimum Grant Minimum Grant Value (initial value: 0xFF)

00h: This register is not used in calculating latency timer values.
01h-FFh: Specifies how long a burst period the device needs, assuming a PCICLK

rate of the 33 MHz. Value is a multiple of 250-ns increments.

Note: In the normal situation, an external PCI initiator should not be able to write to bits [23:16] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.17 Minimum Grant Register

Chapter 12 PCI Controller (PCIC)

12-25

12.3.2.18 Interrupt Pin Register (IP) 0xFFFE_D03E (+03d)
This register is used when the PCIC generates interrupt requests. This register indicates which

PCI interrupt line (INTA* through INTD*) the device uses.

31 24 23 16
ML MG

: Type
: Initial value

15 8 7 0
IP IL

R/WL : Type
0xFF : Initial value

Bits Mnemonic Field Name Description
15:8 IP Interrupt Pin Interrupt Pin Value (initial value: 0x01)

Valid values are from 00h to 04h.
00h: No interrupt pin
01h: INTA*
02h: INTB*
03h: INTC*
04h: INTD*
05h-FFh: Reserved

Note: In the normal situation, an external PCI initiator should not be able to write to bits [15:8] in this
register. However, a write could occur at a certain timing. For details, see Section 19.18.

Figure 12.3.18 Interrupt Pin Register

Chapter 12 PCI Controller (PCIC)

12-26

12.3.2.19 Interrupt Line Register (IL) 0xFFFE_D03F (+03c)
The Interrupt Line (IL) register indicates which of the system interrupt request lines on the

Interrupt Controller the device's PCI interrupt request pin (specified in the Interrupt Pin register) is
connected to.

The operating system or device driver can examine the Interrupt Line register to determine
which of the system interrupt request line the device will use to issue interrupt service requests.

31 24 23 16
ML MG

: Type
: Initial value

15 8 7 0
IP IL

R/WL : Type
0x00 : Initial value

Bits Mnemonic Field Name Description
7:0 IL Interrupt Line Interrupt Line Value (initial value: 0x00)

Value in this field are system-architecture-specific.
00h-FEh: Interrupt line number that the device is connected to

00h ==> IRQ0
01h ==> IRQ1

0Eh ==> IRQ14
0Fh ==> IRQ15

FFh: No device interrupt line is connected to the system interrupt controller.

Figure 12.3.19 Interrupt Line Register

Chapter 12 PCI Controller (PCIC)

12-27

12.3.3 Initiator Configuration Space Registers

12.3.3.1 Initiator Status Register (ISTAT) 0xFFFE_D044 (+044)

31 16
0

: Type
: Initial value

15 13 12 11 10 9 8 0
0 IDICC 0 IDTRT IDTDC 0

R/WC R/WC R/WC : Type
0 0 0 : Initial value

Bits Mnemonic Field Name Description
12 IDICC Indirect Initiator

Command
Complete

Indirect Initiator Command Complete (initial value: 0)
This bit is set when an indirect initiator command is complete. This bit is cleared by
writing a 1.

10 IDTRT Initiator Detected
Target-Retry
Cycle

Initiator Detected Target-Retry Cycle (initial value: 0)
1: A target-retry cycle has been detected.
This bit is cleared by writing a 1.

9 IDTDC Initiator Detected
Target-
Disconnect Cycle

Initiator Detected Target-Disconnect Cycle (initial value: 0)
1: A target-disconnect cycle has been detected.
This bit is cleared by writing a 1.

Figure 12.3.20 Initiator Status Register

Chapter 12 PCI Controller (PCIC)

12-28

12.3.3.2 Initiator Interrupt Mask Register (IIM) 0xFFFE_D048 (+048)

31 16
0

: Type
: Initial value

15 13 12 11 10 9 8 0
0 IDICCIE 0 IDRIE IDDIE 0

R/W R/W R/W : Type
0 0 0 : Initial value

Bits Mnemonic Field Name Description
12 IDICCIE Indirect Initiator

Command
Complete
Interrupt Enable

Indirect Initiator Command Complete Interrupt Enable (initial value: 0)
Provides a mask for the indirect-initiator command-complete interrupt.
1: Interrupts enabled
0: Interrupts disabled

10 IDRIE Initiator Detected
Target-Retry
Cycle Interrupt
Enable

Initiator Detected Target-Retry Cycle Interrupt Enable (initial value: 0)
Provides a mask for the detected-target-retry-cycle interrupt.
1: Interrupts enabled
0: Interrupts disabled

9 IDDIE Initiator Detected
Target-
Disconnect Cycle
Interrupt Enable

Initiator Detected Target-Disconnect Cycle Interrupt Enable (initial value: 0)
Provides a mask for the detected-target-disconnect-cycle interrupt.
1: Interrupts enabled
0: Interrupts disabled

Figure 12.3.21 Initiator Interrupt Mask Register

Chapter 12 PCI Controller (PCIC)

12-29

12.3.3.3 Retry/Reconnect Timer Register (RRT) 0xFFFE_D04C (+04c)

31 16
0

: Type
: Initial value

15 8 7 0
0 RRT

R/W : Type
0x00 : Initial value

Bits Mnemonic Field Name Description
7:0 RRT Initiator Auto

Retry/Reconnect
Timer

Initiator Auto Retry/Reconnect Timer1 (initial value: 0x00)
Specify the number of PCI bus clock (PCICLK) cycles before the initiator issues the
same transaction request terminated by a target-retry or target-disconnect. This
timer automatically begins decrementing when a transaction is target-terminated.
The initiator waits for this timer to expire before repeating the same transaction. The
TX39/H2 core can read the Initiator Status (ISTAT) register to find out whether the
transaction was terminated by a target-retry or a target-disconnect.

Note: The PCI Local Bus Specification, Revision 2.1, suggests a value of 2 to 33 PCI clock cycles.

Figure 12.3.22 Retry/Reconnect Timer Register

Chapter 12 PCI Controller (PCIC)

12-30

12.3.3.4 Initiator PCI Bus Memory Mapping Address Register (IPBMMAR) 0xFFFE_D05C (+05c)

31 16
IPBMMA

R/W : Type
0x0000 : Initial value

15 4 3 0
IPBMMA 0

R/W : Type
0x000 : Initial value

Bits Mnemonic Field Name Description
31:4 IPBMMA Initiator PCI Bus

Memory Mapping
Address

Initiator PCI Bus Memory Mapping Address (initial value: 0x0000000)
This register is used to decode a local-to-PCI memory access for a direct initiator
memory cycle. It specifies the start address of a PCI memory address region. The
range of the memory region is programmed by the Initiator Memory Mapping
Address Size (MMAS) register. In local-to-PCI address translation, high-order bits of
the local bus (G-Bus) address is replaced by the corresponding bits in this register
and concatenated with the remaining low-order bits of the G-Bus address.
This register is used for PCI memory read and PCI memory write commands.
Because the IPBMMAR is internally masked by the MMAS, the MMAS must be
programmed before programming the IPBMMAR.

Figure 12.3.23 Initiator PCI Bus Memory Mapping Address Register

Chapter 12 PCI Controller (PCIC)

12-31

12.3.3.5 Initiator PCI Bus I/O Mapping Address Register (IPBIOMAR) 0xFFFE_D060 (+060)

31 16
IPBIOMA

R/W : Type
0x0000 : Initial value

15 2 1 0
IPBIOMA 0

R/W : Type
0x000 : Initial value

Bits Mnemonic Field Name Description
31:2 IPBIOMA Initiator PCI Bus

I/O Mapping
Address

Initiator PCI Bus I/O Mapping Address (initial value: 0x00000000)
This register is used to decode a local-to-PCI I/O access for a direct initiator
memory cycle. It specifies the start address of a PCI I/O address region. The range
of the I/O space is programmed by the Initiator I/O Mapping Address Size (IOMAS)
register. In local-to-PCI address translation, high-order bits of the local bus (G-Bus)
address is replaced by the corresponding bits in this register and concatenated with
the remaining low-order bits of the G-Bus address.
This register is used for PCI I/O read and PCI I/O write commands. Because the
IPBIOMAR is internally masked by the IOMAS, the IOMAS must be programmed
before programming the IPBIOMAR.

Figure 12.3.24 Initiator PCI Bus I/O Mapping Address Register

Chapter 12 PCI Controller (PCIC)

12-32

12.3.3.6 Initiator Local Bus Memory Mapping Address Register (ILBMMAR)
0xFFFE_D064 (+064)

31 16
ILBMMA

R/W : Type
0x0000 : Initial value

15 4 3 0
ILBMMA 0

R/W : Type
0x000 : Initial value

Bits Mnemonic Field Name Description
31:4 ILBMMA Initiator Local

Bus Memory
Mapping Address

Initiator Local Bus Memory Mapping Address (initial value: 0x0000000)
This register is used to decode a local-to-PCI memory access for a direct initiator
memory cycle. High-order bits of an incoming local bus (G-Bus) address are
compared with the value of this register, as programmed by the Initiator Memory
Mapping Address Size (MMAS) register. A match occurs when G-Bus address falls
in the address range specified by this register and MMAS; then the PCIC initiator
generates a single PCI memory transaction. When a match occurs, a PCI address
is generated by concatenating high-order bits of the IPBMMAR register with the
remaining lower-order bits of the local bus (G-Bus) address.
Because the ILBMMAR is internally masked by the MMAS, the MMAS must be
programmed before programming the ILBMMAR.

Figure 12.3.25 Initiator Local Bus Memory Mapping Address Register

Chapter 12 PCI Controller (PCIC)

12-33

12.3.3.7 Initiator Local Bus I/O Mapping Address Register (ILBIOMAR) 0xFFFE_D068 (+068)

31 16
ILBIOMA

R/W : Type
0x0000 : Initial value

15 2 1 0
ILBIOMA 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:2 ILBIOMA Initiator Local

Bus I/O Mapping
Address

Initiator Local Bus I/O Mapping Address (initial value: 0x00000000)
This register is used to decode a local-to-PCI I/O access for a direct initiator I/O
cycle. High-order bits of an incoming local bus (G-Bus) address are compared with
the value of this register, as programmed by the Initiator I/O Mapping Address Size
(IOMAS) register. A match occurs when the G-Bus address falls in the address
range specified by this register and IOMAS; then the PCIC initiator generates a
single PCI I/O transaction.
When a match occurs, a PCI address is generated by concatenating high-order bits
of the IPBIOMAR register with the remaining low-order bits of the local bus (G-Bus)
address.
Because the ILBIOMAR is internally masked by the IOAMS, the IOMAS must be
programmed before programming the ILBIOMAR.

Figure 12.3.26 Initiator Local Bus I/O Mapping Address Register

Chapter 12 PCI Controller (PCIC)

12-34

12. PCI C ontroll er (PCIC)
12.3

12.3.4 Target Configuration Space registers

12.3.4.1 Target Control Register (TC) 0xFFFE_D090 (+090)

31 20 19 18 17 16
0 OFCAD OFNTE IFNTE ISPRE

R/W R/W R/W R/W : Type
0 0 0 0 : Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FTRED FTA 0 OFPFO SWGSE TOBFR TIBFR OFARD IFARD 0 OF16E IF8E OF8E DOBDT 0 IF16D

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 0 0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
19 OFCAD OFIFO Caching

Disable
OFIFO Caching Capability Disable (initial value: 0)
Controls the OFIFO data cache. When the PCIC is acting as a target, this bit must
be set when the Single Burst transactions are enabled (OFPFO=0).
1: Unused OFIFO data is discarded after a PCI transaction is completed.
0: Unused OFIFO data is retained. If the next PCI read requires data already in the

OFIFO, then the data is returned immediately. Otherwise, the OFIFO is reset
(i.e., the OFIFO is flushed) and the new data is fetched via the local bus. If a PCI
write address to the IFIFO falls within the range of addresses of data currently in
the OFIFO, then the OFIFO is reset (in order to prevent the OFIFO from returning
stale data that has been changed after being read).

18 OFNTE OFIFO 16/8
Clocks Never
Time-Out Enable

OFIFO 16/8 Clocks Never Time-Out Enable (initial value: 0)
Specifies whether to observe the PCI 8- and 16-clock rules.
When the PCIC is acting as a target, bits [7:4] in the Target Burst Length (TBL)
register must not be programmed to "01xx" or "1x1x" when this bit is set.
1: When the OFIFO 16-clock rule is enabled (OF16E=1), the OFIFO will not time

out according to the PCI 16-clock rule for the first data phase. When the OFIFO
8-clock rule is enabled (OF8E=1), the OFIFO will not time out according to the
PCI 8-clock rule for a subsequent data phase. In either case, the target does not
issue a retry or disconnect to the PCI initiator.

0: If the OFIFO 16/8-clock rule is enabled (OF16E=1 / OF8E=1), the OFIFO will
observe the 16/8-clock rule and will issue a retry or disconnect to the PCI initiator
when a time-out occurs.

17 IFNTE IFIFO 8 Clocks
Never Time-Out
Enable

IFIFO 8 Clocks Never Time-Out Enable (initial value: 0)
1: When the IFIFO 8-clock rule is enabled (IF8E=1), the IFIFO will ignore the PCI 8-

clock rule and will not issue a disconnect to the PCI initiator even when a time-
out occurs.

0: When the IFIFO 8-clock rule is enabled, the IFIFO will observe the PCI 8-clock
rule and will issue a disconnect to the PCI initiator when a time-out occurs.

16 ISPRE I/O Space
Prefetch Enable

I/O Space Prefetch Enable (initial value: 0)
1: I/O space is prefetchable. The I/O read and I/O write commands are treated the

same as the memory read and memory write commands.
0: I/O space is not prefetchable.

15 FTRED Force Target
Retry/Disconnect

Force Target Retry/Disconnect (initial value: 0)
This bit allows software to terminate the current transaction. It is useful when the
host system is ready to shut down and wants to force the PCI target to terminate
the current transaction.
1: Causes the PCIC target module to generate a retry termination (if no data has

been transferred) or a disconnect termination (if some data has been
transferred). This bit is automatically cleared on transaction termination.

0: Writing a 0 to this bit has no effect.

Figure 12.3.27 Target Control Register (1/3)

Chapter 12 PCI Controller (PCIC)

12-35

Bits Mnemonic Field Name Description
14 FTA Force Target-

Abort
Force Target-Abort (initial value: 0)
This bit allows software to abort the transaction. It is useful when the host system
wants to force the PCI target to terminate the current PCI transaction.
1: Causes the PCIC target module to generate a target-abort termination. This bit is

automatically cleared at the end of the operation.
0: Writing a 0 to this bit has no effect.

12 OFPFO Single Burst
Disable

Single Burst Enable (initial value: 0)
When the PCIC is acting as a target, this bit must be set when OFIFO caching is
enabled (OFCAD=0).
1: The OFIFO performs only one read transaction on the local bus. The burst-read

size is determined by the Target Burst Length (TBL) register.
0: Allows data streaming from the local bus. The OFIFO accepts data from the local

bus as long as it is not full, or until the entire PCI transaction completes. While
the PCI transaction is in progress or a subsequent PCI transaction is in progress
(provided OFIFO caching is enabled by OFCAE=0), the OFIFO sustains the
streaming from the local bus as long as there is room for the next burst data in
the OFIFO (the size of which is programmed in the Target Burst Length register).

11 SWGSE Software-
Generated
System Error
Enable

Software-Generated System Error (initial value: 0)
1: If the SERR Enable (SEEN) bit of the PCI Command register is set, writing a 1 to

this bit cause the SERR* signal to be asserted.
0: Writing a 0 to this bit has no effect.

10 TOBFR Target Outbound
FIFO Reset

Target Outbound FIFO Reset (initial value: 0)
Once this bit is set, it remains set until a 0 is written.
1: Resets the target OFIFO.
0: Activates the target OFIFO.

9 TIBFR Target Inbound
FIFO Reset

Target Inbound FIFO Reset
Once this bit is set, it remains set until a 0 is written.
1: Resets the target IFIFO.
0: Activates the target IFIFO.

8 OFARD OFIFO Address
Range Check
Disable

OFIFO Address Range Check Disable (initial value: 0)
The target memory base address (MBA) and target I/O base address (IOBA)
specify the location of the PCIC address space. The last four D-words of this space
are reserved for the PCIC and must not be accessed. If this bit is cleared, the PCIC
might issue a target-abort command or the initiator might issue a master-abort
command, if an attempt is made by an external PCI bus master to access
addresses outside the defined PCI address space or to access the reserved area.
For details, see Section 19.14.
1: Disables OFIFO address range checking.
0: Enables OFIFO address range checking.

7 IFARD IFIFO Address
Range Check
Disable

IFIFO Address Range Check Disable (initial value: 0)
The target memory base address (MBA) and target I/O base address (IOBA)
specify the location of the PCIC address space. The last four D-words of this space
are reserved for the PCIC and must not be accessed. If this bit is cleared, the PCIC
might issue a target-abort command or the initiator might issue a master-abort
command, if an attempt is made by an external PCI bus master to access
addresses outside the defined PCI address space or to access the reserved area.
For details, see Section 19.14.
1: Disables IFIFO address range checking.
0: Enables IFIFO address range checking.

Figure 12.3.27 Target Control Register (2/3)

Chapter 12 PCI Controller (PCIC)

12-36

Bits Mnemonic Field Name Description
5 OF16E OFIFO 16-Clocks

Rule Enable
OFIFO (PCI Read) 16-Clock Rule Enable (initial value: 0)
Controls the PCIC operation regarding the OFIFO 16-clock rule.
1: If the OFIFO is not ready to send out the first data of a burst in response to a

master read request within 16 PCI clock cycles, the PCIC target module issues a
retry to the PCI bus master. (This mode is for fast memory devices capable of
delivering the first read data to the PCI bus within 16 PCI clock cycles.)

0: If the OFIFO is not ready, the PCIC target module immediately issues a retry to
the PCI bus master. (This mode is for slow memory devices that are not able to
deliver the first read data to the PCI bus within 16 PCI clock cycles.)

In either case, the PCI master is required to retry the transaction before the OFIFO
discard timer expires or the transaction is discarded.

4 IF8E IFIFO 8-Clock
Rule Enable

IFIFO (PCI Write) 8-Clock Rule Enable (initial value: 0)
1: Enables target IFIFO 8-clock rule checking.
0: Disables target IFIFO 8-clock rule checking. (Don't use.)
This bit must be set when the PCIC is acting as a target. Otherwise, unnecessary
STOP signals might be asserted.

3 OF8E OFIFO 8-Clock
Rule Enable

OFIFO (PCI Read) 8-Clock Rule Enable (initial value: 0)
1: Enables target OFIFO 8-clock rule checking.
0: Disables target OFIFO 8-clock rule checking. (Don't use.)
This bit must be set when the PCIC is acting as a target. Otherwise, unnecessary
STOP signals might be asserted.

2 DOBDT Disable Outbound
Discard Timer

Disable Outbound (Read) Discard Timer (initial value: 0)
1: Disables the read discard timer.
0: Enables the read discard timer.

0 IF16D IFIFO 16-Clock
Rule Disable

IFIFO (Write) 16-Clock Rule Disable (initial value: 0)
1: The target immediately requests the PCI bus master to retry the transaction if the

IFIFO is not ready.
0: The target waits for 16 PCI clock cycles before requesting the PCI initiator to

retry the transaction when the IFIFO is not ready (i.e., the previous transaction
has not been completed on the local bus).

Figure 12.3.27 Target Control Register (3/3)

Chapter 12 PCI Controller (PCIC)

12-37

12.3.4.2 Target Status Register (TSTAT) 0xFFFE_D094 (+094)
Each bit in this register corresponds to an enable bit in the Target Interrupt Mask (TIM) register.

Setting a bit in this register triggers an interrupt if the corresponding TIM register bit is set.

31 18 17 16
0 SPCYR OFREO

R/WC R/WC : Type
0 0 : Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IFREO OFDIO IFDIO OFABO IFABO PRDTO TASEL OBFBS OBFFL IBFFL OBFEM IBFEM OBFOV IBFOV OBFUN IBFUN

R/WC R/WC R/WC R/WC R/WC R/WC R R R R R/WC R/WC R/WC R/WC R/WC R/WC : Type
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
17 SPCYR Special-Cycle

Received
Special-Cycle Received (initial value: 0)
This bit is set when special-cycle data is received.
1: Special-cycle data has been received.
0: Special-cycle data has not been received.

16 OFREO OFIFO Retry
Occurred

OFIFO Retry Occurred (initial value: 0)
This bit is set when the PCIC target state machine issues target-retry during a PCI
read transaction.
1: A retry has been issued.
0: A retry has not been issued.

15 IFREO IFIFO Retry
Occurred

IFIFO Retry Occurred (initial value: 0)
This bit is set when the PCIC target state machine issues target-retry during a PCI
write transaction.
1: A retry has been issued.
0: A retry has not been issued.

14 OFDIO OFIFO
Disconnect
Occurred

OFIFO Disconnect Occurred (initial value: 0)
This bit is set when the PCIC target state machine issues a target-disconnect during
a PCI read transaction.
1: A disconnect has been issued.
0: A disconnect has not been issued.

13 IFDIO IFIFO Disconnect
Occurred

IFIFO Disconnect Occurred (initial value: 0)
This bit is set when the PCIC target state machine issues a target-disconnect during
a PCI write transaction.
1: A disconnect has been issued.
0: A disconnect has not been issued.

12 OFABO OFIFO Abort
Occurred

OFIFO Abort Occurred (initial value: 0)
This bit is set when the PCIC target detects a master attempting a PCI read to an
address outside the defined memory space.

11 IFABO IFIFO Abort
Occurred

IFIFO Abort Occurred (initial value: 0)
This bit is set when the target detects the master attempting a PCI write to an
address outside the defined memory space.

10 PRDTO PCI Read
Discard Timer
Time-Out

PCI Read Discard Timer Time-out (initial value: 0)
This bit is set when the read discard timer expires. The bit is valid when the Disable
Outbound Discard Timer (DOBDT) bit is cleared in the Target Control (TC) register.
1: Discard time-out has occurred.
0: Discard time-out has not occurred.

Figure 12.3.28 Target Status Register (1/2)

Chapter 12 PCI Controller (PCIC)

12-38

Bits Mnemonic Field Name Description
9 TASEL Target Selected Target Selected (initial value: 0)

This bit indicates the state of the PCIC DEVSEL* signal.
The bit is set when PCIC is selected as a target.
The bit is automatically cleared when the transaction terminates (i.e., FRAME* is
deasserted). The local host can read the Target Current Command (TCCMD)
register to find which PCI command is being executed.

8 OBFBS Outbound FIFO
Busy

Outbound (PCI Read) FIFO Busy (initial value: 0)
This bit is set when the target is selected with a memory or I/O read command and
remains set until the master terminates the transaction (i.e., until completion of the
current PCI command).
When the OBFBS bit is set, subsequent outbound memory or I/O commands
(C_BE0*=0) are not latched into the PCI Read Retry Tag (PCIRRT) register.

7 OBFFL Outbound FIFO
Full

Outbound FIFO Full Flag (initial value: 0)
1: The OFIFO is full.
0: The OFIFO is not full.

6 IBFFL Inbound FIFO
Full

Inbound FIFO Full Flag (initial value: 0)
1: The IFIFO is full.
0: The IFIFO is not full.

5 OBFEM Outbound FIFO
Empty

Outbound FIFO Empty Flag (initial value: 0)
1: The OFIFO is empty.
0: The OFIFO is not empty.

4 IBFEM Inbound FIFO
Empty

Inbound FIFO Empty Flag (initial value: 0)
1: The IFIFO is empty.
0: The IFIFO is not empty.

3 OBFOV Outbound FIFO
Overrun

Outbound FIFO Overrun Flag (initial value: 0)
This bit is set if an attempt is made to write to the OFIFO when the Outbound FIFO
Full (OBFFL) bit is set. The data is corrupted; the TX39/H2 core should send either
the SERR* signaling or software-triggered the PCI bus master target-abort. An
interrupt is generated if the corresponding Target Interrupt Enable bit is set.

2 IBFOV Inbound FIFO
Overrun

Inbound FIFO Overrun Flag (initial value: 0)
This bit is set if an attempt is made to write to the IFIFO when the Outbound FIFO
Full (IBFFL) bit is set. The data is corrupted; the TX39/H2 core should send either
the SERR* signaling or software-triggered target-abort to the PCI bus master. An
interrupt is generated if the corresponding target interrupt enable bit is set.

1 OBFUN Outbound FIFO
Underrun

Outbound FIFO Underrun Flag (initial value: 0)
This bit is set if an attempt is made to read from the OFIFO when the Outbound
FIFO Empty (OBFEM) bit is set. The data is corrupted; the TX39/H2 core should
send either the SERR* signaling or software-triggered target-abort to the PCI bus
master. An interrupt is generated if the corresponding target interrupt enable bit is
set.

0 IBFUN Inbound FIFO
Underrun

Inbound FIFO Underrun Flag (initial value: 0)
This bit is set by an attempt is made to read from the IFIFO when the Inbound FIFO
Empty (IBFEM) bit is set. The data is corrupted; the TX39/H2 core should send
either the SERR* signaling or software-triggered target-abort to the PCI bus master.
An interrupt is generated if the corresponding target interrupt enable bit is set.

Figure 12.3.28 Target Status Register (2/2)

Chapter 12 PCI Controller (PCIC)

12-39

12.3.4.3 Target Current Command Register (TCCMD) 0xFFFE_D09C (+09c)

31 16
0

: Type
: Initial value

15 4 3 0
0 TOCMD

R : Type
0x0 : Initial value

Bits Mnemonic Field Name Description
3:0 TCCMD Target Current

Command
Target Current Command (initial value: 0x0)
Indicates which PCI command is currently being executed during a target PCIC
access.

Figure 12.3.29 Target Current Command Register

Chapter 12 PCI Controller (PCIC)

12-40

12.3.4.4 Target Interrupt Mask Register (TIM) 0xFFFE_D098 (+098)
Each bit in this register has a corresponding bit in the Target Status (TSTAT) register. Setting a

bit in the TSTAT register triggers an interrupt if the corresponding enable bit in this register is set.

31 0 18 17 16
SCRIE OROIE

R/W R/W : Type
0 0 : Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IROIE ODOIE IDOIE OAOIE IAOIE PDTIE TASIE OFBIE OFFIE IFFIE OFEIE IFEIE OFOIE IFOIE OFUIE IFUIE

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
17 SCRIE Special-Cycle

Received
Interrupt Enable

Special-Cycle Received Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.SPCYR bit is set.
0: An interrupt request is not generated even if the TSTAT.SPCYR bit is set.

16 OROIE OFIFO Retry
Occurred
Interrupt Enable

OFIFO Retry Occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OFREO bit is set.
0: An interrupt request is not generated even if the TSTAT.OFREO bit is set.

15 IROIE IFIFO Retry
Occurred
Interrupt Enable

IFIFO Retry Occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IFREO bit is set.
0: An interrupt request is not generated even if the TSTAT.IFREO bit is set.

14 ODOIE OFIFO
Disconnect
Occurred
Interrupt Enable

OFIFO Disconnect Occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OFDIO bit is set.
0: An interrupt request is not generated even if the TSTAT.OFDIO bit is set.

13 IDOIE IFIFO Disconnect
Occurred
Interrupt Enable

IFIFO Disconnect Occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IFDIO bit is set.
0: An interrupt request is not generated even if the TSTAT.IFDIO bit is set.

12 OAOIE OFIFO Abort
Occurred
Interrupt Enable

OFIFO Abort Occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OFABO bit is set.
0: An interrupt request is not generated even if the TSTAT.OFABO bit is set.

11 IAOIE IFIFO Abort
Occurred
Interrupt Enable

IFIFO Abort Occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IFABO bit is set.
0: An interrupt request is not generated even if the TSTAT.IFABO bit is set.

10 PDTIE PCI Read
Discard Timer
Time-Out
Interrupt Enable

PCI Read Discard Timer Time-Out Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.PRDTO bit is set.
0: An interrupt request is not generated even if the TSTAT.PRDTO bit is set.

9 TASIE Target Selected
Interrupt Enable

Target Selected Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.TASEL bit is set.
0: An interrupt request is not generated even if the TSTAT.TASEL bit is set.

8 OFBIE Outbound (Read)
FIFO Busy
Interrupt Enable

Outbound (Read) FIFO Busy Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OBFBS bit is set.
0: An interrupt request is not generated even if the TSTAT.OBFBS bit is set.

7 OFFIE Outbound FIFO
Full

Outbound FIFO Full (initial value: 0)
1: An interrupt request is generated if the TSTAT.OBFFL bit is set.
0: An interrupt request is not generated even if the TSTAT.OBFFL bit is set.

6 IFFIE Inbound FIFO
Full Interrupt
Enable

Inbound FIFO Full Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IBFFL bit is set.
0: An interrupt request is not generated even if the TSTAT.IBFFL bit is set.

Figure 12.3.30 Target Interrupt Mask Register (1/2)

Chapter 12 PCI Controller (PCIC)

12-41

Bits Mnemonic Field Name Description
5 OFEIE Outbound Empty

Interrupt Enable
Outbound Empty Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OBFEM bit is set.
0: An interrupt request is not generated even if the TSTAT.OBFEM bit is set.

4 IFEIE Inbound FIFO
Empty Interrupt
Enable

Inbound FIFO Empty Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IBFEM bit is set.
0: An interrupt request is not generated even if the TSTAT.IBFEM bit is set.

3 OFOIE Outbound FIFO
Overrun (overflow)
Interrupt Enable

Outbound FIFO Overrun (overflow) Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OBFOV bit is set.
0: An interrupt request is not generated even if the TSTAT.OBFOV bit is set.

2 IFOIE Inbound FIFO
Overrun (overflow)
Interrupt Enable

Inbound FIFO Overrun (overflow) Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IBFOV bit is set.
0: An interrupt request is not generated even if the TSTAT.IBFOV bit is set.

1 OFUIE Outbound FIFO
Underrun
(underflow)
Interrupt Enable

Outbound FIFO Underrun (underflow) Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.OBFUN bit is set.
0: An interrupt request is not generated even if the TSTAT.OBFUN bit is set.

0 IFUIE Inbound FIFO
Underrun
(underflow)
Interrupt Enable

Inbound FIFO Underrun (underflow) Interrupt Enable (initial value: 0)
1: An interrupt request is generated if the TSTAT.IBFUN bit is set.
0: An interrupt request is not generated even if the TSTAT.IBFUN bit is set.

Figure 12.3.30 Target Interrupt Mask Register (2/2)

Chapter 12 PCI Controller (PCIC)

12-42

12.3.4.5 PCI Read Retry Tag Register (PCIRRT) 0xFFFE_D0A0 (+0a0)

31 16
PCIRRT

R/W : Type
0x0000 : Initial value

15 0
PCIRRT

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 PCIRRT PCI Read Retry

Tag Address
PCI Read Retry Tag Address (initial value: 0x00000000)
Contains the tag address of the command that has caused a read retry.

Figure 12.3.31 PCI Read Retry Tag Register

Chapter 12 PCI Controller (PCIC)

12-43

12.3.4.6 PCI Read Retry Timer Command Register (PCIRRT_CMD) 0xFFFE_D0A4 (+0a4)

31 16
0

: Type
: Initial value

15 4 3 0
0 PCIRRT_CMD

: Type
: Initial value

Bits Mnemonic Field Name Description
3:0 PCIRRT_CMD PCI Read Retry

Timer Command
PCI Read Retry Timer Command (initial value: 0x0)
Contains the PCI command that has caused a read retry.

Figure 12.3.32 PCI Read Retry Timer Command Register

Chapter 12 PCI Controller (PCIC)

12-44

12.3.4.7 PCI Read Retry Discard Timer Register (PCIRRDT) 0xFFFE_D0A8 (+0a8)

31 16
0

: Type
: Initial value

15 14 0
0 PCIRRDT

R/W : Type
0x7FFF : Initial value

Bits Mnemonic Field Name Description
14:0 PCIRRDT PCI Read Retry

Discard Timer
PCI Read Retry Discard Timer (initial value: 0x7FFF)
Defines the period of time (as the number of PCICLK cycles) in which the bus
master can retry a read transaction. At the beginning of an outbound delayed
transaction, the discard timer is loaded with this value and starts counting down.
The bus master is required to retry a delayed transaction before the timer expires.
Otherwise, the PCI target module will discard the data in the FIFO. When the
discard timer expires, the PCI Read Discard Timer Time-Out (PRDTO) bit in the
TSTAT register is set.

Figure 12.3.33 PCI Read Retry Discard Timer Register

Chapter 12 PCI Controller (PCIC)

12-45

12.3.4.8 Target Local Bus OFIFO Address Pointer (TLBOAP) 0xFFFE_D0B8 (+0b8)

31 16
TLOAP

R : Type
0x0000 : Initial value

15 2 1 0
TLOAP 0

R : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:2 TLOAP Target Local Bus

Outbound OFIFO
Address Pointer

Target Local Bus Outbound FIFO Address Pointer (initial value: 0x00000000)
Contains an OFIFO address pointer for local bus (G-Bus) addresses. High-order
bits of an address is supplied by either the Target Local Bus Memory Mapping
Address register (TLBMMAR) or the Target Local Bus I/O Mapping Address register
(TLBIOMAR), depending on the PCI command that the target has received. The
remaining low-order bits of the address come from the external PCI bus master.

Figure 12.3.34 Target Local Bus OFIFO Address Pointer

Chapter 12 PCI Controller (PCIC)

12-46

12.3.4.9 Target Local Bus IFIFO Address Pointer (TLBIAP) 0xFFFE_D0BC (+0bc)

31 16
TLIAP

R : Type
0x0000 : Initial value

15 2 1 0
TLIAP 0

R : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:2 TLIAP Target Local Bus

Inbound FIFO
Address Pointer

Target Local Bus Inbound FIFO Address Pointer (initial value: 0x00000000)
Contains an IFIFO address pointer for local bus (G-Bus) addresses. The high-order
bits of an address is supplied by either the Target Local Bus Memory Mapping
address register (TLBMMAR) or the Target Local Bus I/O Mapping Address register
(TLBIOMAR), depending on the PCI command that the target has received. The
remaining low-order bits of the address come from the external PCI bus master.

Figure 12.3.35 Target Local Bus IFIFO Address Pointer

Chapter 12 PCI Controller (PCIC)

12-47

12.3.4.10 Target Local Bus Memory Mapping Address Register (TLBMMAR)
0xFFFE_D0C0 (+0c0)

31 16
TLMMA

R/W : Type
0x0000 : Initial value

15 4 3 0
TLMMA 0

R/W : Type
0x000 : Initial value

Bits Mnemonic Field Name Description
31:4 TLMMA Target Local Bus

Memory Address
Mapping

Target Local Bus Memory Address Mapping (initial value: 0x0000000)
This register is used to decode a PCI-to-local memory access for a target memory
cycle. It specifies the start address of a local bus (G-Bus) memory region. The
range of the memory region is programmed by the Target Memory Base Address
Size (MBAS) register. In PCI-to-local address translation, high-order bits of the PCI
bus address is replaced by the corresponding bits in this register and concatenated
with the remaining low-order bits of the PCI bus address.
This register is used by the PCI memory read and PCI memory write commands.
Because the TLBMMAR is internally masked by the MBAS, the MBAS must be
programmed before programming the TLBMMAR.

Figure 12.3.36 Target Local Bus Memory Mapping Address Register

Chapter 12 PCI Controller (PCIC)

12-48

12.3.4.11 Target Local Bus I/O Mapping Address Register (TLBIOMAR) 0xFFFE_D0C4 (+0c4)

31 16
TLIOMA

R/W : Type
0x0000 : Initial value

15 2 1 0
TLIOMA 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:2 TLIOMA Target Local Bus

IO Address
Mapping Address

Target Local Bus IO Address Mapping Address (initial value: 0x00000000)
This register is used to decode a local-to-PCI I/O access for a target memory cycle.
It specifies the start address of a local bus (G-Bus) I/O address region. The range of
the I/O space is programmed by the Target I/O Base Address Size (IOBAS)
register. In local-to-PCI address translation, high-order bits of the PCI bus address
is replaced by the corresponding bits in this register and concatenated with the
remaining low-order bits of the PCI bus address.
This register is used by the PCI I/O read and PCI I/O write commands. Because the
TLBIOMAR is internally masked by the IOBAS, the IOBAS must be programmed
before programming the TLBIOMAR.

Figure 12.3.37 Target Local Bus I/O Mapping Address Register

Chapter 12 PCI Controller (PCIC)

12-49

12.3.4.12 Special-Cycle Message Register (SC_MSG) 0xFFFE_D0C8 (+0c8)

31 16
SCMSG

R : Type
0x0000 : Initial value

15 0
SCMSG

R : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 SCMSG Special-Cycle

Message
Special-Cycle Message (initial value: 0x00000000)
Captures a special-cycle message on detection of a special-cycle command. To
enable the capturing of a special-cycle message, the Special Cycle Recognition
(SCREC) bit in the PCI Command (PCICMD) register must be set.

Figure 12.3.38 Special-Cycle Message Register

Chapter 12 PCI Controller (PCIC)

12-50

12.3.4.13 Special-Cycle Byte Enable Register (SC_BE) 0xFFFE_D0CC (+0cc)

31 16
0

: Type
: Initial value

15 4 3 0
0 SC_BE

R : Type
0x0 : Initial value

Bits Mnemonic Field Name Description
3:0 SC_BE Special-Cycle

Byte Enable
Special-Cycle Byte Enable (initial value: 0x0)
Captures the byte enable signals for a special-cycle message on detection of a
special-cycle command. To enable the capturing of the byte enables, the Special-
Cycle Recognition (SCREC) bit in the PCI Command (PCICMD) register must be
set.

Figure 12.3.39 Special-Cycle Byte Enable Register

Chapter 12 PCI Controller (PCIC)

12-51

12.3.4.14 Target Burst Length Register (TBL) 0xFFFE_D0D0 (+0d0)

31 16
0

: Type
: Initial value

15 12 11 8 7 4 3 2 0
0 TBL_IFIFO TBL_OFIFO 0 PB_OFIFO

R/W R/W R/W : Type
0x0 0x0 000 : Initial value

Bits Mnemonic Field Name Description
11:8 TBL_IFIFO IFIFO Local Bus

Burst Length
IFIFO Local Bus Burst Length (initial value: 0x0)
Defines the number of D-words required in the IFIFO before data is written to the
local bus. Bit 11 is used as a burst transfer enable bit.

0000: Single D-word. When one or more D-words are available in the IFIFO, one
D-word is written to the local bus.

The following settings enable repeated fast single accesses to write multiple words.
0001: Two D-words. When two or more D-words are available in the IFIFO, two

D-words are written to the local bus.
0010: Four D-words. When four or more D-words are available in the IFIFO, four

D-words are written to the local bus.
0011: Eight D-words. When eight or more D-words are available in the IFIFO,

eight D-words are written to the local bus.
01XX: Sixteen D-words. When sixteen or more D-words are available in the

IFIFO, sixteen D-words are written to the local bus.
The following settings enable burst writes.

1X00: Four D-words. When four or more D-words are available in the IFIFO, four
D-words are written to the local bus.

1X01: Eight D-words. When eight or more D-words are available in the IFIFO,
eight D-words are written to the local bus.

1X1X: Sixteen D-words. When sixteen or more D-words are available in the
IFIFO, sixteen D-words are written to the local bus.

Note 1: The IFIFO accepts data from the PCI master as long as there is room for it in the IFIFO. Once the
IFIFO becomes full, the PCIC issues a target-disconnect to the PCI master. Thereafter, the PCIC
continues to issue targe-retries until there is room in the IFIFO.

Note 2: A PCI write cycle may terminate with data short of the programmed burst size remaining in the
IFIFO. In that case, the PCIC writes all the data in the IFIFO to local memory as 32-bit single write
transactions after the PCI write cycle is complete. This prevents data from being left in the IFIFO.

Figure 12.3.40 Target Burst Length Register (1/2)

Chapter 12 PCI Controller (PCIC)

12-52

Bits Mnemonic Field Name Description
7:4 TBL_OFIFO OFIFO Local Bus

Burst Length
OFIFO Local Bus Burst Length (initial value: 0x0)
Defines the number of empty D-word locations required in the OFIFO before D-
word data is read from the local bus. For non-prefetchable PCI read commands
(non-prefetchable memory read and I/O read commands), a value of 000b is
assumed automatically. Bit 7 is used as the burst transfer enable bit. When this field
is programmed for the 16-Dword burst length ("01xx" or "1x1x"), bit [18] in the
Target Control (TC) register must not be set to 1.
The following settings enable repeated fast single accesses to read multiple words.

000X: Two D-words. When two or more empty D-word locations are available in
the OFIFO, two D-words are read from the local bus.

0010: Four D-words. When four or more empty D-word locations are available in
the OFIFO, four D-words are read from the local bus.

0011: Eight D-words. When eight or more empty D-word locations are available in
the OFIFO, eight D-words are read from the local bus.

01XX: Sixteen D-words. When sixteen or more empty D-word locations are
available in the OFIFO, sixteen D-words are read from the local bus.

The following settings enable burst reads.
1X00: Four D-words. When four or more empty D-word locations are available in

the OFIFO, four D-words are read from the local bus.
1X01: Eight D-words. When eight or more empty D-word locations are available in

the OFIFO, eight D-words are read from the local bus.
1X1X: Sixteen D-words. When sixteen or more empty D-word locations are

available in the OFIFO, sixteen D-words are read from the local bus.
2:0 PB_OFIFO OFIFO PCI Bus

Burst Length
OFIFO PCI Bus Burst Length (initial value: 0x0)
Defines the number of D-words required in the OFIFO before data is sent to the PCI
bus.

000: Single D-word. When one or more D-words are available in the OFIFO, one
D-word is sent to the PCI bus.

The following settings enable repeated fast single accesses to write multiple words.
001: Two D-words. When two or more D-words are available in the OFIFO, two

D-words are sent to the PCI bus.
100: Four D-words. When four or more D-words are available in the OFIFO, four

D-words are sent to the PCI bus.
101: Eight D-words. When eight or more D-words are available in the OFIFO,

eight D-words are sent to the PCI bus.
11X: Sixteen D-words. When sixteen or more D-words are available in the

OFIFO, sixteen D-words are sent to the PCI bus.

Figure 12.3.40 Target Burst Length Register (2/2)

Chapter 12 PCI Controller (PCIC)

12-53

12.3.4.15 Power Management Register (PWMNGR) 0xFFFE_D0E0 (+0e0)

31 27 26 25 24 22 21 20 19 18 16
PMCPME PMCD2 PMCD1 0 PMCDSI 0 PMCPMEC PMCV

: Type
0 0 0 0 0 0 0 : Initial value

15 8 7 0
PMCNP PMCID

R R : Type
0x00 0x01 : Initial value

Bits Mnemonic Field Name Description
31:27 PMCPME Power

Management
Event

Power Management Event (initial value: 00000)
Not supported by the TX3927.

26 PMCD2 D2 State D2 State (initial value: 0)
Not supported by the TX3927.

25 PMCD1 D1 State D1 State (initial value: 0)
Not supported by the TX3927.

21 PMCDSI Device-Specific
Initialization

Device-Specific Initialization (initial value: 1)
Indicates whether it is necessary to initialize the PCIC.
Initializing the TX3927 PCIC places it into the D0 uninitialized state; a device-
specific initialization sequence is required following transition to the D0 uninitialized
state.

19 PMCPMEC Power
Management
Event Clock

Power Management Event Clock (initial value: 0)
Indicates that no PCI clock is required to generate the power management event
signal (PME#).

18:16 PMCV Version Version (initial value: 001)
Indicates that the PCIC power management function complies with the PCI Bus
Power Management Interface Specification, Version 1.1.

15:8 PMCNP Next Pointer Next Pointer (initial value: 0x00)
Points to the location of the next item in the capabilities list.
In the TX3927, this field contains 0x00 because there are no more items in the
capabilities list.

7:0 PMCID ID ID (initial value: 0x01)
In the TX3927, this field identifies the linked list item as being the PCI power
management register.

Figure 12.3.41 Power Management Register

Chapter 12 PCI Controller (PCIC)

12-54

12.3.4.16 Power Management Support Register (PWMNGSR) 0xFFFE_D0E4 (+0e4)

31 24 23 16
PWRD 0

R : Type
0x00 : Initial value

15 14 13 12 9 8 7 2 1 0
PMES DSCL DSLCT PMEE 0 PWRST

R R R R R/W : Type
0 0 0 0x00 0 0 0 : Initial value

Bits Mnemonic Field Name Description
31:24 PWRD Power Data Power Data (initial value: 0x00)

This field reflects the values of the DSCL and DSLCT fields in this register. Not
supported by the TX3927.

15 PMES PME Status PME Status (initial value: 0)
The TX3927 does not support PME generation from D3cold.

14:13 DSCL Data Scale Data Scale (initial value: 00)
This field contains the scaling factor to be indicated in the PWRD field. Not
supported by the TX3927.

12:9 DSLCT Data Select Data Select (initial value: 0x0)
This field contains the data to be indicated in the PWRD field. Not supported by the
TX3927.

8 PMEE PME Enable PME Enable (initial value: 0)
The TX3927 does not support PME generation from D3cold.

1:0 PWRST Power State Power State (initial value: 00)
This field is used to determine the current power state and to set the function into a
new power state.
00: D0 (no change)
01: D1 (Don’t use.)
10: D2 (Don’t use.)
11: D3hot

Figure 12.3.42 Power Management Support Register

Chapter 12 PCI Controller (PCIC)

12-55

12.3.5 PCI Bus Arbiter/Parked Master Registers

Note: In external arbiter mode (boot configuration signal PCIXARB=0), these registers are
not used.

12.3.5.1 Request Trace Register (REQ_TRACE) 0xFFFE_D100 (+100)
The PCIC bus arbiter provides unique request inputs for it and four other PCI bus masters.

The Request Trace register defines the assignment of the five request input ports (PCIC and
REQ[3:0]) to the arbiter’s internal request ports (masters A to D and W to Z). This assigns
priorities to the request input ports. The corresponding grant trace values are set automatically.
Each time this register is reprogrammed, the Broken Master (BM) register must be cleared.

31 30 28 27 26 24 23 22 20 19 18 16
0 ReqAP 0 ReqBP 0 ReqCP 0 ReqDP

R/W R/W R/W R/W : Type
111 110 101 100 : Initial value

15 14 12 11 10 8 7 6 4 3 2 0
0 ReqWP 0 ReqXP 0 ReqYP 0 ReqZP

R/W R/W R/W R/W : Type
011 010 001 000 : Initial value

Bits Mnemonic Field Name Description
30:28 ReqAP Request A Port Request A Port (initial value: 111)

Defines which PCI bus master is connected to the internal PCI bus arbiter request A
port (master A).
111: Master A = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master A = REQ*[3]
010: Master A = REQ*[2]
001: Master A = REQ*[1]
000: Master A = REQ*[0]

26:24 ReqBP Request B Port Request B Port (initial value: 110)
Defines which PCI bus master is connected to the internal PCI bus arbiter request B
port (master B).
111: Master B = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master B = REQ*[3]
010: Master B = REQ*[2]
001: Master B = REQ*[1]
000: Master B = REQ*[0]

Figure 12.3.43 Request Trace Register (1/3)

Chapter 12 PCI Controller (PCIC)

12-56

Bits Mnemonic Field Name Description
22:20 ReqCP Request C Port Request C Port (initial value: 101)

Defines which PCI bus master is connected to the internal PCI bus arbiter request
C port (master C).
111: Master C = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master C = REQ*[3]
010: Master C = REQ*[2]
001: Master C = REQ*[1]
000: Master C = REQ*[0]

18:16 ReqDP Request D Port Request D Port (initial value: 100)
Defines which PCI bus master is connected to the internal PCI bus arbiter request
D port (master D).
111: Master D = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master D = REQ*[3]
010: Master D = REQ*[2]
001: Master D = REQ*[1]
000: Master D = REQ*[0]

14:12 ReqWP Request W Port Request W Port (initial value: 011)
Defines which PCI bus master is connected to the internal PCI bus arbiter request
W port (master W).
111: Master W = PCIC
110: Don’t use.
101: Don’t use.
100: v
011: Master W = REQ*[3]
010: Master W = REQ*[2]
001: Master W = REQ*[1]
000: Master W = REQ*[0]

10:8 ReqXP Request X Port Request X Port (initial value: 010)
Defines which PCI bus master is connected to the internal PCI bus arbiter request X
port (master X).
111: Master X = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master X = REQ*[3]
010: Master X = REQ*[2]
001: Master X = REQ*[1]
000: Master X = REQ*[0]

6:4 ReqYP Request Y Port Request Y Port (initial value: 001)
Defines which PCI bus master is connected to the internal PCI bus arbiter request Y
port (master Y).
111: Master Y = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master Y = REQ*[3]
010: Master Y = REQ*[2]
001: Master Y = REQ*[1]
000: Master Y = REQ*[0]

Figure 12.3.43 Request Trace Register (2/3)

Chapter 12 PCI Controller (PCIC)

12-57

Bits Mnemonic Field Name Description
2:0 ReqZP Request Z Port Request Z Port (initial value: 000)

Defines which PCI bus master is connected to the internal PCI bus arbiter request Z
port (master Z).
111: Master Z = PCIC
110: Don’t use.
101: Don’t use.
100: Don’t use.
011: Master Z = REQ*[3]
010: Master Z = REQ*[2]
001: Master Z = REQ*[1]
000: Master Z = REQ*[0]

Figure 12.3.43 Request Trace Register (3/3)

Chapter 12 PCI Controller (PCIC)

12-58

12.3.5.2 PCI Bus Arbiter/Parked Master Control Register (PBAPMC) 0xFFFE_D104 (+104)

31 16
0

: Type
: Initial value

15 3 2 1 0
0 RPBA PBAENBMCEN

R/W R/W R/W : Type
0 0 0 : Initial value

Bits Mnemonic Field Name Description
2 RPBA Reset PCI Bus

Arbiter
Reset PCI Bus Arbiter (initial value: 0)
Resets the PCI bus arbiter.
1: The round-robin priority of the PCI bus arbiter is being reset.
0: The round-robin priority of the PCI bus arbiter is not being reset.

1 PBAEN PCI Bus Arbiter
Enable

PCI Bus Arbiter Enable (initial value: 0)
After reset, external PCI bus requests to the PCI arbiter are blocked until this bit is
set. The PCI bus is parked on the PCIC by default.
1: Enables the PCI bus arbiter.
0: Disables the PCI bus arbiter.

0 BMCEN Broken Master
Check Enable

Broken Master Check Enable (initial value: 0)
This bit controls whether the PCI arbiter negates the bus grant to a requesting
master that does not assert FRAME* within 16 PCI clock cycles from the time the
bus is idle. This master is treated as a broken master. If this bit is set, identification
of the broken master is recorded in the Broken Master (BM) register.
1: Enables checking for broken masters.
0: Disables checking for broken masters.

Figure 12.3.44 PCI Bus Arbiter/Parked Master Control Register

Chapter 12 PCI Controller (PCIC)

12-59

12.3.5.3 PCI Bus Arbiter/Parked Master Status Register (PBAPMS) 0xFFFE_D108 (+108)

31 16
0

: Type
: Initial value

15 1 0
0 BMD

R/WC : Type
0 : Initial value

Bits Mnemonic Field Name Description
0 BMD Broken Master

Detected
Broken Master Detected (initial value: 0)
Indicates that a broken master has been detected. This bit is set if at least one bit in
the Broken Master (BM) register is set.
1: At least one bit in BMR.BM is set.
0: None of the bits in BMR.BM are set.

Figure 12.3.45 PCI Bus Arbiter/Parked Master Status Register

Chapter 12 PCI Controller (PCIC)

12-60

12.3.5.4 PCI Bus Arbiter/Parked Master Interrupt Mask Register (PBAPMIM)
0xFFFE_D10C (+10c)

Setting the BMDI bit enables interrupts generated by the Broken Master Detected (BMD) bit in
the PCI Bus Arbiter/Parked Master Status (PBAPMS) register.

31 16
0

: Type
: Initial value

15 1 0
0 BMDI

R/WC : Type
0 : Initial value

Bits Mnemonic Field Name Description
0 BMDI Broken Master

Detected
Interrupt Enable

Broken Master Detected Interrupt Enable (initial value: 0)

Figure 12.3.46 PCI Bus Arbiter/Parked Master Interrupt Mask Register

Chapter 12 PCI Controller (PCIC)

12-61

12.3.5.5 Broken Master Register (BM) 0xFFFE_D110 (+110)
This register shows the current broken master status. This register identifies any broken masters

if the Broken Master Check Enable (BMCEN) bit in the PCI Bus Arbiter/Parked Master Control
(PBAPMC) register is set. Each bit in this register represents a PCI master. The broken master
feature allows the PCIC to lock out any masters that are broken or ill-behaved. Also, any masters
can be locked out by programming the BM register, regardless of the setting of the BMCEN bit of
the PBAPMC register. This register must be cleared whenever the contents of the REQ_TRACE
register is changed.

31 16
0

: Type
: Initial value

15 8 7 6 5 4 3 2 1 0
0 BM [7] BM [6] BM [5] BM [4] BM [3] BM [2] BM [1] BM [0]

R/W : Type
0x00 : Initial value

Bits Mnemonic Field Name Description
7:0 BM [7:0] Broken Master Broken Master (initial value: 0x00)

Indicates whether or not each PCI bus master is broken.
BM[7:0] correspond to bus masters A, B, C, D, W, X, Y and Z in this order.
1: Assumed to be a broken master.
0: Not assumed to be a broken master.

Note: Writing a value of 0FFh to this register causes the PCI bus arbiter to be frozen.

Figure 12.3.47 Broken Master Register

Chapter 12 PCI Controller (PCIC)

12-62

12.3.5.6 Current PCI Bus Request Status Register (CPCIBRS) 0xFFFE_D114 (+114)

31 16
0

: Type
: Initial value

15 8 7 0
0 CPCIBRS

R/W : Type
0x00 : Initial value

Bits Mnemonic Field Name Description
7:0 CPCIBRS Current PCI Bus

Request Status
Current PCI Bus Request Status (initial value: 0x00)
Indicates the current state of the PCI bus request input signals (PCIC and
REQ*[3:0]). CPCIBRS[7] corresponds to PCIC, and CPCIBRS[3:0] correspond to
REQ*[3:0].

Figure 12.3.48 Current PCI Bus Request Status Register

Chapter 12 PCI Controller (PCIC)

12-63

12.3.5.7 Current PCI Bus Grant Status Register (CPCIBGS) 0xFFFE_D118 (+118)

31 16
0

: Type
: Initial value

15 8 7 0
0 CPCIBGS

R/W : Type
0x80 : Initial value

Bits Mnemonic Field Name Description
7:0 CPCIBGS Current PCI Bus

Grant Status
Current PCI Bus Grant Status (initial value: 0x80)
Indicates the current state of the PCI bus grant sent signals (PCIC and GNT*[3:0]).
CPCIBGS[7] corresponds to PCIC, and CPCIBGS[3:0] correspond to GNT*[3:0].

Figure 12.3.49 Current PCI Bus Grant Status Register

Chapter 12 PCI Controller (PCIC)

12-64

12.3.5.8 PCI Bus Arbiter Current State Register (PBACS) 0xFFFE_D11C (+11c)

31 16
0

: Type
: Initial value

15 8 7 6 5 4 3 2 1 0
0 ObPSM 0 CPAS

R/W R : Type
0 0x03 : Initial value

Bits Mnemonic Field Name Description
7 ObPSM Observe PCI

State Machine
Observe PCI State Machine (initial value: 0)
Specifies which state machine to observe.
1: Observes the Level-1 state machine.
0: Observes the Level-2 state machine.

4:0 CPAS Current PCI Bus
Arbiter State

Current PCI Bus Arbiter State (initial value: 0x03)
Indicates the current state of the state machine selected by the ObPSM bit.
See Figures 12.3.43 and 12.4.3 for agents/grants A to W and Level-2.
The following describes the states when the ObPSM bit is 1. For cases where the
ObPSM bit is 0, read A as W, B as X, C as Y and D as Z, and ignore references to
Level-2.
When ObPSM = 1:
0x00: The PCI bus arbiter prepares to grant bus mastership to PCI agent A.
0x01: Grant A is being awarded to PCI agent A when another agent holds the PCI

bus.
0x02: Grant A is being awarded to PCI agent A when no agent holds the PCI bus.
0x03: Grant A has been awarded to agent A. If another agent is requiring bus

mastership, the PCI bus arbiter prepares to grant it bus mastership.
0x04: The PCI bus arbiter prepares to grant bus mastership to PCI agent B.
0x05: Grant B is being awarded to PCI agent B when another agent holds the PCI

bus.
0x06: Grant B is being awarded to PCI agent B when no agent holds the PCI bus.
0x07: Grant B has been awarded to agent B. If another agent is requiring bus

mastership, the PCI bus arbiter prepares to grant it bus mastership.
0x08: The PCI bus arbiter prepares to grant bus mastership to PCI agent C.
0x09: Grant C is being awarded to PCI agent C when another agent holds the PCI

bus.
0x0A: Grant C is being awarded to PCI agent C when no agent holds the PCI bus.
0x0B: Grant C has been awarded to agent C. If another agent is requiring bus

mastership, the PCI bus arbiter prepares to grant it bus mastership.
0x0C: The PCI bus arbiter prepares to grant bus mastership to PCI agent D.
0x0D: Grant D is being awarded to PCI agent D when another agent holds the PCI

bus.
0x0E: Grant D is being awarded to PCI agent D when no agent holds the PCI bus.
0x0F: Grant D has been awarded to agent D. If another agent is requiring bus

mastership, the PCI bus arbiter prepares to grant it bus mastership.
4:0 CPAS Current PCI Bus

Arbiter State
0x10: The PCI bus arbiter prepares to grant bus mastership to a Level-2 PCI agent.
0x11: The Level-2 grant is being awarded to a Level-2 PCI agent when another

agent holds the PCI bus.
0x12: The Level-2 grant is being awarded to a Level-2 PCI agent when no agent

holds the PCI bus.
0x13: The Level-2 has been awarded to a Level-2 PCI agent. If another agent is

requiring bus mastership, the PCI bus arbiter prepares to grant it bus
mastership.

Figure 12.3.50 PCI Bus Arbiter Current State Register

Chapter 12 PCI Controller (PCIC)

12-65

12. PCI C ontroll er (PCIC)
12.3

12.3.6 Local Bus Special Registers

The local bus special registers do not reside in the PCI configuration space because they are assigned
special functions.

12.3.6.1 Target I/O Base Address Size Register (IOBAS) 0xFFFE_D120 (+120)

31 16
IOBAS

R/W : Type
0xFF00 : Initial value

15 2 1 0
IOBAS 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:2 IOBAS Target IO Base

Address Size
Target IO Base Address Size (initial value: 0xFF000000)
This register is used together with the Target I/O Base Address (IOBA) and Target
Local Bus I/O Mapping Address (TLBIOMAR) registers to define the size of the I/O
address region in PCI-to-local address translation. An all-zero value disables the
target I/O address region. The default value after reset is 16 Mbytes (FF000000h).
Legal values are equal to those that, after writing 1s to all locations in the IOBA
space, an external PCI bus master receives when reading it. Because the IOBAS
register internally masks the TLBIOMAR and IOBA registers, the IOBAS register
must be programmed before programming them. The size must be a power of 2, or
the Illegal Address Size (IAS) status bit in the Local Bus Status (LBSTAT) register
will be set and an interrupt will be generated if the corresponding interrupt mask bit
(LBIM.IASIE) is set.
00000000h: IOBA is disabled.
FFFFFFFCh: 4 bytes
FFFFFFF8h: 8 bytes
FFFFFFF0h: 16 bytes
FFFFFFE0h: 32 bytes
FFFFFFC0h: 64 bytes
FFFFFF80h: 128 bytes
FFFFFF00h: 256 bytes
 :
FE000000h: 32 Mbytes
FC000000h: 64 Mbytes
F8000000h: 128 Mbytes
F0000000h: 256 Mbytes
E0000000h: 512 Mbytes
C0000000h: 1 Gbytes
80000000h: 2 Gbytes

Figure 12.3.51 Target I/O Base Address Size Register

Chapter 12 PCI Controller (PCIC)

12-66

12.3.6.2 Target Memory Base Address Size Register (MBAS) 0xFFFE_D124 (+124)

31 16
MBA

R/W : Type
0x8000 : Initial value

15 4 3 2 1 0
MBA 0

R/W : Type
0x000 : Initial value

Bits Mnemonic Field Name Description
31:4 MBA Target Memory

Base Address
Size

Target Memory Base Address Size (initial value: 0x80000000)
This register is used together with the Target Memory Base Address (MBA) and
Target Local Bus Memory Mapping Address (TLBMMAR) registers to define the size
of the memory address region in PCI-to-local address translation. An all-zero value
disables the target memory address region. The default value after reset is 2 Gbytes
(80000000h). Legal values are equal to those that, after writing 1s to all locations in
the MBA space, an external PCI bus master receives when reading it. Because the
MBAS register internally masks the TLBMMAR and MBA registers, the MBAS
register must be programmed before programming them. The size must be a power
of 2, or the Illegal Address Size (IAS) status bit in the Local Bus Status (LBSTAT)
register will be set and an interrupt will be generated if the corresponding interrupt
mask bit (LBIM.IASIE) is set.
00000000h: MBA is disabled.
FFFFFFF0h: 16 bytes
FFFFFFE0h: 32 bytes
FFFFFFC0h: 64 bytes
FFFFFF80h: 128 bytes
FFFFFF00h: 256 bytes
 :
FE000000h: 32 Mbytes
FC000000h: 64 Mbytes
F8000000h: 128 Mbytes
F0000000h: 256 Mbytes
E0000000h: 512 Mbytes
C0000000h: 1 Gbytes
80000000h: 2 Gbytes

Figure 12.3.52 Target Memory Base Address Size Register

Chapter 12 PCI Controller (PCIC)

12-67

12.3.6.3 Local Bus Status Register (LBSTAT) 0xFFFE_D12C (+12c)
Each bit in this register has a corresponding bit in the Local Bus Interrupt Mask (LBIM)

register. Setting a bit in this register triggers an interrupt to the TX3927 CPU if the corresponding
LBIM register bit is set.

31 16
0

: Type
: Initial value

15 6 5 4 3 2 1 0
0 PEPOc SEROc GEROc IAS RstOc 1

R/WC R/WC R/WC R/WC R/WC : Type
0 0 0 0 1 : Initial value

Bits Mnemonic Field Name Description
5 PEROc Parity Error

Occurred
PERR* occurred. (initial value: 0)
This bit is set when the PCIC or an external agent asserts PERR*.
1: PERR* asserted.
0: PERR* not asserted.

4 SEROc System Error
Occurred

SERR* occurred. (initial value: 0)
This bit is set when the PCIC or an external agent asserts SERR*.
1: SERR* asserted.
0: SERR* not asserted.

3 GEROc G-Bus Error
Occurred

G-Bus Error Occurred. (initial value: 0)
Indicates that a bus error has occurred on the G-Bus while the PCIC owns the G-
Bus.

2 IAS Illegal Address
Size

Illegal Address Size (initial value: 0)
This bit is set when the IOBAS, MBAS, IOMAS or MMAS size is illegal.

1 RstOc RESET occurred RESET occurred (initial value: 1)
Indicates that the PCIC has been initialized.

Figure 12.3.53 Local Bus Status Register

Chapter 12 PCI Controller (PCIC)

12-68

12.3.6.4 Local Bus Control Register (LBC) 0xFFFE_D128 (+128)

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
0 IBSE TIBSE TMFBSE HRst SRst EPCAD MSDSE CRR ILMDE ILIDE TPIIC DDRAD

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
14 IBSE Initiator Byte

Swapping Enable
Initiator Byte Swapping Enable (initial value: 0)
Enables or disables byte swapping during accesses to the PCI bus as an initiator.
Byte swapping occurs during all transactions: memory cycles, I/O cycles,
configuration cycles, interrupt-acknowledge cycles and special-cycles.
0: Disable
1: Enable

13 TIBSE Target I/O Byte
Swapping Enable

Target I/O Byte Swapping Enable (initial value: 0)
Enables or disables byte swapping during I/O-cycle accesses to the PCI bus as a
target.
0: Disable
1: Enable

12 TMFBSE Target Memory
Full Area Byte
Swapping Enable

Target Memory Full area Byte Swapping Enable (initial value: 0)
Setting the MSDSE bit enables byte swapping during memory-cycle accesses to the
PCI bus as a target.
The TMFBSE bit selects the byte swapping region.
0: The upper half of the programmed target memory space is configured to perform

byte swapping.
Example: Assume that the Target Memory Base Address Size (MBAS) register is

programmed as 0x80000000 (2 Gbytes) and that the MSDSE bit is 1.
When AD[30]=1, byte swapping occurs because the target address falls
within the upper 1 Gbytes. When AD[30]=0, byte swapping does not occur.

Lower 2-GB address space Upper 2-GB address space

1: The entire target memory space is configured to perform byte swapping.
11 HRst Hard Reset Hard Reset (initial value: 0)

Setting this bit is equivalent to a hard reset and an ordinary reset. Setting this bit
causes the TX3927 to hold the reset signal active for 16 PCI clock cycles.
Thereafter, this bit is cleared automatically.
This bit should not be polled to determine if the reset is complete. An attempt to read
this register during a reset causes a local bus error.

Figure 12.3.54 Local Bus Control Register (1/2)

0x7FFF_FFFF

0x4000_0000
0x3FFF_FFFF

0x0000_0000

Swap sapce

Non-swap space

0xFFFF_FFFF

0xC000_0000
0xBFFF_FFFF

0x8000_0000

Chapter 12 PCI Controller (PCIC)

12-69

Bits Mnemonic Field Name Description
10 SRst Soft Reset Soft Reset (initial value: 0)

Setting this bit initializes the PCIC. The soft reset does not initialize the PCI
configuration header space registers or any status registers with R/WC access
attributes.

9 EPCAD External PCI
Configuration
Access Disable

External PCI Configuration Access Disable (initial value: 0)
1: Disables external PCI configuration accesses. This is mainly used by host-PCI

bridge applications.
0: Enables external PCI bus masters to access the configuration registers.
Memory Space Dynamic Swapping Enable (initial value: 0)
1: Enables dynamic word swapping for PCI memory read/write commands.

(The swapping region is selected by the TMFBSE bit.)
The following illustrates the byte swapping mechanism:

Little-endian word Big-endian word
Byte 0 Bits 7:0 J <--> n Bits 31:24 Byte 0
Byte 1 Bits 15:8 o <--> h Bits 23:16 Byte 1
Byte 2 Bits 23:16 h <--> o Bits 15:8 Byte 2
Byte 3 Bits 31:24 n <--> J Bits 7:0 Byte 3

8 MSDSE Memory Space
Dynamic
Swapping Enable

If the input word is "John," the output word will be "nhoJ."
0: Disables dynamic word swapping. (No swapping occurs.)

7 CRR Configuration
Registers Ready

Configuration Registers Ready for Access (initial value: 0)
1: The configuration registers are ready for access. An external PCI bus master is

allowed to access the target configuration registers.
0: The configuration registers are not ready for access. An attempt to access any

target configuration register causes a target-retry termination. Software must set
this bit to permit accesses to the configuration registers.

6 ILMDE Initiator Local
Bus Memory
Address Space
Decoder Enable

Initiator Local Bus Memory Address Space Decoder Enable (initial value: 0)
Controls whether to compare the address on the G-Bus to the value programmed in
the ILBMMAR register. This bit is used in conjunction with the Initiator Memory
Mapping Address Size (MMAS) register. If the upper bits of the address match the
corresponding bits of the MMAS register, the initiator generates a PCI memory read
or write transaction.
1: Enables the PCIC initiator local bus memory address decoder.
0: Disables the PCIC initiator local bus memory address decoder.

(No PCI transaction is generated.)
5 ILIDE Initiator Local

Bus I/O Address
Space Decoder
Enable

Initiator Local Bus I/O Address Space Decoder Enable (initial value: 0)
Controls whether to compare the address on the G-Bus to the value programmed in
the ILBIOMAR register. This bit is used in conjunction with the Initiator I/O Mapping
Address Size (IOMAS) register. If the upper bits of the address match the
corresponding bits of the IOMAS register, the initiator generates a PCI I/O read or
write transaction.
1: Enables the PCI initiator local bus I/O address decoder.
0: Disables the PCI initiator local bus I/O address decoder.

(No PCI transaction is generated.)
4 TPIIC Test Test (initial value: 0)

This bit is reserved for test purposes; it should be fixed at 0.
3 DDRAD Device-

Dependent
Region Access
Disable

Device-Dependent Region Access Disable (initial value: 0)
Controls whether to allow an external PCI bus master to access the registers for
local bus settings (40h to dfh and e8h to ffh).
0: Allowed
1: Not allowed

Reading any register at the above addresses will result in the value of the Device
ID register being read. Writes to those registers will be ignored.

Figure 12.3.54 Local Bus Control Register (2/2)

Chapter 12 PCI Controller (PCIC)

12-70

12.3.6.5 Local Bus Interrupt Mask Register (LBIM) 0xFFFE_D130 (+130)
Each bit in this register has a corresponding bit in the Local Bus Status (LBSTAT) register.

Setting a bit in the LBSTAT register triggers an interrupt if the corresponding enable bit in this
register is set.

31 16
0

: Type
: Initial value

15 6 5 4 3 2 1 0
0 PERIE SERIE GERIE IASIE ROIE 0

R/W R/W R/W R/W R/W : Type
0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
5 PERIE Parity Error

occurred
Interrupt Enable

PERR* occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if LBSTAT.PEROc is set.
0: An interrupt request is not generated even if LBSTAT.PEROc is set.

4 SERIE System Error
occurred
Interrupt Enable

SERR* occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if LBSTAT.SEROc is set.
0: An interrupt request is not generated even if LBSTAT.SEROc is set.

3 GERIE G-Bus Error
occurred
Interrupt Enable

G-Bus Error occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if LBSTAT.GEROc is set.
0: An interrupt request is not generated even if LBSTAT.GEROc is set.

2 IASIE Illegal Address
Size Interrupt
Enable

Illegal BARS Size Interrupt Enable (initial value: 0)
1: An interrupt request is generated if LBSTAT.ISA is set.
0: An interrupt request is not generated even if LBSTAT.ISA is set.

1 ROIE RESET occurred
Interrupt Enable

RESET occurred Interrupt Enable (initial value: 0)
1: An interrupt request is generated if LBSTAT.RstOc is set.
0: An interrupt request is not generated even if LBSTAT.RstOc is set.

Figure 12.3.55 Local Bus Interrupt Mask Register

Chapter 12 PCI Controller (PCIC)

12-71

12.3.6.6 PCI Status Interrupt Mask Register (PCISTATIM) 0xFFFE_D134 (+134)
Each bit in this register has a corresponding bit in the PCI Status (PCISTAT) register. Setting a

bit in the PCISTAT register triggers an interrupt if the corresponding enable bit in this register is
set.

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 0
DIP SSEIE RAMAIE RTAIE STAIE 0 PRIE 0

R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
15 DIP Detected Parity

Error Interrupt
Enable

Detected Parity Error Interrupt Enable (initial value: 0)
1: An interrupt request is generated if PCISTAT.DECPE is set.
0: An interrupt request is not generated even if PCISTAT.DECPE is set.

14 SSEIE Signaled System
Error Interrupt
Enable

Signaled System Error Interrupt Enable (initial value: 0)
1: An interrupt request is generated if PCISTAT.SIGSE is set.
0: An interrupt request is not generated even if PCISTAT.SIGSE is set.

13 RAMAIE Received
Master-Abort
Interrupt Enable

Received Master-Abort Interrupt Enable (initial value: 0)
1: An interrupt request is generated if PCISTAT.RECMA is set
0: An interrupt request is not generated even if PCISTAT.RECMA is set.

12 RTAIE Received Target-
Abort Interrupt
Enable

Received Target-Abort Interrupt Enable (initial value: 0)
1: An interrupt request is generated if PCISTAT.RECTA is set.
0: An interrupt request is not generated even if PCISTAT.RECTA is set.

11 STAIE Signaled Target-
Abort Interrupt
Enable

Signaled Target-Abort Interrupt Enable (initial value: 0)
1: An interrupt request is generated if PCISTAT.SIGTA is set.
0: An interrupt request is not generated even if PCISTAT.SIGTA is set.

8 PRIE Parity Error
Reported
Interrupt Enable

Parity Error Reported Interrupt Enable (initial value: 0)
1: An interrupt request is generated if PCISTAT.PERPT is set.
0: An interrupt request is not generated even if PCISTAT.PERPT is set.

Figure 12.3.56 PCI Status Interrupt Mask Register

Chapter 12 PCI Controller (PCIC)

12-72

12.3.6.7 Initiator Configuration Address Register (ICA) 0xFFFE_D138 (+138)

31 24 23 16
0 BusNu

R/W : Type
0x00 : Initial value

15 11 10 8 7 2 1 0
DevNu FunNu RegNu TypNu

R/W R/W R/W R/W : Type
0x00 000 0x00 00 : Initial value

Bits Mnemonic Field Name Description
23:16 BusNu Bus Number Bus Number (initial value: 0x00)

Selects one of 256 possible target PCI buses in a system.
15:11 DevNu Device Number Device Number (initial value: 0x00)

Selects the target physical device to address on the selected PCI bus (the PCIC
uses 21 devices out of 32 possible devices). The high-order 21 bits of the address
lines, AD[31:11], are not used during the address phase of type 0 configuration
cycles. The PCIC derives one of the following signals as an IDSEL signal to a
physical PCI device.
0x00: AD[11] is driven asserted as IDSEL.
0x01: AD[12] is driven asserted as IDSEL.
0x02: AD[13] is driven asserted as IDSEL.
0x03: AD[14] is driven asserted as IDSEL.
0x04: AD[15] is driven asserted as IDSEL.
0x05: AD[16] is driven asserted as IDSEL.
0x06: AD[17] is driven asserted as IDSEL.
0x07: AD[18] is driven asserted as IDSEL.
0x08: AD[19] is driven asserted as IDSEL.
0x09: AD[20] is driven asserted as IDSEL.
0x0A: AD[21] is driven asserted as IDSEL.
0x0B: AD[22] is driven asserted as IDSEL.
0x0C: AD[23] is driven asserted as IDSEL.
0x0D: AD[24] is driven asserted as IDSEL.
0x0E: AD[25] is driven asserted as IDSEL.
0x0F: AD[26] is driven asserted as IDSEL.
0x10: AD[27] is driven asserted as IDSEL.
0x11: AD[28] is driven asserted as IDSEL.
0x12: AD[29] is driven asserted as IDSEL.
0x13: AD[30] is driven asserted as IDSEL.
0x14: AD[31] is driven asserted as IDSEL.
0x15-0x1f: Not used

10:8 FunNu Function Number Function Number (initial value: 000)
Selects one of eight possible logical functions within the device.

7:2 RegNu Register Number Register Number (initial value: 0x00)
Indexes one of 64 possible D-words in the configuration space of the intended
target.

1:0 TypNu Type Number Type Number (initial value: 00)
Specifies the address type in the address phase of the target configuration cycle.

Figure 12.3.57 Initiator Configuration Address Register

Chapter 12 PCI Controller (PCIC)

12-73

12.3.6.8 Initiator Configuration Data Register (ICDR) 0xFFFE_D13C (+13c)

31 16
ICD

R/W : Type
0x0000 : Initial value

15 0
ICD

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 ICD Initiator

Configuration
Data Register

Initiator Configuration Data Register (initial value: 0x00000000)
This register is used as a data port for the configuration access cycle. Software
reads or writes this register to initiate a PCI bus configuration transaction after
setting up the Initiator Configuration Address (ICA) register.

Figure 12.3.58 Initiator Configuration Data Register

Chapter 12 PCI Controller (PCIC)

12-74

12.3.6.9 Initiator Interrupt-Acknowledge Data Port Register (IIADP) 0xFFFE_D140 (+140)

31 16
IIADP

R : Type
0x0000 : Initial value

15 0
IIADP

R : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 IIADP Initiator Interrupt

Acknowledge
Address Port

Initiator Interrupt-Acknowledge Address Port (initial value: 0x0000)
A read of this register generates an interrupt-acknowledge cycle on the PCI bus.
The read data is driven onto AD[31:0] during the data phase of the interrupt-
acknowledge cycle.

Figure 12.3.59 Initiator Interrupt-Acknowledge Data Port Register

Chapter 12 PCI Controller (PCIC)

12-75

12.3.6.10 Initiator Special-Cycle Data Port Register (ISCDP) 0xFFFE_D144 (+144)

31 16
ISCDP

W : Type
0x0000 : Initial value

15 0
ISCDP

W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 ISCDP Initiator Special-

Cycle Data Port
Initiator Special-Cycle Data Port (initial value: 0x00000000)
A write to this register generates a special-cycle transaction on the PCI bus with the
written message.

Figure 12.3.60 Initiator Special-Cycle Data Port Register (ISCDP)

Chapter 12 PCI Controller (PCIC)

12-76

12.3.6.11 Initiator Memory Mapping Address Size Register (MMAS) 0xFFFE_D148 (+148)

31 16
MMAS

R/W : Type
0x0000 : Initial value

15 4 3 0
MMAS 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:4 MMAS Initiator Memory

Mapping Address
Size

Initiator Memory Mapping Address Size (initial value: 0x0000000)
This register is used together with the Initiator PCI Bus Memory Mapping Address
register (IPBMMAR) and the Initiator Local Bus Memory Mapping Address register
(ILBMMAR) to define the size of the memory address region in local-to-PCI address
translation. An all-zero value disables the PCI memory address region. Because the
MMAS register internally masks the ILBMMAR and IPBMMAR registers, the MMAS
register must be programmed before programming them. The size must be a power
of 2, or the Illegal Address Size (IAS) status bit in the Local Bus Status (LBSTAT)
register will be set and an interrupt will be generated if the corresponding interrupt
mask bit (LBIM.IASIE) is set.
00000000h: The ILBMMAR address decoder is disabled (default POR value).
FFFFFFF0h: 16 bytes
FFFFFFE0h: 32 bytes
FFFFFFC0h: 64 bytes
FFFFFF80h: 128 bytes
FFFFFF00h: 256 bytes
 :
 :
FF000000h: 16 Mbytes
FE000000h: 32 Mbytes
FC000000h: 64 Mbytes
F8000000h: 128 Mbytes
F0000000h: 256 Mbytes
E0000000h: 512 Mbytes
C0000000h: 1 Gbytes
80000000h: 2 Gbytes

Figure 12.3.61 Initiator Memory Mapping Address Size Register

Chapter 12 PCI Controller (PCIC)

12-77

12.3.6.12 Initiator I/O Mapping Address Size Register (IOMAS) 0xFFFE_D14C (+14c)

31 16
IOMAS

R/W : Type
0x0000 : Initial value

15 2 1 0
IOMAS 0

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:2 IOMAS Initiator IO

Mapping Address
Size

Initiator IO Mapping Address Size (initial value: 0x0000000)
This register is used together with the Initiator PCI Bus I/O Mapping Address
register (IPBIOMAR) and the Initiator Local Bus I/O Mapping Address register
(ILBIOMAR) to define the size of the I/O address region in local-to-PCI a address
translation. An all-zero value disables the PCI I/O address region. Because the
IOMAS register internally masks the ILBIOMAR and IPBIOMAR registers, the
IOMAS register must be programmed before programming them. The size must be
a power of 2, or the Illegal Address Size (IAS) status bit in the Local Bus Status
(LBSTAT) register will be set and an interrupt will be generated if the corresponding
interrupt mask bit (LBIM.IASIE) is set.
00000000h: The ILBIOMAR address decoder is disabled (default POR value).
FFFFFFF0h: 16 bytes
FFFFFFE0h: 32 bytes
FFFFFFC0h: 64 bytes
FFFFFF80h: 128 bytes
FFFFFF00h: 256 bytes
 :
 :
FF000000h: 16 Mbytes
FE000000h: 32 Mbytes
FC000000h: 64 Mbytes
F8000000h: 128 Mbytes
F0000000h: 256 Mbytes
E0000000h: 512 Mbytes
C0000000h: 1 Gbytes
80000000h: 2 Gbytes

Figure 12.3.62 Initiator I/O Mapping Address Size Register

Chapter 12 PCI Controller (PCIC)

12-78

12.3.6.13 Initiator Indirect Address Register (IPCIADDR) 0xFFFE_D150 (+150)

31 16
IPCIADDR

R/W : Type
0x0000 : Initial value

15 0
IPCIADDR

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 IPCIADDR Initiator Indirect

Address
Initiator Indirect Address (initial value: 0x00000000)
Specifies the PCI address to be accessed for an indirect initiator cycle.

Figure 12.3.63 Initiator Indirect Address Register

Chapter 12 PCI Controller (PCIC)

12-79

12.3.6.14 Initiator Indirect Data Register (IPCIDATA) 0xFFFE_D154

31 16
IPCIDATA

R/W : Type
0x0000 : Initial value

15 0
IPCIDATA

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
31:0 IPCIDATA Initiator Indirect

Data
Initiator Indirect Data (initial value: 0x00000000)
Contains the data for an indirect initiator PCI cycle.
For a read cycle, the data read during the data phase is captured in this register.
For a write cycle, the data in this register is driven onto the PCI AD bus during the
data phase.

Figure 12.3.64 Initiator Indirect Data Register

Chapter 12 PCI Controller (PCIC)

12-80

12.3.6.15 Initiator Indirect Command/Byte Enable Register (IPCICBE) 0xFFFE_D158
A write to this register generates an indirect initiator cycle. The IDICC bit of the ISTAT register

will be set upon completion of the cycle.

31 16
0

: Type
: Initial value

15 8 7 4 3 0
0 ICMD IBE

R/W R/W : Type
0x0 0x0 : Initial value

Bits Mnemonic Field Name Description
7:4 ICMD Initiator Indirect

Command
Initiator Indirect Command (initial value: 0x0)
Provides a PCI command for an indirect initiator access. The value in this field is
directly driven onto C_BE[3:0].

3:0 IBE Initiator Indirect
Byte Enable

Initiator Indirect Byte Enable (initial value: 0x0)
Provides byte enables for an indirect initiator access. The value in this field is
directly driven onto C_BE[3:0].

Figure 12.3.65 Initiator Indirect Command/Byte Enable Register

Chapter 12 PCI Controller (PCIC)

12-81

12.4 Operation

12.4.1 Transfer Modes

As an initiator, the PCI Controller (PCIC) supports PIO interface; as a target, the PCIC supports data
streaming.

• Initiator PIO mode

The PCIC initiator module incorporates a general write buffer for PCI memory and I/O
transactions. When the PCIC is acting as an initiator, data is transferred to and from the PCI bus
via the PIO port shown in Figure 12.2.1. In this mode, the PCIC functions as a G-Bus slave. The
PCIC initiator module supports direct and indirect transfer modes for PCI cycles.

In PIO mode, the RF field of the Config register within the TX39/H2 CPU core must be 00 (x1
processor clock frequency). Other settings could yield improper operation.

Direct mode: In this mode, part of the local bus (G-Bus) address space is directly mapped to the
PCI bus. A read of this space generates a read cycle on the PCI bus. The local bus
(G-Bus) cycle does not finish until the PCI bus cycle finishes.
Writes uses a 1-doubleword buffer; thus, the PCI write cycle is run asynchronously
from the local bus. Another write to this local bus (G-Bus) region will not finish
until the previous PCI write has finished and the write buffer becomes available.

Indirect mode: In this mode, initiator PCI cycles run asynchronously to the local bus (G-Bus). For
reads, write the appropriate PCI address and C_BE values into the IPCIADDR and
IPCICBE registers and then poll a status bit (or interrupt). When the PCIC performs
a PCI cycle and puts the data into the IPCIDATA register, the status bit is set. This
signals to the CPU that the data is ready to be read.
Writes operate similarly, except that the data is written to the IPCIDATA register
before the IPCIADDR and IPCICBE registers are programmed. In indirect transfer
mode, PCI-to-local address translation does not occur.

Note 1: When the PCIC is acting as an initiator, direct accesses can create a deadlock
situation. A deadlock occurs when the TX3927 is performing a direct bus master
access to the same PCI target that is trying to access the TX3927. If that happens,
the TX3927 can not respond until it completes its direct master access and frees
up the local bus (G-Bus). Consequently, both the TX3927 and the PCI device result
in a deadlock, retrying PCI requests. For deadlock avoidance, indirect accesses
can be used.

Note 2: The initiator module does not support local bus burst accesses. In Direct mode, the
local bus should not be mapped to the cached address space.

Note 3: The CCFG.TOE bit must be cleared when PCI configuration read transactions are
performed in Direct mode. For details, see Section 19.8.

• Target streaming mode

As a target, the PCIC can provide continuous data to PCI master through FIFO buffers. In this
mode, the PCIC is the bus master within the TX3927, and data can be transferred from memory to
OFIFO to PCI bus, or from PCI bus to IFIFO to memory (see Figure 12.2.1), without any
intervention from the TX3927 DMA Controller. When the PCIC target module receives a PCI
command, the PCIC performs address translation as described in Section 12.4.3, "Address
Translation," and transfers the data.

Chapter 12 PCI Controller (PCIC)

12-82

12.4.2 Configuration Cycles

To perform a PCI configuration transaction as an initiator in PIO mode, the Initiator Configuration
Address register (ICAR) must programmed. Then, a read or write to the Initiator Configuration Data
register (ICDR) causes the PCIC to translate the access into a PCI configuration cycle. The TX3927
performs type 0 configuration accesses.

During configuration accesses, the device with ID_SEL set to High will respond. If the TX3927
never functions as a target during PCI configuration cycles, ID_SEL must be tied Low.

12.4.3 Address Translation

The PCIC allows remapping of PCI transactions to the G-Bus space and G-Bus transactions to the
PCI space.

• When the PCIC is the initiator running in direct mode (G-Bus to PCI bus address translation)

When the TX39/H2 core accesses memory on the PCI bus, the PCIC compares the G-Bus
address from the TX39/H2 core with the contents of the ILBMMAR register. The MMAS register
holds a comparison mask that sets the variable memory region size. If there is an address match,
the PCI bus address is generated by replacing the high-order bits of the G-Bus address with the
corresponding bits of the IPBMMAR register. The remaining low-order bits of the G-Bus address
are passed unchanged. When the target is an I/O device, the registers shown in parentheses in
Figure 12.4.1 are used in address translation.

31 0

G-Bus address

Compare

31 0
ILBMMAR

(ILBIOMAR)

31 0
MMAS

(IOMAS) 1 1 1 1 … 1 1 1 0 0 0 0 0 0 … … … … 0 0 0 0 0 0 0 0

31 0
IPBMMAR

(IPBIOMAR)

31 0

PCI bus address

Figure 12.4.1 Address Translation in Direct Initiator Mode (G-Bus to PCI bus address translation)

Chapter 12 PCI Controller (PCIC)

12-83

• When the PCIC is the target (PCI bus to G-Bus address translation)

When a bus master on the PCI bus accesses G-Bus memory mapped by a memory controller, the
PCIC compares the PCI address with the contents of the MBA field in the Target Memory Base
Address (MBA) register. The MBAS register holds a comparison mask that sets the variable
memory region size. If there is an address match, the G-Bus address is generated by replacing the
high-order bits of the PCI bus address with the corresponding bits of the TLBMMAR register. The
remaining low-order bits of the PCI bus address are passed unchanged. When the target is an I/O
device, the registers shown in parentheses in Figure 12.4.2 are used in address translation.

Note: The last four Dwords in the PCIC address space specified by the MBA and IOBA
registers are reserved for the PCIC and must not be accessed.

31 0

PCI bus address

Compare

31 0
MBA

(IOBA)

31 0
MBAS

(IOBAS) 1 1 1 1 … 1 1 1 0 0 0 0 0 0 … … … … 0 0 0 0 0 0 0 0

31 0
TLBMMAR

(TLBIOMAR)

31 0

G-Bus address

Figure 12.4.2 PCI Bus to G-Bus Address Translation

12.4.4 PCIC Clock

The external PCI clock signal, PCICLK, can be configured as an input or output. The state of the
PCICLKEN boot configuration signal (ADDR[18]) determines the direction of the PCI clock.

When PCICLKEN=1, PCICLK[0:3] are set to output mode and drive a clock that is used as the PCIC
internal reference clock (CLKPCI). The PCIC internal reference clock is generated by dividing down
the G-Bus clock (GBUSCLK) by 2 or 3. The PCI clock continues to run even while the CPU is halted.
Either the PCI3 bit of the CCFG register or the state of the PCI3* boot configuration signal
(ADDR[17]) determines the clock divide ratio.

When PCICLKEN=0, PCICLK is set to input mode and the PCIC operates with the clock supplied
from PCICLK[0]. In this mode, PCICLK[1:3] cannot be used.

Chapter 12 PCI Controller (PCIC)

12-84

12.4.5 PCI Bus Arbitration

The internal state machine that arbitrates between PCI bus accesses provides arbitration for up to
eight PCI bus masters. However, in the TX3927, three of them are not used; The PCI bus arbiter
controls the arbitration for the PCIC itself and four external bus masters connected to the REQ[3:0]*
and GNT[3:0]* pins.

The PCIXARB boot configuration signal (ADDR[11]) sampled at the rising edge of the RESET*
signal determines if the on-chip PCI arbiter is enabled (high) or disabled (low). If the on-chip PCI bus
arbiter is disabled, REQ[0] is configured as an output, and GNT[0] as an input. Also, REQ[1] is
configured as an interrupt output whose state is controlled by PIO module flags.

As shown in Figure 12.4.3, the on-chip PCI bus arbiter uses a two-level, round-robin arbitration
algorithm. The low-priority group (level 2) consists of masters W to Z, while the high priority group
(level 1) consists of masters A to D. The low-priority group collectively has one bus transaction slot in
the high-priority group. The provision for eight bus masters is to allow for future expansion; the
TX3927 PCIC uses five of the eight masters. The Request Trace (REQ_TRACE) register is used to
program the assignment of A to D and W to Z to the PCIC and four external bus masters.

The order of progression of priorities between these accesses is shown in Figure 12.4.3.

Figure 12.4.3 PCI Bus Arbitration/Parked Master Priority

All Level-1 agents have the same priority and are granted the bus equally (rotating in round-robin
sequence within Level 1). If there are any agents at Level 2, one of them is guaranteed to get at least
one of five bus transaction. All Level-2 agents have the same priority level and receive an equal number
of bus grants in round-robin fashion (within Level 2).

Not all of the eight transaction slots can be used with the TX3927. However, assuming there are eight
bus masters requesting the bus at the same time, the grant sequence is A → B → C → D → W → A →
B → C → D → X → A → B → C → D → Y → A → B → C → D → Z → and repeating.

Level 2
(lower priority)

Level 1
(higher priority)

Master A

Level 2

Master Z Master X

Master W

Master B Master C

Master D

Master Y

Chapter 12 PCI Controller (PCIC)

12-85

The round-robin sequence moves only in the direction of the arrows. Suppose that there are two high-
priority devices assigned to A and B, and one low-priority device assigned to W. If A and W request the
bus simultaneously when B is conducting a transaction, the grant sequence will be B →W → A.

The round-robin sequences can be initialized by setting the RPBA bit in the PCI Bus Arbiter/Parked
Master Control (PBAPMC) register.

12.4.6 FIFO Depth

To support data streaming to and from local memory, the PCIC target module incorporates two 16-
deep FIFO buffers: one for inbound memory transactions and one for outbound memory transactions.
The IFIFO is used for the streaming of data from the PCI bus to memory. The OFIFO is used for the
streaming of data from memory to the PCI bus.

12.4.7 Accessing the PCIC Target Module

The PCIC target module can be accessed from the PCI bus in one of the following two ways:

1. FIFO access

A FIFO access is performed using an I/O or memory cycle. This type of access allows data to
be transferred from memory to the PCI bus and from the PCI bus to memory.

2. Register access

A register access is performed using a configuration cycle or a special cycle.

12.4.8 PCIC Register Access

The PCI configuration space registers are comprised of the following groups of registers:

• PCI configuration header space registers

• Initiator configuration space registers

• Target configuration space registers

PCI bus masters can access these registers. They are located in the 256-byte PCI configuration space
(0xFFFE_D0FF to 0xFFFE_D000). All the other registers are located at addresses 0xFFFE_D1FF to
0xFFFE_D100 and can be accessed by the TX39/H2 core but not by PCI bus masters.

12.4.9 Address Mapping Between the Local Bus and PCI Bus

The PCIC allows address translation between the PCI and local bus address space through use of the
base address registers for both of the PCI and local buses. Linear address mapping is used. The size of
the mapped address space must be a power of 2. The TX39/H2 core must keep track of which section of
the memory space belongs to memory or I/O space.

Chapter 12 PCI Controller (PCIC)

12-86

12.4.10 ACPI Power Management

The TX3927 provides partial support for the ACPI power management specifications. This section
explains the support of the ACPI specifications.

12.4.10.1 Power Management Interface
This section describes the format of the PCI configuration space registers used by power

management operations.

The CL bit in the PCI Status (PCISTAT) register indicates the presence or absence of the
capabilities list. The TX3927 has a capabilities list compliant with the ACPI power management
specifications; so this bit is 1.

The Capabilities Pointer (CAPPTR) register gives the location of the PCIC registers containing
the first item in the list. The 8-bit CAPPTR field in this register provides an offset into the PCI
power management register block, relative to the PCIC base address 0xFFFE_D000. In the
TX3927, this offset value is 0xE0.

The Power Management (PWMNGR) register has the 8-bit PMCID field which identifies the
type of the data structure currently being pointed to. In the TX3927, this field is read as "01,"
indicating ACPI power management registers.

The TX3927 has two registers used for ACPI power management: the Power Management
register (PWMNGR) and the Power Management Support register (PWMNGSR).

12.4.10.2 PCI Function Power States
The PCI Bus Power Management Interface Specification defines four power management states

for PCI functions, D0 to D3. D0 is the most power-consuming state, D3 is the least power-
consuming state, and D1 and D2 represent intermediate power management states.

The TX3927 does not support D1 and D2.

The PCIC must initially be put into the D0 state before being used. Upon entering the D0 state
as a result of a power-on reset or transition from D3hot, the PCIC will be in an uninitialized state.
Once the PCIC is initialized, it will be in the D0 active state. A reset will force the PCIC to the
uninitialized D0 state.

Setting the Power State (PWRST) field in the Power Management Support register
(PWMNGSR) to "11" causes the PCIC to enter the D3hot state. In the D3hot state, the PCIC
initiator and either the target memory or I/O decoder are disabled.

The D3 state has two variants, D3hot and D3cold, where "hot" and "cold" refer to the presence
and absence of power, respectively. The PCIC in the D3hot state can be transitioned to the
uninitialized D0 state by writing "00" to the Power State (PWRST) field in the Power
Management Support register (PWMNGSR) or by having the RESET* signal asserted. The
RESET* signal resets the entire TX3927.

The PCIC in the D3cold state can only be transitioned to the uninitialized D0 state by asserting
the RESET* signal.

Chapter 12 PCI Controller (PCIC)

12-87

Figure 12.4.4 shows the PCI function power management state transitions.

Figure 12.4.4 Power Management State Transitions

12.4.11 Byte Swapping

The TX3927 has the ability to perform byte swapping. The byte swapping can be enabled or disabled
using the Local Bus Control (LBC) register.

Bit 14 (IBSE) in the LBC register specifies whether to enable byte swapping in initiator mode. The
setting of this bit applies to all transactions: initiator memory cycles, initiator I/O cycles, initiator
configuration cycles, initiator interrupt-acknowledge cycles and initiator special-cycles.

Bit 13 (TIBSE) in the LBC register specifies whether to enable byte swapping in target I/O cycles.

In target memory cycles, bit 8 (MSDSE) in the LBC register specifies whether to enable byte
swapping. Bit 12 (TMFBSE) in the LBC register specifies the byte swapping area. When TMFBSE is 0,
only the upper half of the programmed target memory space is configured to perform byte swapping.
When TMBSE is 1, the entire target memory space is configured to perform byte swapping.

To recap, the TX3927 supports byte swapping for all the supported PCI commands, except for target
configuration cycles.

The following table summarizes the byte swapping capability.

D0
Uninitializeded

D0 Active

D3hot

D3cold

RESET*

VCC
Removed

Power on Reset

RESET*

Chapter 12 PCI Controller (PCIC)

12-88

C/BE Value PCI Command TX3927 Supports as an
Initiator

TX3927 Supports as a target

0000 Interrupt-acknowledge Yes 
0001 Special-cycle Yes 
0010 I/O read Yes Yes
0011 I/O write Yes Yes
0100 (Reserved)  
0101 (Reserved)  
0110 Memory read Yes Yes
0111 Memory write Yes Yes
1000 (Reserved)  
1001 (Reserved)  
1010 Configuration read Yes No
1011 Configuration write Yes No
1100 Memory read multiple  Yes
1101 Dual address cycle  
1110 Memory read line  Yes
1111 Memory write and invalidate  Yes

Yes: Byte swap selectable
No: No byte swap
 : Commed not supported by the TX3927

Note: When the TX3927 CPU core accesses the PCIC registers, the data is not byte-swapped.

The following shows examples of byte swapping operations for different values of the data, addresses
and byte enable signals.

The assumption is that the TX3927 is operating in big-endian mode. The tables show the data,
addresses and byte enable signals when byte swapping is enabled and those when byte swapping is
disabled.

Although the TX3927 address bus does not have the two least-significant bits of the address (A[1:0]),
addresses are shown as if those bits were present in order to clarify byte offsets.

The data bus is shown as 32 bits; the valid byte lanes are underscored.

(1) I/O access when byte swapping is disabled
Big-endian Byte swap disabled
TX3927 data bus PCI bus
A[1:0] BE Data A[1:0] BE Data

 --
0 7 01234567 3 7 01234567
1 B 01234567 2 B 01234567
2 D 01234567 1 D 01234567
3 E 01234567 0 E 01234567
0 3 01234567 2 3 01234567
2 C 01234567 0 C 01234567
0 0 01234567 0 0 01234567

Chapter 12 PCI Controller (PCIC)

12-89

(2) I/O accesses when byte swapping is enabled
Big-endian Byte swap enabled
TX3927 data bus PCI bus
A[1:0] BE Data A[1:0] BE Data

--
 0 7 01234567 0 E 67452301
 1 B 01234567 1 D 67452301
 2 D 01234567 2 B 67452301
 3 E 01234567 3 7 67452301
 0 3 01234567 0 C 67452301
 2 C 01234567 2 3 67452301

0 0 01234567 0 0 67452301

(3) Memory accesses when byte swapping is disabled

Big-endian Byte swap disabled
TX3927 data bus PCI bus
A[1:0] BE Data A[1:0] BE Data

--
 0 7 01234567 0 7 01234567
 1 B 01234567 0 B 01234567
 2 D 01234567 0 D 01234567
 3 E 01234567 0 E 01234567
 0 3 01234567 0 3 01234567
 2 C 01234567 0 C 01234567

0 0 01234567 0 0 01234567

(4) Memory access when byte swapping is enabled

Big-endian Byte swap enabled
TX3927 data bus PCI bus
A[1:0] BE Data A[1:0] BE Data

--
 0 7 01234567 0 E 67452301
 1 B 01234567 0 D 67452301
 2 D 01234567 0 B 67452301
 3 E 01234567 0 7 67452301
 0 3 01234567 0 C 67452301
 2 C 01234567 0 3 67452301

0 0 01234567 0 0 67452301

12.4.12 Disabling Access to a Part of the PCI Configuration Space

The TMPR3927AF has an additional bit in the PCIC that is not present in the TMPR3927F. This bit
is used to prevent external PCI masters from accessing the PCI configuration space other than the
predefined 64-byte PCI configuration header, and ACPI power management registers.

Bit 3 in the PCIC Local Bus Control (LBC) register serves that purpose. When this bit is cleared,
external PCI masters are allowed to access the entire PCI configuration space (00h to ffh), in both the
TMPR3927F and TMPR3927AF. When this bit is set, external PCI masters can only access the PCI
configuration header space (00h to 3fh) and the ACPI registers (e0h to e7h). An attempt to read any
other register in the PCI configuration space (registers used for TX3927 local settings) will result in 00h
being read. Writes to those registers will be ignored.

Chapter 12 PCI Controller (PCIC)

12-90

This bit is initialized to 0 on reset. Therefore, the TMPR3927AF operates the same way as the
TMPR3927F unless the bit setting is changed.

Table 12.4.1 summarizes the access permission for the PCI configuration space, depending on the
settings of the LBC register.

Table 12.4.1 Access Permission for the PCI Configuration Area

LBC Register PCI Configuration Space
LBC[9] LBC[3] 0-3f 40-df e0-e7 e8-ff

0  Yes Yes Yes YesTMPR3927F
1  No No No No
0 0 Yes Yes Yes Yes
0 1 Yes No Yes No

TMPR3927CF

1 0/1 No No No No

Yes: An external PCI master can access the registers.
No: 00h is returned on a read; writes are ignored.

Chapter 12 PCI Controller (PCIC)

12-91

12.5 Timing Diagrams
Sections 12.5.1 to 12.5.6 show PCIC operations as an initiator. Sections 12.5.7 to 12.5.9 show PCIC

operations as a target. It is assumed that the on-chip PCI bus arbiter is used.

12.5.1 Initiator Configuration Read

Figure 12.5.1 Initiator Configuration Read

12.5.2 Initiator Memory Read

Figure 12.5.2 Initiator Memory Read

PCICLK

Adress Data

A BE

Valid Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

STOP*
PERR*
SERR*

PAR*

PCICLK

Adress Data

6 BE

Valid Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

STOP*
PERR*
SERR*

PAR*

Chapter 12 PCI Controller (PCIC)

12-92

12.5.3 Initiator Memory Write

Figure 12.5.3 Initiator Memory Write

12.5.4 Initiator I/O Read

Figure 12.5.4 I/O Read

PCICLK

Adress Data

7 BE

Valid Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

STOP*
PERR*
SERR*

PAR*

PCICLK

Adress Data

2 BE

Valid Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

STOP*
PERR*
SERR*

PAR*

Chapter 12 PCI Controller (PCIC)

12-93

12.5.5 Initiator I/O Write

Figure 12.5.5 I/O Write

12.5.6 Special Cycle

Figure 12.5.6 Special Cycle

PCICLK

Adress Data

3 BE

Valid Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

STOP*
PERR*
SERR*

PAR*

PCICLK

Don’t Care Data

1 BE

Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

STOP*

PERR*

SERR*

PAR*

Chapter 12 PCI Controller (PCIC)

12-94

12.5.7 Target Configuration Read

Figure 12.5.7 Target Configuration Read

PCICLK

Address Data

A BE

Valid

FRAME*

PCIAD[31:0]

CBE[3:0]

IRDY*

TRDY*

DEVSEL*

IDSEL

STOP*

PERR*

SERR*

REQ*
GNT*

PAR* Valid

Chapter 12 PCI Controller (PCIC)

12-95

12.5.8 8-word Burst Transfer from SDRAM to PCI

N
ot

e
1:

Th
e

ab
ov

e
tim

in
g

di
ag

ra
m

 a
pp

lie
s

w
he

n
th

e
N

ev
er

 T
im

e-
O

ut
 E

na
bl

e
bi

t i
s

se
t i

n
th

e
PC

I C
on

tro
lle

r a
nd

 th
e

PC
I C

on
tro

lle
r a

cq
ui

re
d

th
e

lo
ca

l b
us

 w
ith

 m
in

im
um

 la
te

nc
y.

 T
im

in
g

va
rie

s,
de

pe
nd

in
g

on
 c

on
te

nt
io

ns
 w

ith
 th

e
C

PU
 a

nd
 D

A
M

C
.

N
ot

e
2:

Th
e

se
co

nd
 b

ur
st

 re
ad

 fr
om

 S
D

R
AM

 is
 a

 re
ad

 c
yc

le
 fr

om
 S

D
R

AM
 a

s
a

re
su

lt
of

 p
re

fe
tc

hi
ng

 b
y

th
e

P
C

I C
on

tro
lle

r.

PC
IC

LK

FR
AM

E*

PC
IA

D
 [3

1:
0]

C
_B

E[
3:

0]

IR
D

Y*

D
EV

S
EL

*

TR
D

Y*

PA
R

ST
O

P*

R
EQ

*

G
N

T*

Ad
dr

es
s

D
at

a0
D

at
a1

D
at

a2
D

at
a3

D
at

a4
D

at
a5

D
at

a6
D

at
a7

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

6
0

SD
C

LK

SD
C

S*

AD
D

R
 [1

9:
5]

R
AS

*

C
AS

*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[3

1:
0]

AC
K

*

f
0

f
0

f

Figure 12.5.8 8-word Burst Transfer from SDRAM to PCI (tRCD=2, tCASL=2)

Chapter 12 PCI Controller (PCIC)

12-96

12.5.9 8-word Burst Transfer from PCI to SDRAM
PC

IC
LK

FR
AM

E*

PC
IA

D
 [3

1:
0]

C
_B

E[
3:

0]

IR
D

Y*

D
EV

S
EL

*

TR
D

Y*

PA
R

ST
O

P*

R
EQ

*

G
N

T*

SD
C

LK

SD
C

S*

AD
D

R
 [1

9:
5]

R
AS

*

C
AS

*

W
E*

D
Q

M
 [3

:0
]

D
AT

A
[3

1:
0]

AC
K

*

0
7

Ad
dr

es
s

D
at

a0
D

at
a1

D
at

a2
D

at
a3

D
at

a4
D

at
a5

D
at

a6
D

at
a7

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

Va
lid

f
0

f

N
ot

e
1:

Th
e

ab
ov

e
tim

in
g

di
ag

ra
m

 a
pp

lie
s

w
he

n
th

e
N

ev
er

 T
im

e-
O

ut
 E

na
bl

e
bi

t i
s

se
t i

n
th

e
PC

I C
on

tro
lle

r a
nd

 th
e

PC
I C

on
tro

lle
r a

cq
ui

re
d

th
e

lo
ca

l b
us

 w
ith

 m
in

im
um

 la
te

nc
y.

 T
im

in
g

va
rie

s,
de

pe
nd

in
g

on
 c

on
te

nt
io

ns
 w

ith
 th

e
C

PU
 a

nd
 D

A
M

C
.

Figure 12.5.9 8-word Burst Transfer from PCI to SDRAM (tRCD=2, tCASL=2)

Chapter 13 Serial I/O Ports (SIO)

13-1

13. Serial I/O Ports (SIO)

13.1 Features
The TX3927 asynchronous serial interface has two full-duplex UART channels: SIO0 and SIO1.

The UART channels has the following features:

(1) Full-duplex (data can be sent in both directions)

(2) Baud rate generator

(3) Modem flow control (CTS*/RTS*)

(4) FIFOs

• Transmit FIFO: 8 × 8 bits

• Receive FIFO: 16 × 13 bits (8 bits for data and 5 bits for status)

(5) Multidrop operation

• Master and slave modes

Chapter 13 Serial I/O Ports (SIO)

13-2

13.2 Block Diagram

Figure 13.2.1 SIO Block Diagram

SIOCLBaud Rate
Generator

Receive
Data Register

Status Change
Interrupt Status

Register

Request Control

Transmit Data
FIFO

Receive
Data FIFO

FIFO
Control Register

Line
Control Register

Read
Buffer

Receive Shift
Register

Receiver

Read / Write

RTS*

RXD

IMCLK

SCLK

IM Bus

Interrupt
Interface

Reset*

CTS*

TXD

Baud Rate
Control Register

Temp
Buffer

Transmit Shift
Register

Transmitter

DMA/INT
Status Register

DMA/INT
Control Register

Transmit Data
Register

Chapter 13 Serial I/O Ports (SIO)

13-3

Figure 13.2.2 SIO Status Bits and an Interrupt Request Signal

SISCISR.TXALS
(Transmit FIFO and Transmit register empty.)

SIDSR.TDIS

SIRXIREQ*

SIDISR.RDIS

SIRXDACK

SIRXDREQ*

SIDISR.TOUT

SIDICR.RIE

SIDICR.SPIE

SIDISR.ERI
To IRC SISPIREQ*

SISTIREQ* SIDISR.TIS

SIDISR.UPER

SIDISR.UFER

SIDICR.CTSAC

CTS* pin

Write a 0.

SIDICR.STIE[5]

SISCISR.OERS
SIDICR.TIE

SIDICR.TDE

SITXIREQ*

SITXDREQ*

SITXDACK

R

Write a 0.

DMAC

R

SIDICR.STIE[4]
SISCISR.CTSS

S

SISCISR.RBRKD (Break being received.)
SIDICR.STIE[3]
SISCISR.TRDY (Transmit FIFO not full.)
SIDICR.STIE[2]

SIDICR.STIE[1]

Write a 0.

SISCISR.UBRKD

RSIDICR.STIE[0]

Write a 0.
R

Read Receive FIFO
R

Read Receive FIFO
RSIDISR.UOER

Read Receive FIFO
R

Write a 0.
R

R

Write a 0.
R

SIDICR.RDE

Write a 0.
DMAC

SIDISR.TDIS

Chapter 13 Serial I/O Ports (SIO)

13-4

13.3 Registers

13.3.1 Register Map
All the registers in the SIO should be accessed as a word quantity. For the bits other than those

defined in this section, the values shown in the figures must be written.

Table 13.3.1 SIO Registers

Address Register Mnemonic Register Name
SIO1 (channel 1)
0xFFFE_F420 SIRFIFO1 Receive FIFO Register 1
0xFFFE_F41C SITFIFO1 Transmit FIFO Register 1
0xFFFE_F418 SIBGR1 Baud Rate Control Register 1
0xFFFE_F414 SIFLCR1 Flow Control Register 1
0xFFFE_F410 SIFCR1 FIFO Control Register 1
0xFFFE_F40C SISCISR1 Status Change Interrupt Status Register 1
0xFFFE_F408 SIDISR1 DMA/Interrupt Status Register 1
0xFFFE_F404 SIDICR1 DMA/Interrupt Control Register 1
0xFFFE_F400 SILCR1 Line Control Register 1
SIO0 (channel 0)
0xFFFE_F320 SIRFIFO0 Receive FIFO Register 0
0xFFFE_F31C SITFIFO0 Transmit FIFO Register 0
0xFFFE_F318 SIBGR0 Baud Rate Control Register 0
0xFFFE_F314 SIFLCR0 Flow Control Register 0
0xFFFE_F310 SIFCR0 FIFO Control Register 0
0xFFFE_F30C SISCISR0 Status Change Interrupt Status Register 0
0xFFFE_F308 SIDISR0 DMA/Interrupt Status Register 0
0xFFFE_F304 SIDICR0 DMA/Interrupt Control Register 0
0xFFFE_F300 SILCR0 Line Control Register 0

Chapter 13 Serial I/O Ports (SIO)

13-5

13.3.2 Line Control Registers (SILCRn) 0xFFFE_F300 (Ch. 0)
0xFFFE_F400 (Ch. 1)

The Line Control registers are used to configure the format of the asynchronous serial frame for data
transmission and reception.

31 16
Undefined

: Type
: Initial value

15 14 13 12 7 6 5 4 3 2 1 0
RWUB TWUB UODE 0 SCS UEPS UPEN USBL UMODE

R/W R/W R/W R/W R/W R/W R/W R/W : Type
0 1 0 00 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
15 RWUB Receive Wake

Up Bit
Receive Wake Up Bit (initial value: 0)
0: In multidrop operation, software must clear this bit when the TX3927 used in a

slave station has recognized that it was addressed. The slave controller receives
data from the master controller while this bit is cleared.

1: In multidrop operation, software must set this bit while the TX3927 used in a slave
station is monitoring for an address (ID) frame from the master controller. The
frame with the WUB bit set to 1 is interpreted as an address character, causing an
interrupt request to be sent to the host upon reception. The frame with the WUB bit
set to 0 is interpreted as a data character and discarded.

14 TWUB Transmit Wake
Up Bit

Transmit Wake Up Bit (initial value: 1)
Selects the polarity of the wakeup bit (WUB) when the TX3927 is a master controller
in a multidrop system.
0: Data frame
1: Address (ID) frame (default)

13 UODE TXD Open-Drain
Enable

TXD Open-Drain Enable (initial value: 0)
In a multidrop system, slave controllers must have the TXD pin configured for open-
drain operation.
0: Configured as a normal CMOS output.
1: Configured as an open-drain output.

6:5 SCS SIO Clock
Select

SIO Clock Select (initial value: 00)
Selects the serial clock. The serial clock is always 16 times the baud rate.
00: Internal system clock (IMCLK, which is 1/4 of the 133-MHz CPU clock)
01: Baud rate generator (input clock: IMCLK)
10: External clock (SCLK)
11: Baud rate generator (input clock: SCLK)

4 UEPS UART Even
Parity Select

UART Even Parity Select (initial value: 0)
Selects even or odd parity.
0: Odd parity
1: Even parity
UPEN UEPS Description
 1 0 Odd parity
 1 1 Even parity
 0 * Parity disabled

3 UPEN UART Parity
Check Enable

UART Parity Enable (initial value: 0)
0: Parity disabled.
1: Parity enabled.
This bit must be cleared in a multidrop system (UMODE = 10 or 11).

Figure 13.3.1 Line Control Register (1/2)

Chapter 13 Serial I/O Ports (SIO)

13-6

Bits Mnemonic Field Name Description
2 USBL UART Stop Bit

Length
UART Stop Bit Length (initial value: 0)
Specifies the number of stop bits.
0: 1 stop bit
1: 2 stop bits

1:0 UMODE UART Mode UART Mode (initial value: 00)
Specifies the SIO data word length.
00: 8 data bits
01: 7 data bits
10: 8 data bits in multidrop mode
11: 7 data bits in multidrop mode

Figure 13.3.1 Line Control Register (2/2)

Chapter 13 Serial I/O Ports (SIO)

13-7

13.3.3 DMA/Interrupt Control Registers (SIDICRn) 0xFFFE_F304 (Ch. 0)
0xFFFE_F404 (Ch. 1)

These registers are used to control host interfacing using DMA or interrupts.
31 16

Undefined

: Type
: Initial value

15 14 13 12 11 10 9 8 6 5 0
TDE RDE TIE RIE SPIE CTSAC 0 STIE

R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 00 000000 : Initial value

Bits Mnemonic Field Name Description
15 TDE Transmit DMA

Enable
(SITXDREQ*)

Transmit DMA Enable (initial value: 0)
Controls whether to assert the internal SITXDREQ* signal when the SIDISR.TDIS
bit is set.
0: Not asserted
1: Asserted

14 RDE Receive DMA
Enable
(SIRXDREQ)

Receive DMA Enable (initial value: 0)
Controls whether to assert the internal SIRXDREQ signal when the SIDISR.RDIS bit
is set. However, SIRXDREQ is not asserted if the SIDISR.ERI bit is set.
0: Not asserted
1: Asserted

13 TIE Transmit Data
Interrupt Enable
(SITXIREQ*)

Transmit Interrupt Enable (initial value: 0)
Controls whether to assert the internal SITXIREQ* signal when the SIDISR.TDIS bit
is set.
0: Not asserted
1: Asserted

12 RIE Receive Data
Interrupt Enable
(SIRXIREQ*)

Receive Interrupt Enable (initial value: 0)
In DMA receive mode (RDE = 1)
Controls whether to asserts the internal SIRXIREQ* signal when either the
SIDISR.ERI or SIDISR.TOUT bit is set.
0: Asserted
1: Not asserted (Don’t use.)

In any other mode (RDE = 0)
Controls whether to asserts the internal SIRXIREQ* signal when either the
SIDISR.TOUT or SIDISR RDIS bit is set.
0: Not asserted
1: Asserted

11 SPIE Special Receive
Interrupt Enable
(SISPIREQ*)

Special Receive Interrupt Enable (initial value: 0)
Controls whether to asserts the internal SISPIREQ* signal when the SIDISR.ERI bit
is set.
0: Not asserted
1: Asserted

10:9 CTSAC CTSS Active
Condition

CTSS Active Condition (initial value: 00)
Specifies the change on the CTS* pin to be treated as a modem status change
regarding the interrupt enable bit in the STIE field.
00: Disable
01: Rising edge on the CTS* pin
10: Falling edge on the CTS* pin
11: Both rising and falling edges on the CTS* pin

Note: Refer to Table 13.4.3 for the possible combinations of bit settings.

Figure 13.3.2 DMA/Interrupt Control Registers (1/2)

Chapter 13 Serial I/O Ports (SIO)

13-8

Bits Mnemonic Field Name Description
5:0 STIE Status Change

Interrupt Request
(SISTIREQ*)

Status Change Interrupt Enable Channel (initial value: 0x00)
Specifies when to set the SIDISR.STIS bit. The bits in this field correspond to the
status conditions available in the Status Change Interrupt Status register (SISCISR).
Multiple bits can be 1.
The internal SISTIREQ* signal is asserted when the SIDISR.STIS bit is set.
000000: Disable
1*****: Sets STIS to 1 when OERS is set.
*1****: Sets STIS to 1 when the change specified by CTSAC occurs in CTSS.
1*: Sets STIS to 1 when RBRKD is set.
***1**: Sets STIS to 1 when TRDY is set.
****1*: Sets STIS to 1 when TXALS is set.
*****1: Sets STIS to 1 when UBRKD is set.

Figure 13.3.2 DMA/Interrupt Control Registers (2/2)

Chapter 13 Serial I/O Ports (SIO)

13-9

13.3.4 DMA/Interrupt Status Registers (SIDISRn) 0xFFFE_F308 (Ch. 0)
0xFFFE_F408 (Ch. 1)

These registers provide DMA and interrupt status information.
31 16

Undefined

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 0
UBRK UVALID UFER UPER UOER ERI TOUT TDIS RDIS STIS 0 RFDN

R R R R R R/W R/W R/W R/W R/W R/W : Type
0 1 0 0 0 0 0 1 0 0 00000 : Initial value

Bits Mnemonic Field Name Description
15 UBRK UART Break

Reception
UART Break (initial value: 0)
This bit is set when an entire frame that was received into the FIFO with break
indication is now at the top of the FIFO. This status bit is automatically updated by a
read of the Receive FIFO register (SIRFIFO).
0: Not break
1: Break detected

14 UVALID UART Receiver
FIFO Available
Status

UART Available Data (initial value: 1)
This bit is set when there is a byte in the Receive FIFO register (SIRFIFO).
0: Data is present in the Receive FIFO.
1: No received data is ready to read.

13 UFER UART Frame
Error

UART Frame Error (initial value: 0)
This bit is set when the frame that was received into the FIFO with a framing error
status is now at the top of the FIFO. This status bit is automatically updated by a
read of the Receive FIFO register (SIRFIFO).
0: Frame error not detected
1: Frame error detected

12 UPER UART Parity
Error

UART Parity Error (initial value: 0)
This bit is set when the frame that was received into the FIFO with a parity error
status is now at the top of the FIFO. This status bit is automatically updated by a
read of the Receive FIFO register (SIRFIFO).
0: Parity error not detected
1: Parity error detected

11 UOER UART Overrun
Error

UART Overrun Error (initial value: 0)
This bit is set when the frame that was received into the FIFO with an overrun error
status is now at the top of the FIFO. This status bit is automatically updated by a
read of the Receive FIFO register (SIRFIFO).
0: No overrun error
1: Overrun error detected

10 ERI Error Interrupt Error Interrupt (initial value: 0)
This bit is immediately set on detection of a receive error (framing error, parity error
or overrun error).
This bit is cleared by writing a 0. Writing a 1 has no effect.

9 TOUT Receive Time-
Out

Time Out (initial value: 0)
This bit is set when a receive time-out occurs.
This bit is cleared by writing a 0. Writing a 1 has no effect.

Figure 13.3.3 DMA/Interrupt Status Registers (1/2)

Chapter 13 Serial I/O Ports (SIO)

13-10

Bits Mnemonic Field Name Description
8 TDIS Transmit Data

Empty
Transmit DMA/Interrupt Status (initial value: 1)
This bit is set when the Transmit FIFO now has empty locations specified by
SIFCR.TDIL.
- Interrupt mode (SIDICR.TIE = 1)

The internal SITXIREQ* signal is asserted when this bit is set.
Writing a 0 to this bit clears it and deasserts the SITXIREQ* signal.

- DMA transfer mode (SIDICR.TDE = 1)
The internal SITXDREQ* signal is asserted when this bit is set.
The SITXDACK signal from the DMA Controller clears this bit and deasserts the
SITXDREQ* signal (see Figure 13.5.2).

7 RDIS Receive Data Full Receive DMA/Interrupt Status (initial value: 0)
This bit is set when the Receive FIFO now has valid data above the threshold
specified by SIFCR.RDIL.
- Interrupt mode (SIDICR.RIE = 1)

The internal SIRXIREQ* signal is asserted when this bit is set.
Writing a 0 to this bit clears it and deasserts the SIRXIREQ* signal.

- DMA transfer mode (SIDICR.RDE = 1)
The internal SIRXDREQ signal is asserted when this bit is set.
The SIRXDACK signal from the DMA Controller clears this bit and deasserts the
SIRXDREQ signal (see Figure 13.5.2).

6 STIS Status Change
Interrupt Status

Status Change Interrupt Status (initial value: 0)
This bit is set when at least one status bit selected by SIDICR.STIE is set.
The internal SISTREQ signal is asserted when this bit is set. Writing a 0 to this bit
clears it and deasserts the SISTREQ signal.

4:0 RFDN Receive Data
Stage Status

Receive FIFO Data Number (initial value: 00000)
Indicates the number of valid characters present in the Receive FIFO (0 to 16).

Figure 13.3.3 DMA/Interrupt Status Registers (2/2)

Chapter 13 Serial I/O Ports (SIO)

13-11

13.3.5 Status Change Interrupt Status Registers (SISCISRn) 0xFFFE_F30C (Ch. 0)
0xFFFE_F40C (Ch. 1)

31 16
Undefined

: Type
: Initial value

15 6 5 4 3 2 1 0
0 OERS CTSS RBRKD TRDY TXALS UBRKD

R/W R R R R R/W : Type
0 0 0 1 1 0 : Initial value

Bits Mnemonic Field Name Description
5 OERS Overrun Error

Status
Overrun Error Status (initial value: 0)
This bit is set when an overrun error is detected. This bit is cleared by writing a 0.

4 CTSS CTS* Terminal
Status

CTS* Terminal Status (initial value: 0)
Provides the current status of the CTS* signal.
1: The CTS* signal is high.
0: The CTS* signal is low.

3 RBRKD Receive Break Receive Break (initial value: 0)
Looks for the break condition on the RXD signal.
This bit is set on detection of a break. It is automatically cleared on reception of a
non-break frame.
1: There is a break indication associated with the character being received.
0: There is no break indication.

2 TRDY Transmit Data
Empty

Transmit Ready (initial value: 1)
This bit is set when there is at least one empty location in the Transmit FIFO.

1 TXALS Transmission
Completed

Transmit All Sent (initial value: 1)
This bit is set when the Transmit FIFO is empty and the transmit shift register has no
valid data.

0 UBRKD UART Break
Detect

UART Break Detect (initial value: 0)
This bit is set on detection of a break. Once set, this bit remains set until it is cleared
by writing a 0.

Figure 13.3.4 Status Change Interrupt Status Registers

Chapter 13 Serial I/O Ports (SIO)

13-12

13.3.6 FIFO Control Registers (SIFCRn) 0xFFFE_F310 (Ch. 0)
0xFFFE_F410 (Ch. 1)

These registers are used to control the Receive and Transmit FIFO buffers.
31 16

Undefined

: Type
: Initial value

15 9 8 7 6 5 4 3 2 1 0
SWRST 0 RDIL 0 TDIL TFRST RFRST FRSTE

R/W R/W R/W R/W R/W R/W : Type
0 00 00 0 0 0 : Initial value

Bits Mnemonic Field Name Description
15 SWRST Software Reset Software Reset (initial value: 0)

Writing a 1 to this bit performs a software reset of the SIO. This bit clears itself when
the SIO reset.
0: Normal operation
1: SIO software reset

8:7 RDIL Receive FIFO
Request Trigger
Level

Receive FIFO DMA/Interrupt Trigger Level (initial value: 00)
Selects the number of characters required in the Received FIFO before the RDIS bit
in the SIDISR register is set to report that received data is available.
00: 1 byte
01: 4 bytes
10: 8 bytes
11: 12 bytes

4:3 TDIL Transmit FIFO
Request Trigger
Level

Transmit FIFO DMA/Interrupt Trigger Level (initial value: 00)
Selects the number of unfilled locations required in the Transmit FIFO before the
TDIS bit in the SIDISR register is set to report that it can accept next data.
00: 1 byte
01: 4 bytes
10: 8 bytes
11: Don’t use.

2 TFRST Transmit FIFO
Reset

Transmit FIFO Reset (initial value: 0)
Writing a 1 to this bit resets the Transmit FIFO. It is valid when the FRSTE bit is 1.
1: Reset the Transmit FIFO.

1 RFRST Receive FIFO
Reset

Receive FIFO Reset (initial value: 0)
Writing a 1 to this bit resets the Receive FIFO. It is valid when the FRSTE bit is 1.
1: Reset the Receive FIFO.

0 FRSTE FIFO Reset
Enable

FIFO Reset Enable (initial value: 0)
Enables the resetting the Receive and Transmit FIFOs. When this bit is 1, writing a 1
to the TFRST or RFRST bit resets the corresponding FIFO.
1: Reset enable.

Figure 13.3.5 FIFO Control Registers

Chapter 13 Serial I/O Ports (SIO)

13-13

13.3.7 Flow Control Registers (SIFLCRn) 0xFFFE_F314 (Ch. 0)
0xFFFE_F414 (Ch. 1)

31 16
Undefined

: Type
: Initial value

15 13 12 11 10 9 8 7 6 5 4 1 0
0 RCS TES 0 RTSSC RSDE TSDE 0 RTSTL TBRK

R/W R/W R/W R/W R/W R/W R/W : Type
0 0 0 1 1 0001 0 : Initial value

Bits Mnemonic Field Name Description
12 RCS RTS Control

Select
RTS Control Select (initial value: 0)
Specifies how the RTS* signal is controlled.
0: The RTS* signal is software controllable (RTSSC bit).
1: The RTS* signal is both software (RTSSC bit) and hardware (RTSTL bit)

controllable.
11 TES Transmit Enable

Select
Transmit Enable Select (initial value: 0)
Selects the type of a transmission request.
0: Software command (TSDE bit)
1: Software command and CTS* hardware signal

9 RTSSC RTS Software
Control

RTS Software Control (initial value: 0)
This bit controls the RTS* signal.
0: The RTS* signal is forced low.
1: The RTS* signal is forced high.

8 RSDE Receive Serial
Data Enable

Receive Serial Data Enable (initial value: 1)
This bit is used to request the reception of serial data under software control. If this
bit is set, the received data is discarded.
0: Reception enabled
1: Reception disabled

7 TSDE Transmit Serial
Data Enable

Transmit Serial Data Enable (initial value: 1)
This bit is used to request the transmission of serial data under software control. If
this bit is set, the SIO halts transmission after completing any current character.
0: Transmission enabled
1: Transmission disabled

4:1 RTSTL RTS Active
Trigger Level

RTS Trigger Level (initial value: 0001)
Specifies the number of characters required in the Receive FIFO before the RTS*
hardware signal is asserted.
0000: Don’t use.
0001: 1 data byte
 :
1111: 15 data bytes

0 TBRK Break Transmit Break Transmit (initial value: 0)
When set, the transmitter sends a break.
0: Disabled
1: Enabled

Figure 13.3.6 Flow Control Registers

Chapter 13 Serial I/O Ports (SIO)

13-14

13.3.8 Baud Rate Control Registers (SIBGRn) 0xFFFE_F318 (Ch. 0)
0xFFFE_F418 (Ch. 1)

These registers specify the clock source and divisor for the baud rate generator.
31 16

Undefined

: Type
: Initial value

15 10 9 8 7 0
0 BCLK BRD

R/W R/W : Type
11 0xFF : Initial value

Bits Mnemonic Field Name Description
9:8 BCLK Baud Rate

Generator Clock
Baud Rate Generator Clock (initial value: 11)
Selects the clock source for the baud rate generator.
00: T0 prescaler output (IMCLK/2)
01: T2 prescaler output (IMCLK/8)
10: T4 prescaler output (IMCLK/32)
11: T6 prescaler output (IMCLK/128)

7:0 BRD Baud Rate Divide
Value

Baud Rate Divide Value (initial value: 0xFF)
Baud rate is selected by writing a binary division ratio into this field.

Figure 13.3.7 Baud Rate Control Registers

Chapter 13 Serial I/O Ports (SIO)

13-15

13.3.9 Transmit FIFO Registers (SITFIFOn) 0xFFFE_F31C (Ch. 0)
0xFFFE_F41C (Ch. 1)

31 16
Undefined

: Type
: Initial value

15 8 7 0
0 TxD

W : Type
 : Initial value

Bits Mnemonic Field Name Description
7:0 TxD Transmit Data Transmit Data

This register is used to write the transmit data to the Transmit FIFO.

Figure 13.3.8 Transmit FIFO Registers

Chapter 13 Serial I/O Ports (SIO)

13-16

13.3.10 Receive FIFO Registers (SIRFIFOn) 0xFFFE_F320 (Ch. 0)
0xFFFE_F420 (Ch. 1)

31 16
Undefined

: Type
: Initial value

15 8 7 0
0 RxD

R : Type
 : Initial value

Bits Mnemonic Field Name Description
7:0 RxD Receive Data Receive Data

This register is used to read the received data from the Receive FIFO.
Reading this register advances the FIFO read pointer.

Figure 13.3.9 Receive FIFO Registers

Chapter 13 Serial I/O Ports (SIO)

13-17

13.4 Operation

13.4.1 Overview

The TX3927 SIO converts serial data received on the external RXD pin into parallel data using the
internal receive shift register. Once an entire UART frame has been received, the character is transferred
from the internal receive shift register into the Receive FIFO buffer. The received data can then be
picked up by the CPU or DMA Controller.

The TX3927 SIO also converts parallel data into serial data for transmission off the chip on the TXD
pin. For transmission, data is written to the Transmit FIFO buffer by the CPU or DMA Controller. The
first FIFO entry is then transferred into the internal transmit shift register. Once data has been latched
into the transmit shift register, it is directly shifted out of the TDX pin.

Both the receiver and transmitter use a clock 16× faster than the baud rate. To generate the baud rate
of the transfer, a specified clock is divided by a divisor value chosen by the programmer. The baud rate
generator automatically calculates the baud rate from the divisor value programmed into the Baud Rate
Control Register (SIBGRn).

13.4.2 Data Format

The TX3927 SIO’s programmable serial interface includes:

Data length: 9, 8, or 7 bits (9-bit data supports multidrop operation.)

Stop bits: 1 or 2 bits

Parity bit: Optional

Parity type: Even or odd

The start bit is fixed at 1 bit.

Figure 13.4.1 shows the data frame configuration.

Chapter 13 Serial I/O Ports (SIO)

13-18

Figure 13.4.1 Data Frame Configuration

Paritybit 6bit 5bit 4bit 3bit 2bit 1bit0Start stop stop

Paritybit 6bit 5bit 4bit 3bit 2bit1bit0Start stop

bit 6bit 5bit 4bit 3bit 2bit1bit0Start stop stop

bit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop

7-bit data

1 2 3 4 5 6 7 8 9 10 11 12

bit 7 WUBbit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop stop

bit 7 WUBbit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop

8-bit data Multidrop system WUB = Wakeup bit
1: Address (ID) frame
0: Data frame

1 2 3 4 5 6 7 8 9 10 11 12

WUBbit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop stop

WUBbit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop

7-bit data Multidrop system

1 2 3 4 5 6 7 8 9 10 11 12

bit 7 Paritybit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop stop

bit 7 Paritybit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop

bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop stop

bit 7bit 6bit 5bit 4bit 3bit 2bit 1bit 0Start stop

8-bit data
Begin End

1 2 3 4 5 6 7 8 9 10 11 12

Chapter 13 Serial I/O Ports (SIO)

13-19

13.4.3 Serial Clock Generator

SIOCLK, the transmit/receive clock which determines the serial transfer rate, can be selected from
the output from the baud rate generator, the internal system clock (IMCLK), or the external serial clock
input (SCLK). IMCLK is one-fourth the normal CPU clock frequency. (If the CPU frequency is 133
MHz, then IMCLK is 33.25 MHz.)

The SCLK frequency must be less than half the IMCLK frequency; refer to Chapter 17, "Electrical
Characteristics."

Figure 13.4.2 Baud Rate Generator and SIOCLK Generator

13.4.4 Baud Rate Generator

The frequency used to transmit and receive data through the SIO is derived from the baud rate
generator. The baud rate is determined by the following equation:

Baud rate = luedivisor vagenerator rate Baud
inputclock generator rate Baud

÷ 16

Where the baud rate generator clock input is selectable from prescaler outputs T0, T2, T4 and T6.
The prescaler clock input (fc) can come from either IMCLK or an external clock (SCLK) input.

The baud rate generator divides the rate of the selected baud rate generator clock input by divisors of
1 to 255 programmed in the Baud Rate Control Register.

The baud rate generator produces a clock with a frequency 16 times that of the desired baud rate.
Table 13.4.1 shows the decimal values of the divisors required to program into the latches of the SIO to
obtain the required baud rate for various IMCLK frequencies. Table 13.4.2 lists divisor values to use to
achieve common baud rates.

SCLK

IMCLK

Divider SelectorPrescaler SelectorSelector

CLK select
SIBGR.BCLK

Baud Rate Generator

SIOCLK select
SILCR.SCS [1]

T6

T4

T2

T0

SIOCLK
fc

Baud rate
divisor value
SIBGR.BRD SIOCLK select

SILCR.SCS [0]

Chapter 13 Serial I/O Ports (SIO)

13-20

Table 13.4.1 Divisors and Baud Rates (in kbps)

Baud Rate Generator Output Clock
T0 T2 T4 T6IMCLK

[MHz]
BRD

divisor fc/2 fc/8 fc/32 fc/128
33.25 18 57.73 14.43 3.61 0.90
33.25 28 37.11 9.28 2.32 0.58
33.25 54 19.24 4.81 1.20 0.30
33.25 72 14.43 3.61 0.90 0.23
33.25 108 9.62 2.41 0.60 0.15
33.25 216 4.81 1.20 0.30 0.08
32.00 26 38.46 9.62 2.40 0.60
32.00 52 19.23 4.81 1.20 0.30
32.00 104 9.62 2.40 0.60 0.15
32.00 208 4.81 1.20 0.30 0.08
24.57 10 76.78 19.20 4.80 1.20
24.57 20 38.39 9.60 2.40 0.60
24.57 40 19.20 4.80 1.20 0.30
24.57 80 9.60 2.40 0.60 0.15
24.57 160 4.80 1.20 0.30 0.07
16.00 26 19.23 4.81 1.20 0.30
16.00 52 9.62 2.40 0.60 0.15

Table 13.4.2 Baud Rates and Divisors for 33.25-MHz Clock

IMCLK
[MHz] kbps fc/2 fc/8 fc/32 fc/128

33.25 0.11 148
33.25 0.15 108
33.25 0.3 216 54
33.25 0.6 108 28
33.25 1.2 216 54 14
33.25 2.4 108 28 6
33.25 4.8 216 54 14 4
33.25 9.6 108 27 7 2
33.25 14.4 72 18 5 1
33.25 19.2 54 14 3
33.25 28.8 36 9 2
33.25 38.4 27 7 2
33.25 57.6 18 5 1
33.25 76.8 14 3

13.4.5 Receive Controller

The receive controller enables the receiver for data reception when the SIFLCR.RSDE bit is cleared.
Reception of a frame is initiated when a start bit is received on the RXD pin.

The receiver controller looks for the high-to-low transition of a start bit on the RXD pin. A Low on
RXD is not treated as a start bit at the time when the SIFLCR.RSDE bit is cleared. When a valid start
bit has been detected, the receive controller begins sampling data received on the RXD pin.

Data reception is based on 2-of-3 majority vote. The receiver uses SIOCLK 16× faster than the baud
rate, and oversamples the start bit and each bit of the incoming data three times around their center
(with 7th to 9th clocks). The value of the bit is determined by the majority of those samples.

Chapter 13 Serial I/O Ports (SIO)

13-21

13.4.6 Receive Shift Register

The receive shift register is eight bits in length. Received data is serially shifted into the receive shift
register, least-significant bit (bit 0) first.

13.4.7 Receive Read Buffer

The receiver’s read buffer is placed between the receive shift register and the Receive FIFO. Once an
entire data frame has been received, it is transferred to the read buffer and a parity check is performed.

13.4.8 Transmit Controller

Data is transferred from the Transmit FIFO buffer to the transmit shift register when the shift register
has completed transmission of the previous character. One bit is sent out every 16 SIOCLK cycles.

13.4.9 Transmit Shift Register

The transmit shift register is eight bits in length. Transmit data is serially shifted out, least-significant
bit (bit 0) first.

13.4.10 Host Interface

The SIO asserts the internal interrupt or DMA request signal to indicate that it is ready to accept data
in the Transmit FIFO. The Transmit FIFO has a trigger level programmable via the SIFCR.TDIL bit
field at 1, 4 or 8 bytes present.

The SIO also asserts the internal interrupt or DMA request signal to indicate that it has data in the
Receive FIFO to be picked up. The Receive FIFO has a trigger level programmable via the
SIFCR.RDIL bit field at 1, 4, 8 or 12 bytes present.

Table 13.4.3 Register Bit Settings and Transmit/Receive Operations

TDE RDE TIE RIE Transmit Receive
0 0 0 0 TDIS bit polled RDIS bit polled
0 0 0 1 TDIS bit polled Interrupt-driven
0 0 1 0 Interrupt-driven RDIS bit polled
0 0 1 1 Interrupt-driven Interrupt-driven
0 1 0 0 TDIS bit polled DMA
0 1 1 0 Interrupt-driven DMA
1 0 0 0 DMA RDIS bit polled
1 0 0 1 DMA Interrupt-driven
1 1 0 0 DMA DMA

Note: Any other combinations are prohibited.

Chapter 13 Serial I/O Ports (SIO)

13-22

13.4.11 Flow Controller

Transmission of serial data can be solely software-initiated (SIFLCR.TSDE) or both software-
initiated and hardware-triggered (CTS* signal). Selection of which is programmed in the SIFLCR.TES
bit.

When the SIFLCR.TSDE bit is set, the SIO halts transmission after completing any current character.
Transmission remains disabled until the SIFLCR.TSDE bit is cleared again.

The state of the CTS* pin can be monitored so that an interrupt is generated upon CTS* change.

The SIFLCR.RSDE and SIFLCR.RTSTL bits allow for the initiation of data reception. The
SIFLCR.RSDE bit, when cleared, forces the RTS* pin to its active state. The SIFLCR.RTSTL bit
specifies the Receive FIFO trigger level at which RTS* pin is asserted. The SIFLCR.RSDE bit can be
used alone, or both the SIFLCR. RSDE and SIFLCR.RTSTL bits can be used in combination.

The RTS* pin is driven high when the Receive FIFO has reached the trigger level programmed in the
RTSTL field of the Flow Control register (SIFLCR).

During data reception, a high on the RTS* pin indicates a request to temporarily stop transmission to
the transmitter. Once the receiver is ready again, asserting the RTS* pin low informs the transmitter that
it can restart transmission.

The handshaking can be set up, by programming the transmitter for hardware control (SIFLCR.TES
= 1) and the receiver to 1-byte trigger level (SIFLCR.RTSTL = 0001).

13.4.12 Parity Controller

During transmission, the parity controller automatically generates parity for the data in the transmit
shift register. The parity bit is stored in bit 7 (MSB) of the transmit shift register when the data length is
7 bits and in the TWUB bit of the Line Control register (SILCRn) when the data length is 8 bits.

During reception, a parity check is performed when data has been transferred from the receive shift
register to the read buffer. The parity bit for the character is compared to bit 7 (MSB) of the read buffer
when the data length is 7 bits and with the RWUB bit of the Line Control register (SILCRn) when the
data length is 8 bits. If they do not match, a parity error is reported.

13.4.13 Error Flags

• Overrun error

An overrun error is reported if a new character is received into the read buffer when the 16-byte
Receive FIFO is already 100% full. The overrun status bit of the 16th byte in the Receive FIFO is
set.

• Parity error

A parity error is reported when received data’s parity does not match the parity bit.

• Framing error

A framing error is reported when a 0 is detected where a stop bit was expected. (The middle 3 of
the 16 samples taken on the 7th to 9th SIOCLK cycles are used to determine the bit value.)

(The same sampling timing is used, regardless of whether one stop bit or two stop bits are used.)

Chapter 13 Serial I/O Ports (SIO)

13-23

13.4.14 Break Indication

A break is reported when a framing error occurs on the received data, with all bits in the frame being
0s. At this time, the SISCISR.RBRKD and SISCISR.UBRKD bits are set. The SISCISR.UBRKD bit
remains set until it is cleared by software, whereas the SISCISR.RBRKD bit is automatically cleared
when a non-break frame is received.

Two characters loaded into the Receive FIFO on a break indication are always 0x00.

Note: If the transmitter sends a break condition in the middle of the transmit data, the
TX3927 detects the first framing error, but not the break condition. If the break is
received synchronously with the start bit, the TX3927 detects the break properly. For
details, see Section 19.17.

13.4.15 Receive Timeout

A receive timeout is reported when there is at least one byte in the Receive FIFO and the receive shift
register has not been accessed within 2 character times of the last byte. The SIDISR.TOUT bit is set to
indicate that a receive timeout has occurred.

The timer for the receive timeout is reset when a new character is received and when all characters in
the Receive FIFO have been read; the timer does not restart until the next character is received.

13.4.16 Receive Data Transfer and the Handling of Receive FIFO Status Bits

The Receive FIFO stores the following status bits, along with the received data:

• Break detection (UBRK)

• Receive FIFO data available status (UVALID)

• Framing error (UFER)

• Parity error (UPER)

• Overrun error (UOER)

The SIDISR register contains a copy of these status bits. The contents of this register is updated each
time a character is read from the Receive FIFO (SIRFIFO).

The interrupt handler for the receive data interrupt (SIRXIREQ*) can examine the receive status
before reading the receive data in order to obtain a one-to-one correspondence between receive errors
and received characters. This enables the interrupt handler to process those characters in the exact order
in which they are received. If such ordering is not necessary, special receive interrupt (SISPIREQ*) and
status-change interrupt (SISTIREQ*) requests can be used, which occur on detection of a receive error
before the character present in the SIRFIFO is read.

In DMA transfer mode, the Receive FIFO transfers only error-free characters. If an error (framing
error, parity error or overrun error) or the receive timeout (TOUT) occurs, the Receive Data Transfer
Request (SIRXIREQ*) signal is asserted to report a receive error.

If a receive error occurs in DMA transfer mode, the Receive FIFO must be cleared.

Chapter 13 Serial I/O Ports (SIO)

13-24

Note: The UVALID flag is always set for the 16th character in the Receive FIFO even though
when it has been picked up by the CPU or DMA Controller, no more character may be
present in the Receive FIFO. Examine the RFDN field of the SIDISR register to check
the number of characters remaining in the Receive FIFO.

13.4.17 Multidrop System

Multidrop mode is selected when the SILCR.UMODE field is set to 10 or 11. In this mode of
operation, the master station’s controller transmits an address (ID) character followed by a block of data
characters targeted for one or more of the slave stations. When a slave station’s address matches the
received address, it enables the receiver if it wants to receive the subsequent data from the master
station. The UART frame is extended one bit to distinguish an address character from standard data
character. The character is interpreted as an address character if the WUB bit is set to 1, or interpreted
as a data character if it is set to 0. Software must be used to perform the address comparison.

13.4.17.1 Protocol
(1) Both the master and slave controllers are configured to operate in multidrop mode by setting

the UMODE field of the Line Control register (SILCR.) to 10 or 11.

(2) If the RWUB bit in the SILCR register is set, slave controllers continuously monitor the data
stream from the master controller for the address character.

(3) If the Transmit Wakeup (TWUB) bit of the SILCR register is set, the master controller
transmits a slave’s station address (8-bit or 7-bit), with the WUB bit set to 1.

(4) The slave controller generates an interrupt to the host when the RWUB bit of the SILCR
register is set and the WUB bit of the received character is 1 (indicating an address frame).
The host compares the received address to its own address; and if they match, the host clears
the RWUB bit to 0.

(5) The master controller transmits a block of characters to the designated slave controller. This
time, the TWUB bit of the SILCR register is set so that the master controller transmits data
frames with the WUB bit cleared.

(6) The slave controller with the RWUB bit cleared receives the data. Other slaves whose RWUB
bit remains set do not generate an interrupt because the WUB bit of the received data frame is
0. Therefore, the slave stations that are not addressed ignore the received data.

(7) Slave controllers can transmit data only to the master controller.

Figure 13.4.3 shows an example configuration of a multidrop system.

Figure 13.4.3 Example Configuration of a Multidrop System

RXD TXD
Slave #3

RXD TXD
Slave #2

RXD TXD
Slave #1

Master

TXD RXD

Chapter 13 Serial I/O Ports (SIO)

13-25

The TXD outputs of the slave controllers must be open-drain. When the UODE bit of the Line
Control register (SILCR.) is set, the TXD output is configured as open-drain. When the UODE bit
is cleared, the TXD output is configured as a normal CMOS output.

13.4.18 Software Reset

Writing a 1 to the SWRST bit (bit 15) of the FIFO Control register (SIFCR) performs a software reset
of the SIO. This bit clears itself when the SIO resets. Software reset is required in the following cases
because even if the FIFO is cleared, data remains in the temporary buffer:

1. When transmission is discontinued halfway after having placed transmit data in the FIFO
and started transmission.

2. When an overrun error occurs during reception

13.4.19 DMA Transfer Mode

The SIO Transmit and Receive FIFOs support DMA. The TX3927’s DMA interface provides up to
four DMA channels to support the two SIO channels, as listed below. For each of the DMA channels,
bits 7 to 4 (INTDMA[3:0]) of the Pin Configuration (PCFG) register determine whether the DMA
request source is an SIO channel or an external DMA request signal (DMAREQ[3:0]).

SIO channel 0 reception - DMA channel 0

SIO channel 1 reception - DMA channel 1

SIO channel 0 transmission - DMA channel 2

SIO channel 1 transmission - DMA channel 3

Both the DMA request output and the DMA acknowledge input of the SIO are active-low. Set the
DMA Controller (DMAC) request and acknowledge polarities to active-low (CCRn.ACKPOL=0b,
CCRn.REQPL = 0b).

The SIO FIFO Control register (SIFCR) determines how many bytes are transferred with a single
DMA transfer request. Set the DMAC to one-byte transfer size (CCRn.XFZ = 000b) and dual-address
transfer mode (CCRn.ONEAD = 0b). Therefore, the DMAC Source or Destination Address register
must specify the byte address of the SIO register.

In DMA transfer mode, the SIO receive timeout error must be not used to determine whether a DMA
transaction has completed (on the assumption that when no more data has arrived for a given time, the
DMA transaction has completed). Regardless of whether DMA transfer mode is used or not, a receive
timeout occurs when there is at least one byte in the Receive FIFO and the receive shift register has not
been accessed within 2 character time of the last byte. Therefore, receive timeout error is not reported
when the DMAC has read all the received characters from the Receive FIFO.

Chapter 13 Serial I/O Ports (SIO)

13-26

13.5 Timing Diagrams

13.5.1 Receiver Operation (7- and 8-bit Data Lengths)

SIRXIREQ*

SIOCLK

SIN

Data

SIRXIREQ*

SIRXIREQ*

bit 7 Parity bitbit 0 Stop bit

1 7 8 9 10 11 16 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16

Valid bit 0 Valid bit 7

Overrun errorSIDISR.UOER = 1

SIDISR.ERI = 1 If parity error occurs

SIDISR.ERI = 1 If framing
error occurs

Figure 13.5.1 Receiver Timing

13.5.2 SITXDREQ*/SITXDACK and SIRXDREQ/SIRXDACK Timing for DMA Interface
(DMA Level 4)

1 16 1 16 1 16 1 16 1 16 1 1616 1 1 16 1 16 1 16 1 16 1 16 1 16 1 16
SIOCLK

SIN

Storeto to
RCV FIFO

SITXDREQ*,
SIRXDREQ*

SITXDACK,
SIRXDACK

Data Byte 2

Stop

Data Byte 1

Start Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop

Data Byte 4Data Byte 3

SDMAREQ is deasserted after recognizing the third assertion of DMAACK.

SDMAACK is sampled at the IMCLK frequency.

Figure 13.5.2 DMA Request and Acknowledge Signals (DMA Level 4)

13.5.3 SITXDREQ*/SITXDACK and SIRXDREQ/SIRXDACK Timing for DMA Interface
(DMA Level 8)

SIOCLK

SIN

Storeto to
RCV FIFO

SITXDREQ*,
SIRXDREQ*

SITXDACK,
SIRXDACK

Data Byte 7

Stop

Data Byte 6

Start

1 16 1 16 1 16 1 16 1 16 1 1616 1 1 16 1 16 1 16 1 16 1 16 1 16 1 16

Start Stop Start Stop Start Stop Start Stop Start Stop Start Stop

Data Byte 9Data Byte 8

Figure 13.5.3 DMA Request and Acknowledge Signals (DMA Level 8)

Chapter 13 Serial I/O Ports (SIO)

13-27

13.5.4 Receiver Operation (7- and 8-bit Lengths in Multidrop System Mode,
RWUB = 1, Waiting for an ID Frame)

If framing
error occurs

1 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16

bit0 bit7 Wakeup bit = 1 Stop bit

Valid bit 0 Valid bit 7

Overrun errorSIDISR.ERI = 1

SIOCLK

SIN

Data

SISPIREQ*

SISPIREQ* SIDISR.ERI = 1

Figure 13.5.4 Receiver Timing

13.5.5 Receiver Operation (7- and 8-bit Lengths in Multidrop System Mode,
RWUB = 0, Waiting for a Data Frame)

SIOCLK

SIN

Data

SISPIREQ*

SISPIREQ*
If framing

error occurs

1 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16

bit 0 bit 7 Wakeup bit = 0 Stop bit

Valid bit 0 Valid bit 7

Overrun errorSIDISR.ERI

SIDISR.ERI

Figure 13.5.5 Receiver Timing

13.5.6 Receiver Operation (7- and 8-bit Lengths in Multidrop System Mode,
RWEB = 1, Skipping Data Read)

1 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16 1 7 8 9 10 11 16

bit 0 bit 7 Wakeup bit = 0 Stop bit

Valid bit 0 Valid bit 7

Overrun errorSIDISR.ERI = 1

SIOCLK

SIN

Data

SISPIREQ*

SISPIREQ* SIDISR.ERI = 1

High
If framing

error occurs

Figure 13.5.6 Receiver Timing

Chapter 13 Serial I/O Ports (SIO)

13-28

13.5.7 Transmitter Operation

Start bit

16 1 16 1 16 1 16 1 16 1 16 1 16

bit 0 bit n bit 7

SIOCLK

Shift-Out Timing

SOUT

Transfer from Transmit
FIFO to transmit shift
register

Parity bit Stop bit

(Wakeup bit)

Figure 13.5.7 Transmitter Timing

13.5.8 Timing for Stopping Transmission by CTS*
16 1 16 1 16 1 16 1 16

Transmission
stopped

Transmission
started

Start bit bit0

SIOCLK

Shift-Out Timing

SOUT

Transfer from Transmit
FIFO to transmit shift
register

bit n

CTS*

Stop bit

Figure 13.5.8 CTS* Timing

When CTS* goes high during transmission, transmission is stopped after completing the transfer of
the current character. However, the next character has been transferred from the FIFO to the transfer
shift register.

When CTS* goes low, transmission is resumed at the first shift-out start timing.

Chapter 14 Timer/Counter

14-1

14. Timer/Counter

14.1 Features
The TX3927 includes three 24-bit timer/counter channels.

All three channels (Timer 0-2) can be used as an interval timer, operating as a 24-bit up counter. Timers 0
and 1 can also be used as pulse generators, and Timer 2 also functions as a watchdog timer.

(1) Interval timer mode

• Can generate interrupt requests at a regular interval time.

(2) Pulse generator mode

• Outputs the state of the timer flip-flop onto the timer output pin.

(3) Watchdog timer mode

• Protects against system failures.

The counter clock sources can be an external clock pin (TCLK) or the internal clock divider output. The
clock divider is programmed to divide the internal clock (IMCLK) by 2, 4, 8, 16, 32, 64, 128 or 256. The
IMCLK frequency is half of the G-Bus clock speed. For details, refer to Chapter 6, "Clocks."

When selected, TCLK is used by all three timers for internal timing reference.

TCLK is multiplexed with the DMAREQ[2] and PIO[13] signals on pin 127. When this pin is configured
for DMAREQ[2] or PIO[13], an external clock cannot be used as the timer’s clock source.

When TCLK is used, all three timers can be used as 24-bit event counters. The program determines which
edge polarity (rising or falling) is detected. The TCLK frequency must not exceed IMCLK/2.

Chapter 14 Timer/Counter

14-2

14.2 Block Diagram

Figure 14.2.1 Timer Module Interface within the TX3927

Figure 14.2.2 Internal Block Diagram of a Timer

IM-Bus Interface Signal

WDTOUT
NMI*

Internal Reset

Timer Interrupt 0

Timer Interrupt 1

Timer Interrupt 2

IM-Bus Interface

IM-Bus Interface Signal

Counter Input Clock

Counter Input Clock

Counter Input Clock

Chip Configuration Register
(CCFG.WR)

Selector

Timer 0
Interval Timer Mode

Pulse Generator Mode

Timer 1
Interval Timer Mode

Pulse Generator Mode

Timer 2
Interval Timer Mode

Watchdog Timer Mode

Clock Signal

Timer Interrupt Request
Signal (Internal Interrupt)

Reset Signal

Comparator (=)

Compare
Register A

Clear

Compare
Register B

IM-Bus

TMFFOUT

WDTINTREQ*

TMINTREQ*

Timer

Watchdog Interrupt
Request Signal

Timer Flip-Flop Output

Register R/W Control Logic

Clock
Divider

x1/2 - 1/256
Clock
Select

Interval Mode Register
Pulse Gen. Mode Register
Watchdog Mode Register

Timer Control Register

Interrupt Control Register

Timer Read Register

24-Bit Counter

Interrupt
Control Logic

Chapter 14 Timer/Counter

14-3

14.3 Registers

14.3.1 Register Map
All the registers in the Timer/Counter module should be accessed as a word quantity. For the bits

other than those defined in this section, the values shown in the figures must be written.

Table 14.3.1 Timer/Counter Registers

Address Register Mnemonic Register Name
Timer 2 (TMR2)
0xFFFE_F2F0 TMTRR2 Timer Read Register 2
0xFFFE_F240 TMWTMR2 Watchdog Timer Mode Register 2
0xFFFE_F230 TMPGMR2 (Reserved)
0xFFFE_F220 TMCCDR2 Clock Divider Register 2
0xFFFE_F210 TMITMR2 Interval Timer Mode Register 2
0xFFFE_F20C TMCPRB2 (Reserved)
0xFFFE_F208 TMCPRA2 Compare Register A 2
0xFFFE_F204 TMTISR2 Timer Interrupt Status Register 2
0xFFFE_F200 TMTCR2 Timer Control Register 2
Timer 1 (TMR1)
0xFFFE_F1F0 TMTRR1 Timer Read Register 1
0xFFFE_F140 TMWTMR1 (Reserved)
0xFFFE_F130 TMPGMR1 Pulse Generator Mode Register 1
0xFFFE_F120 TMCCDR1 Clock Divider Register 1
0xFFFE_F110 TMITMR1 Interval Timer Mode Register 1
0xFFFE_F10C TMCPRB1 Compare Register B 1
0xFFFE_F108 TMCPRA1 Compare Register A 1
0xFFFE_F104 TMTISR1 Timer Interrupt Status Register 1
0xFFFE_F100 TMTCR1 Timer Control Register 1
Timer0 (TMR0)
0xFFFE_F0F0 TMTRR0 Timer Read Register 0
0xFFFE_F040 TMWTMR0 (Reserved)
0xFFFE_F030 TMPGMR0 Pulse Generator Mode Register 0
0xFFFE_F020 TMCCDR0 Clock Divider Register 0
0xFFFE_F010 TMITMR0 Interval Timer Mode Register 0
0xFFFE_F00C TMCPRB0 Compare Register B 0
0xFFFE_F008 TMCPRA0 Compare Register A 0
0xFFFE_F004 TMTISR0 Timer Interrupt Status Register 0
0xFFFE_F000 TMTCR0 Timer Control Register 0

Note: All registers can be accessed as words.

Chapter 14 Timer/Counter

14-4

14.3.2 Timer Control Registers (TMTCRn) 0xFFFE_F000 (Ch. 0)
0xFFFE_F100 (Ch. 1)
0xFFFE_F200 (Ch. 2)

31 16
0

: Type
: Initial value

15 8 7 6 5 4 3 2 1 0
0 TCE CCDE CRE 0 ECES CCS TMODE

R/W R/W R/W R/W R/W R/W : Type
0 0 0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
7 TCE Timer Count

Enable
Timer Count Enable (initial value: 0)
Enables or disables counting. The CRE bit determines the action taken when the
counter stops.
0: Disables counting (and resets the counter if CRE = 1).
1: Enables counting.

6 CCDE Counter Clock
Divide Enable

Counter Clock Divide Enable (initial value: 0)
Enables or disables the clock divider for the internal clock (IMCLK). Clearing this bit
disables the clock divider.
0: Disables the clock divider.
1: Enables the clock divider.

5 CRE Counter Reset
Enable

Counter Reset Enable (initial value: 0)
Determines the action taken when the counter is stopped by clearing the TCE bit. If
the CRE bit is set, the counter is inhibited from counting and is reset. If the CRE bit is
cleared, the counter is inhibited from counting, but is not reset.

3 ECES External Clock
Edge Select

External Clock Edge Select (initial value: 0)
Selects the active edge of the clock when the external clock is used.
0: Falling edge
1: Rising edge

2 CCS Counter Clock
Select

Counter Clock Select (initial value: 0)
Selects the timer’s clock source.
0: Internal system clock (IMCLK)
1: External input clock (TCLK)

1:0 TMODE Timer Mode Timer Mode (initial value: 00)
Selects one of the three modes of operation for the timer.
11: Don’t use.
10: Watchdog timer mode (only for channel 2)
01: Pulse generator mode (only for channels 0 and 1)
00: Interval timer mode

Figure 14.3.1 Timer Control Registers

Chapter 14 Timer/Counter

14-5

14.3.3 Timer Interrupt Status Registers (TMTISRn) 0xFFFE_F004 (Ch. 0)
0xFFFE_F104 (Ch. 1)
0xFFFE_F204 (Ch. 2)

31 16
0

: Type
: Initial value

15 4 3 2 1 0
0 TWIS TPIBS TPIAS TIIS

R/W R/W R/W R/W : Type
0 0 0 0 : Initial value

Bits Mnemonic Field Name Description
3 TWIS Timer Watchdog

Interrupt Status
Timer Watchdog Interrupt Status (initial value: 0)
This bit is set when the channel 2 counter value matches the value programmed in
Compare Register A (TMCPRA). At this time, if the TWIE bit of the Watchdog Timer
Mode register is set, the TMWDTREQ* signal is asserted.
Clearing this bit negates the TMWDTREQ* signal. Writing a 1 to this bit has no
effect.
On reads:

0: No interrupt condition has occurred.
1: An interrupt condition has occurred; i.e., the counter value has reached the

value in Compare Register A.
On writes:

0: Negates the interrupt request signal.
1: Ignored

2 TPIBS Timer Pulse
Generator
Interrupt by
TMCPRB Status

Timer Pulse Generator Interrupt by TMCPRB Status (initial value: 0)
This bit is set when the counter value matches the value programmed in Compare
Register B (TMCPRB). At this time, if the TPIBE bit of the Pulse Generator Mode
register is set, the TMINTREQ* signal is asserted.
Clearing this bit negates the TMINTREQ* signal. Writing a 1 to this bit has no effect.
On reads:

0: No interrupt condition has occurred.
1: An interrupt condition has occurred; i.e., the counter value has reached the

value in Compare Register B.
On writes:

0: Negates the interrupt request signal.
1: Ignored

1 TPIAS Timer Pulse
Generator
Interrupt by
TMCPRA Status

Timer Pulse Generator Interrupt by TMCPRA Status (initial value: 0)
This bit is set when the counter value matches the value programmed in Compare
Register A (TMCPRA). At this time, if the TPIAE bit of the Pulse Generator Mode
register is set, the TMINTREQ* signal is asserted.
Clearing this bit negates the TMINTREQ* signal. Writing a 1 to this bit has no
effect.
On reads:

0: No interrupt condition has occurred.
1: An interrupt condition has occurred; i.e., the counter value has reached the

value in Compare Register A.
On writes:

0: Negates the interrupt request signal.
1: Ignored

Figure 14.3.2 Timer Interrupt Status Registers (1/2)

Chapter 14 Timer/Counter

14-6

Bits Mnemonic Field Name Description
0 TIIS Timer Interval

Interrupt Status
Timer Interval Interrupt Status (initial value: 0)
This bit is set when the counter value matches the value programmed in Compare
Register A (TMCPRA). At this time, if the TIIE bit of the Interval Timer Mode register
is set, the TMINTREQ* signal is asserted.
Clearing this bit negates the TMINTREQ* signal. Writing a 1 has no effect.
On reads:

0: No interrupt condition has occurred.
1: An interrupt condition has occurred; i.e., the counter value has reached the

value in Compare Register A.
On writes:

0: Negate the interrupt.
1: Ignored

Note: Bit 3 is valid only for channel 2. Bits 2 and 1 are valid only for channels 0 and 1.

14.3.3 Timer Interrupt Status Registers (2/2)

Chapter 14 Timer/Counter

14-7

14.3.4 Compare Registers A (TMCPRAn) 0xFFFE_F008 (Ch. 0)
0xFFFE_F108 (Ch. 1)
0xFFFE_F208 (Ch. 2)

31 24 23 16
0 TCVA

R/W : Type
0xFF : Initial value

15 0
TCVA

R/W : Type
0xFFFF : Initial value

Bits Mnemonic Field Name Description
23:0 TCVA Timer Compare

Value A
Timer Compare Value A (initial value: 0xffffff)
Specifies the compare value (24-bit binary value) for the timer. This register can be
used in any mode.

Figure 14.3.3 Compare Registers A

Chapter 14 Timer/Counter

14-8

14.3.5 Compare Registers B (TMCPRBn) 0xFFFE_F00C (Ch. 0)
0xFFFE_F10C (Ch. 1)

31 24 23 16
0 TCVB

R/W : Type
0xFF : Initial value

15 0
TCVB

R/W : Type
0xFFFF : Initial value

Bits Mnemonic Field Name Description
23:0 TCVB Timer Compare

Value B
Timer Compare Value B (initial value: 0xffffff)
Compare Register B is used in pulse generator mode. Specify a 24-bit binary value
greater than the value in Compare Register A.

Figure 14.3.4 Compare Registers B

Chapter 14 Timer/Counter

14-9

14.3.6 Interval Timer Mode Registers (TMITMRn) 0xFFFE_F010 (Ch. 0)
0xFFFE_F110 (Ch. 1)
0xFFFE_F210 (Ch. 2)

31 16
0

: Type
: Initial value

15 14 1 0
TIIE 0 TZCE

R/W R/W : Type
0 0 : Initial value

Bits Mnemonic Field Name Description
15 TIIE Timer Interval

Interrupt Enable
Timer Interval Interrupt Enable (initial value: 0)
Enables or disables interval timer mode interrupts.
0: Disables interrupts. (mask)
1: Enables interrupts.

0 TZCE Interval Timer
Zero Clear Enable

Interval Timer Zero Clear Enable (initial value: 0)
Controls whether to reset the counter to 0 whenever the count value reaches the
value in Compare Register A. If this bit is cleared, the counter halts when the count
reaches the compare value. Even if the counter is in halt state at the compare value
(with this bit cleared), another interrupt will not occur on return from the interrupt.
0: Do not clear (mask)
1: Clear

Figure 14.3.5 Interval Timer Mode Registers

Chapter 14 Timer/Counter

14-10

14.3.7 Clock Divider Registers (TMCCDRn) 0xFFFE_F020 (Ch. 0)
0xFFFE_F120 (Ch. 1)
0xFFFE_F220 (Ch. 2)

31 16
0

: Type
: Initial value

15 3 2 0
0 CCD

R/W : Type
000 : Initial value

Bits Mnemonic Field Name Description
2:0 CCD Counter Clock

Divide
Counter Clock Divide (initial value: 000)
These bits determine clock divisor when the internal clock (IMCLK) is used as the
counter clock source.
The binary value n divides the clock by 2n+1.
000: Divide by 21

001: Divide by 22

010: Divide by 23

011: Divide by 24

100: Divide by 25

101: Divide by 26

110: Divide by 27

111: Divide by 28

Figure 14.3.6 Clock Divider Registers

Chapter 14 Timer/Counter

14-11

14.3.8 Pulse Generator Mode Registers (TMPGMRn) 0xFFFE_F030 (Ch. 0)
0xFFFE_F130 (Ch. 1)

31 16
0

: Type
: Initial value

15 14 13 1 0
TPIBE TPIAE 0 FFI

R/W R/W R/W : Type
0 0 0 : Initial value

Bits Mnemonic Field Name Description
15 TPIBE TMCPRB

Interrupt Enable
Timer Pulse Generator Interrupt by TMCPRB Enable (initial value: 0)
Enables or disables interrupts generated when the counter value matches the value
programmed in Compare Register B in pulse generator mode.
0: Disables interrupts.
1: Enables interrupts.

14 TPIAE TMCPRA
Interrupt Enable

Timer Pulse Generator Interrupt by TMCPRA Enable (initial value: 0)
Enables or disables interrupts generated when the counter value matches the value
programmed in Compare Register A in pulse generator mode.
0: Disables interrupts.
1: Enables interrupts.

0 FFI Timer Flip-Flop
Initial Value

Timer Flip-Flop Initial (initial value: 0)
Specifies the value to which the timer flip-flop is initially set.
0: Low
1: High

Figure 14.3.7 Pulse Generator Mode Registers

Chapter 14 Timer/Counter

14-12

14.3.9 Timer Read Registers (TMTRRn) 0xFFFE_F0F0 (Ch. 0)
0xFFFE_F1F0 (Ch. 1)
0xFFFE_F2F0 (Ch. 2)

31 24 23 16
0 TCNT

R : Type
0x00 : Initial value

15 0
TCNT

R : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
23:0 TCNT Timer Count Timer Count (initial value: 0x000000)

This register follows the contents of the 24-bit counter. A read cycle to this register
causes the current value of the counter to be read.
This register is read-only. Don’t write to this register; any write to this register will
result in improper operation.

Figure 14.3.8 Timer Read Registers

Chapter 14 Timer/Counter

14-13

14.3.10 Watchdog Timer Mode Register (TMWTMR2) 0xFFFE_F240 (Ch. 2)

31 16
0

: Type
: Initial value

15 8 7 6 1 0
TWIE 0 WDIS 0 TWC

R/W R/W R/W : Type
0 0 0 : Initial value

Bits Mnemonic Field Name Description
15 TWIE Timer Watchdog

Interrupt Enable
Timer Watchdog Interrupt Enable (initial value: 0)
Enables or disables watchdog timer interrupts.
0: Disables interrupts. (mask)
1: Enables interrupts.

7 WDIS Watchdog Timer
Disable

Watchdog Timer Disable (initial value: 0)
Watchdog timer mode can be disabled by setting this bit and clearing the TCE bit of
the Timer Control register. This bit is self-clearing. Writing a 0 to this bit has no
effect.

0 TWC Timer Watchdog
Clear

Timer Watchdog Clear (initial value: 0)
1: Setting this bit resets the counter. This bit is self-clearing. Writing a 0 to this bit

has no effect.

Figure 14.3.9 Watchdog Timer Mode Register

Chapter 14 Timer/Counter

14-14

14.4 Operation
All timers (2, 1, and 0) are identical in operation, so only single timer (Timer 0) will be described.

Remember that only Timer 2 supports watchdog timer mode.

Any differences among the three timer channels will be described.

14.4.1 Interval Timer Mode

The timer is configured for interval timer mode by setting the TMODE field of the Timer Control
register (TMTCR) to 00.

The CCS bit of the TMTCR selects either the internal clock (IMCLK) or an external clock input.

When the internal clock (IMCLK) is selected, the clock divider divides IMCLK by the value
programmed into the CCD field of the Clock Divider register (TMCCDR). The output of the clock
divider is used as input to the 24-bit counter. Clock frequency division is enabled by setting the CCDE
bit of the TMTCR. The division factor can be from 21 to 28.

When the external pin is selected as the clock source, the ECES bit of the TMTCR determines the
active clock edge for the counter.

Setting the TCE bit of the TMTCR enables counting.

When the count value reaches the Compare Register A (TMCPRA) value, the TIIS flag in the Timer
Interrupt Status register (TMTISR) is set. An interrupt request is generated if the TIIE bit of the Interval
Timer Mode register (TMITMR) is set. The timer interrupt request generation can be disabled by
clearing the TIIE bit. If the internal timer interrupt request signal has been asserted, it is negated when
the TIIS bit of the TMTISR is cleared. A write of 1 has no effect on this bit.

Regardless of the setting of the TIIE bit, the TIIS bit is set when the count value matches the
Compare Register A value. The TIIS bit, when set, indicates a pending interrupt; thus a timer interrupt
request is issued if the TIIE bit is then set. To prevent this, the TIIS bit must be cleared before setting
the TIIE bit.

If the TZCE bit of the TMITMR is set, the timer count is reset to 0 whenever it reaches the compare
value programmed in the TMCPRA, and the timer immediately begins counting again. Consequently,
the interrupt request is generated continuously at a regular interval time. If the TZCE bit is cleared, the
timer halts when the count value has reached the TMCPRA value. Table 14.4.1 summarizes interrupt
request generation.

Table 14.4.1 Interrupt Request Generation, Depending on the TIIE and TZCE Settings

TIIE TZCE Interrupt operation when the counter reaches the specified value
0 * No interrupt occurs.
1 0 An interrupt request is issued. No further interrupt will occur if the TZCE bit is 0 upon return from the

interrupt (i.e., when the TIIS bit is cleared). Otherwise, another interrupt is requested, as is the case with
TIIE = 1 and TZCE = 1.

1 1 An interrupt request is issued.

The Timer Read register (TMTRR) follows the contents of the 24-bit counter. A read of this register
causes the current value of the counter to be read.

Chapter 14 Timer/Counter

14-15

Figure 14.4.1 depicts interval timer mode operation and interrupt request generation.

Figure 14.4.2 depicts interval timer mode operation using the external clock.

Figure 14.4.1 Example Interval Timer Mode Operation (with Internal Clock)

Figure 14.4.2 Example Interval Timer Mode Operation (with External Clock Input, Falling Edge Detected)

Count Value

0x000000
TMODE = 00
CCS = 0
TCE = 1
CRE = 0
TZCE = 1
TIIE = 1

Timer Interrupt*

Time

TCE = 0 TCE = 1

TZCE = 0 TZCE = 1
TIIE = 0 TIIE = 1

TMCPRA Reg.
Compare Value

TIIS = 0 TIIS = 0 TIIS = 0

CRE = 1
TCE = 0 TCE = 1

TIIS = 0

CRE = 0

Count Value

0x000000
TMODE = 00
TCE = 1
CRE = 0
CCS = 0
TZCE = 1
TIIE = 1
ECES = 1

EXTCLK

Time

TIIE = 0

TMCPRA Reg.
Compare Value

TIIS = 1

TCE = 0 TCE = 1

TMINTREQ*

Chapter 14 Timer/Counter

14-16

Table 14.4.2 shows the maximum count duration when the internal clock (IMCLK) is used. The
assumption is that the CPU frequency is 133 MHz and the internal clock (IMCLK) frequency is
33 MHz.

Table 14.4.2 Divisors and Count Values

Divisor System Clock = 33 MHz

Decimal TMCCDR.
CCD Frequency (Hz) Resolution

(Seconds)
24-bit Maximum

Duration (Seconds) Count of 1s

2
4
8

16
32
64

128
256

000
001
010
011
100
101
110
111

16.50E + 6
8.25E + 6
4.13E + 6
2.06E + 6
1.03E + 6

515.63E + 3
257.81E + 3
128.91E + 3

60.61E − 9
121.21E − 9
242.42E − 9
484.85E − 9
969.70E − 9

1.94E − 6
3.88E − 6
7.76E − 6

1.02
2.03
4.07
8.1

16.3
32.5
65.1

130.2

16500000
8250000
4125000
2062500
1031250
515625
257813
128906

14.4.2 Pulse Generator Mode

Pulse generator mode is supported by Timers 0 and 1, but not by Timer 2.

The timer is configured for pulse generator mode by setting the TMODE field of the TMTCR register
to 01. In this mode, two compare registers, TMCPRA and TMCPRB, are used to generated a square
wave with variable frequency and duty cycle.

Setting the TCE bit of the TMTCR enables counting. When the count value equals the value
programmed in the TMCPRA, the timer flip-flop toggles. The output of the timer flip-flop is driven
onto the TIMER[0] or TIMER[1] pin. The timer continues to count up. When the count value equals the
value programmed in the TMCPRB, the timer flip-flop toggles again and the counter is reset. The
TMCPRA value must be smaller than the TMCPRB value. The timer flip-flop can be initially set to 1 or
0 via the FFI bit of the TMPGMR register.

When the count value has reached the TMCPRA value, the TPIAS flag in the TMTISR is set.

The timer interrupt request (TMINTREQ*) signal is asserted if the TPIAE bit of the TMPGMR is set.
Otherwise, no interrupt request is issued. Clearing the TPIAS bit of the TMTISR negates the
TMINTREQ* signal.

If the TPIBE bit of the TMPGMR is set, TMINTREQ* is also asserted when the count value has
reached the TMCPRB values, setting the TPIBS flag in the TMTISR. Clearing the TPIBS bit negates
the TMINTREQ* signal.

Regardless of the setting of the TPIAE (TPIBE) bit, when the count value matches the TMCPRA
(TMCPRB) value, the TPIAS (TPIBS) bit is set. The TPIAS (TPIB) bit, when set, indicates a pending
interrupt; thus a timer interrupt request is issued if the TPIAE (TPIBE) bit is then set. To prevent this,
the TPIAS (TPIBS) bit must be cleared before setting the TPIAE (TPIBE) bit.

The CCS bit of the TMTCR selects either the internal clock (IMCLK) or an external clock input.

When the internal clock (IMCLK) is selected, the clock divider divides IMCLK by the value
programmed into the CCD field of the Clock Divider register (TMCCDR). The division factor can be 21

Chapter 14 Timer/Counter

14-17

to 28. Counting occurs at the rising edge of the clock.

When the external pin (TCLK) is selected as the clock source, the active clock edge can be selected
with the ECES bit of the TMTCR.

Figure 14.4.3 Example in Pulse Generator Mode Operation

14.4.3 Watchdog Timer Mode

Watchdog timer mode is supported by Timer 2.

A watchdog timer can be configured to cause either and nonmaskable interrupt or a system reset upon
time-out. The WR bit of the CCFG determines whether the watchdog timer interrupt request signal is
connected to the internal NMI* pin or the reset logic. If the CCFG.WR bit is set, the TX3927 is reset. If
the CCFG.WR bit is cleared, NMI* is raised.

Watchdog timer mode is selected when the TMODE field of the TMTCR is set to 10. Setting the TCE
bit of the TMTCR enables counting. When the count value equals the value programmed in the
TMCPRA, the TWIS flag in the TMTISR is set. If the TWIE bit of the TMWTMR2 is set, a watchdog
timer interrupt is generated. The watchdog timer interrupt generation is disabled by clearing the TWIE
bit. If the watchdog timer interrupt request signal has been asserted, it is negated when the TWIS bit of
the TMTISR is cleared. A write of 1 has no effect on this bit.

Regardless of the setting of the TWIE bit, when the count value matches the Compare Register B
value, the TWIS bit is set. The TWIS bit, when set, indicates a pending interrupt; thus a watchdog timer
interrupt request is issued if the TWIE bit is then set. To prevent this, the TWIS bit must be cleared
before setting the TWIE bit.

The 24-bit counter can be reset to 0 by setting the TWC bit of the TMWTMR2. This bit is self-
clearing.

If the WDIS bit of the TMWTMR2 is set, clearing the TCE bit halts the watchdog timer. If the WDIS
bit is cleared, clearing the TCE bit does not disable counting operation. If the WDIS bit is set, clearing
the TWIE bit of the TMWTMR2 can also disable the watchdog timer (and interrupt generation). When
the WDIS bit is cleared, TWIE bit cannot be cleared. Once the watchdog timer is disabled, the WDIS
bit is automatically cleared.

Count Value

0x000000
TMODE = 01
CCS = 0
FFI = 1
TIIE = 1
TCE = 1
CRE = 0

TMFFOUT

Time

TCE = 1

TMCPRB
Compare Value

TCE = 0

TMCPRA
Compare Value

Chapter 14 Timer/Counter

14-18

The TMTRR follows the contents of the 24-bit counter. A read of this register causes the current
value of the counter to be read.

Figure 14.4.4 Example Watchdog Timer Mode operation

Count Value

0x000000
TMODE = 10

TCE = 1

TWIE = 1

CRE = 0
Watchdog Timer
Interrupt

Time

TMCPRA
Compare Value

Reset State

TWIE = 1

TCE = 0
TWC = 1

TCE = 1
TWC = 1

TCE = 0
TMODE = 10

TCE = 1
TWC = 1

WDIS = 1 TWDIS = 1
TWIE = 0 TWIE = 1
WDIS = 1

TWIS = 1TWIS = 0

Reset State

Chapter 14 Timer/Counter

14-19

14.5 Timing Diagrams

14.5.1 Interrupt Timing in Interval Timer Mode

Figure 14.5.1 Interval Timer Timing (Internal Clock)

The above diagram is an example when TMCPRA=3 and the counter clock is IMCLK/2. After the
count value has reached the TMCPRA value, the TMTISR.TIIS bit is set at the next rising edge of
IMCLK, and TMINTREQ* is asserted synchronously with the internal system clock (IMCLK). At the
same time, the counter is reset to 0 (if TMITMR.TZCE = 1).

Figure 14.5.2 Interval Timer Timing (External Input Clock)

The above diagram is an example when TMCPRA=3 and the external input clock is selected as the
counter clock source. After the count value has reached the TMCPRA value, the TMTISR.TIIS bit is set
at the next rising edge of IMCLK, and TMINTREQ* is asserted. At the same time, the counter is reset
to 0 (if TMITMR.TZCE = 1).

IMCLK

Input Timer Clock

TMTCR. TCE

Count Value

Interrupt Request Signal

TMTISR.TIIS

TMITMR.TIIE = 0
TMITMR.TIIE = 1

0 1 2 3 0 1 2 3

IMCLK

Input Timer Clock

TMTCR. TCE

Count Value

Interrupt Request Signal

TMTISR. TIIS

TMITMR.TIIE = 0
TMITMR.TIIE = 1

0 1 2 3 0 1 2 3

Chapter 14 Timer/Counter

14-20

14.5.2 Output Flip-Flop Timing in Pulse Generator Mode

Figure 14.5.3 Pulse Generator Timing

The above diagram is an example when TMCPRA=2 and TMCPRB=3 in pulse generator mode. The
initial value of the timer flip-flop is 0. The timer flip-flop is reset when the TMPGMR register is
written.

14.5.3 Interrupt Timing in Watchdog Timer Mode

Figure 14.5.4 Watchdog Timer Timing

External Clock

TMTCR. TCE

Count Value

TMTISR.TIIS

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Input Timer Clock

TMTCR.TCE

Count Value

WDTINTREQ*

TMTISR.TWIS

TMWTMR.TWIE = 0
TMWTMR.TWIE = 1

0 1 2 3 0 1 2 3

Chapter 15 Parallel I/O Port (PIO)

15-1

15. Parallel I/O Port (PIO)

15.1 Features
The TX3927 has a 16-bit general-purpose parallel I/O port (PIO).

The PIO provides the following features:

• Of the 16 I/O port pins, PIO1 to PIO15 are multiplexed with other pin functions on the Serial I/O
(SIO), the Timer/Counter, or the DMAC. Each pin’s function is individually selectable.

• The direction of each I/O pin can be individually configured for input or output.

• Each I/O pin can be individually configured for totem-pole or open-drain output.

• All 16 I/O pins can be read at all times, regardless of their direction or function.

• A 16-bit read/write flag register can be used to provide either general-purpose or special-purpose
flags for software control.

• The flag bits can be used to trigger an interrupt request; a 16-bit polarity control register defines the
polarity of each flag.

• All 16 flag interrupts can be independently masked by the corresponding bits of a 16-bit interrupt
mask register.

• A CPU interrupt and a PCI interrupt are available. Any flag bit, when set to a programmed level,
can produce an interrupt request. The CPU interrupt request signal is delivered to a CPU internal
interrupt pin through the Interrupt Controller (IRC). The PCI interrupt request signal is presented
via the PCI Controller (PCIC) as an external interrupt request. The PCI interrupt is valid only when
the PCIC is programmed to operate in external arbiter mode. There are two mask registers, one
each for the CPU interrupt and the PCI interrupt. The polarity control register specifies the logic
conditions required for generating an interrupt.

15.2 Registers

15.2.1 Register Map

All the registers in the PIO should be accessed as a word quantity. For the bits other than those
defined in this section, the values shown in the figures must be written.

Table 15.2.1 PIO Registers

Address Register Mnemonic Register Name
0xFFFE_F524 XPIOMASKEXT External Interrupt Mask Register
0xFFFE_F520 XPIOMASKCPU CPU Interrupt Mask Register
0xFFFE_F51C XPIOINT Interrupt Control Register
0xFFFE_F518 XPIOPOL Flag Polarity Control Register
0xFFFE_F514 XPIOFLAG1 Flag Register 1
0xFFFE_F510 XPIOFLAG0 Flag Register 0
0xFFFE_F50C XPIOOD Open-Drain Control Register
0xFFFE_F508 XPIODIR Direction Control Register
0xFFFE_F504 XPIODI Data Input Register
0xFFFE_F500 XPIODO Data Output Register

Note 1: All registers are readable.

Note 2: All registers can only be accessed as words.

Chapter 15 Parallel I/O Port (PIO)

15-2

15.2.2 PIO Data Output Register (XPIODO) 0xFFFE_F500

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO PDO
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]
R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W : Type

0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 PDO[15:0] Data Out Port Data Output [15:0] (initial value: 0x0000)

Holds data to be driven out from the PIO[15:0] pins.

Figure 15.2.1 PIO Output Data Register

Chapter 15 Parallel I/O Port (PIO)

15-3

15.2.3 PIO Data Input Register (XPIODI) 0xFFFE_F504

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI PDI
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R : Type
Undefined : Initial value

Bits Mnemonic Field Name Description
15:0 PDI[15:0] Data In Port Data Input [15:0] (initial value: undefined)

Holds data read from the PIO[15:0] pins.

Figure 15.2.2 PIO Input Data Register

Chapter 15 Parallel I/O Port (PIO)

15-4

15.2.4 PIO Direction Control Register (XPIODIR) 0xFFFE_F508

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR PDIR
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 PDIR[15:0] Direction Control Port Direction Control [15:0] (initial value: 0x0000)

Specifies the direction of each of the PIO[15:0] pins.
0: Input (Reset)
1: Output

Figure 15.2.3 PIO Direction Control Register

Chapter 15 Parallel I/O Port (PIO)

15-5

15.2.5 PIO Open-Drain Control Register (XPIOOD) 0xFFFE_E50C

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
POD POD POD POD POD POD POD POD POD POD POD POD POD POD POD POD
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 POD[15:0] Open-Drain

Control
Port Open-Drain Control [15:0] (initial value: 0x0000)
Specifies whether to configure the PIO[15:0] pins as open-drain outputs or totem-
pole outputs.
0: Open-drain (Reset)
1: Totem-pole

Figure 15.2.4 PIO Open-Drain Control Register

Chapter 15 Parallel I/O Port (PIO)

15-6

15.2.6 PIO Flag Register 0 (XPIOFLAG0) 0xFFFE_F510

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0 PF0
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 PF0[15:0] Flag 0 PIO Flag 0 [15:0] (initial value: 0x0000)

This is a general-purpose flag register. Flag registers 0 and 1 share the same
storage elements. Flag register 0 allows the writing of both 1s and 0s in all its bits,
whereas Flag register 1 has restrictions on writes.

Figure 15.2.5 PIO Flag Register 0

Chapter 15 Parallel I/O Port (PIO)

15-7

15.2.7 PIO Flag Register 1 (XPIOFLAG1) 0xFFFE_F514

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 PF1[15:0] Flag 1 PIO Flag 1 [15:0] (initial value: 0x0000)

This is a special-purpose flag register. Flag registers 0 and 1 share the same
storage elements. Flag register 1 has the following restrictions.
- On writes
 - Writes by the CPU
 1: A write of 1 sets a flag bit.
 0: A write of 0 has no effect on a flag bit.
 - Write by other devices (i.e., DMAC and PCIC)
 1: A write of 1 clears a flag bit.
 0: A write of 0 has no effect on a flag bit.
- On reads: There is no restriction on reads. The bit value is read.

Note: A write of 0 has no effect on the flag bits (PF1[15:0]) of Flag register 1. A write of 1 by the CPU to
a flag bit sets that bit, while a write of 1 by other device (bus master) to a flag bit clears that bit.
Flag register 1 can be read by all devices.

Figure 15.2.6 PIO Flag Register 1

Chapter 15 Parallel I/O Port (PIO)

15-8

15.2.8 PIO Flag Polarity Control Register (XPIOPOL) 0xFFFE_F518

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC FPC
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 FPC[15:0] Flag Polarity

Control
Flag Polarity Control [15:0] (initial value: 0x0000)
Determines the logic conditions required for a flag bit to generate an interrupt
request. The FPC bit is XORed with the current value of the flag bit to form an
interrupt request.
Flag bits FPC bits Interrupt request

0 0 Not issued
0 1 Issued
1 0 Issued
1 1 Not issued

Figure 15.2.7 PIO Flag Polarity Control Register

Chapter 15 Parallel I/O Port (PIO)

15-9

15.2.9 PIO Interrupt Control Register (XPIOINT) 0xFFFE_F51C

31 16
0

: Type
: Initial value

15 3 2 1 0

0 EXT
INT

INTPC

R/W R/W : Type
0 11 : Initial value

Bits Mnemonic Field Name Description
2 EXT INT EXT Interrupt OD

Control
EXT Interrupt OD Control (initial value: 0)
Specifies whether the external interrupt signal is configured for open-drain or totem-
pole operation.
0: Open-drain (Reset)
1: Totem-pole

1:0 INTPC[1:0] Interrupt Polarity
Control

Interrupt Polarity Control (initial value: 11)
Determines the logic conditions required to generate an interrupt.
The INTPC bit is XORed with each interrupt request signal, which is connected to
the XOR of the flag bit and the FPC bit. An interrupt is generated if the result is 1.
Bit 0 controls the interrupt to the CPU; bit 1 controls the interrupt to the external bus
master.
Interrupt request INTPC bit Interrupt

0 0 Not generated
0 1 Generated
1 0 Generated
1 1 Not generated

Figure 15.2.8 PIO Interrupt Control Register

Chapter 15 Parallel I/O Port (PIO)

15-10

15.2.10 CPU Interrupt Mask Register (XPIOMASKCPU) 0xFFFE_F520

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU MCPU

[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]
R/W : Type

0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 MCPU[15:0] Mask Bits Mask CPU [15:0] (initial value: 0x0000)

Allows any flag bits to be masked off as CPU interrupt sources.
Clearing a bit in this register masks the corresponding interrupt source.
0: Mask the interrupt (Reset).
1: Don’t mask the interrupt.

Figure 15.2.9 CPU Interrupt Mask Register

Chapter 15 Parallel I/O Port (PIO)

15-11

15.2.11 External Interrupt Mask Register (XPIOMASKEXT) 0xFFFE_F524

31 16
0

: Type
: Initial value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT MEXT
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]

R/W : Type
0x0000 : Initial value

Bits Mnemonic Field Name Description
15:0 MEXT[15:0] Mask Bits Mask EXT [15:0] (initial value: 0x0000)

Allows any flag bits to be masked off as an external bus master interrupt sources.
Clearing a bit in this register masks the corresponding interrupt source.
0: Mask the interrupt (Reset).
1: Don’t mask the interrupt.

Figure 15.2.10 External Interrupt Mask Register

Chapter 15 Parallel I/O Port (PIO)

15-12

15.3 Operation

15.3.1 Assigning PIO Pin Functions

The TX3927 has a 16-bit PIO channel. The PIO[0] pin is dedicated to the PIO function while PIO1 to
PIO15 are shared with other pin functions on the SIO, the Timer/Counter and the DMAC. The Pin
Configuration register is used to select the desired pin functions. When PIO is selected for a pin, that
pin’s PIO function is determined by the settings in the PIO registers.

See "3.3 Pin Multiplexing" for shared pin functions.

15.3.2 General-Purpose Parallel Port

The PIO Direction Control register determines the direction of each PIO pin, input or output. The
PIO Input Data register holds the data read from the PIO pins configured as inputs. The PIO Output
Data register holds the data to be written to the PIO pins configured as outputs.

15.3.3 Interrupt Requests

The PIO provides two interrupt request signals: a CPU interrupt request and an external interrupt
request. A polarity control register, two mask registers, an interrupt control register and a flag register
are used to control the generation of interrupts. The following equations represent the requirements for
an interrupt to be generated:

CPU interrupt request = |((XPIOFLAG[15:0] ^ XPIOPOL[15:0]) & XPIOMASKCPU[15:0]) ^
XPIOINT[0]

External interrupt request = |((XPIOFLAG[15:0] ^ XPIOPOL[15:0]) & XPIOMASKEXT[15:0]) ^
XPIOINT[1]

Note: "^" is the exclusive-OR operator. "|" is the reduction OR operator, which takes the OR
value of all the bits of the operand and returns a 1-bit result. Upon power-on reset,
both the interrupt request signals default to 1.

The external interrupt request is valid only when the PCI Controller (PCIC) is programmed to operate
in PCI external arbiter mode. The REQ[1] pin is used to deliver the interrupt signal.

The CPU interrupt request is presented as a PIO interrupt, which is assigned to interrupt number 9 in
the integrated Interrupt Controller (IRC).

There are two flag registers, Flag register 0 and Flag register 1. They have different addresses, but
share the same storage elements. As such, both of these registers always return an identical value on
reads. However, they function differently during write operation. While Flag register 0 allows both 1s
and 0s to be written to all its bits, Flag register 1 accepts only a write of 1 from the CPU. An attempt by
the DMAC or PCIC to write a 1 to a Flag register 1’s bit clears that bit; a write of 0 by the DMAC or
PCIC has no effect on the bit.

15.3.4 Accessing PIO Pins

All 16 PIO pins can be read at all times, regardless of their function or direction.

Chapter 16 Power-On Sequence

16-1

16. Power-On Sequence
Figure 16.1 is a functional timing diagram for the power-on sequence, illustrating the relationships among

Vdd, CLKEN, RESET* and other signals. Unless CLKEN or RESET* meets the specified requirements, the
PLL will not lock or the initialization of the TX3927 will not complete properly.

Note 1: tSUP is the time after power-on required for Vdd to stabilize

Note 2: tXIN is the oscillation settling time for the XIN clock input.

Note 3: tPLL is the lock time for the on-chip PLL.
tPLL varies with the PLL multiplication factor, as follows:

PLLM 1 0 n
0 1 16401
1 1 2051

Note 4: tRST is the interval between the assertion of CLKEN and the negation of RESET*.
tPLL + 256 SDCLK cycles (SDCLK is half the CPU frequency.)

Figure 16.1 Power-On Initialization Sequence

The CLKEN signal is used to initialize the on-chip clock generator of the TX3927. After power-on, CLKEN
must be held low until Vdd and XIN stabilize. Asserting CLKEN causes the on-chip PLL to begin oscillation.
The TX3927 contains an autonomous counter/timer used to allow the PLL to settle; thereafter, the internal clock,
the SYSCLK output and the SDCLK output start free-running. This counter/timer uses XIN as a clock source.
The count value varies with the PLL multiplication factor defined by boot signals PLLM[1:0], as shown in Table
16.1.

Table 16.1 PLL Multiplication Factors and Count Values

PLL Multiplication Factor PLLM[1:0] Pin Value Count Value
2 01 16401

16 11 2051

Vdd

XIN

CLKEN

SYSCLK
/SDCLK [4:0]

tSUP

tXIN

tPLL

RESET*
tRST

Chapter 16 Power-On Sequence

16-2

Chapter 17 Electrical Characteristics

17-1

17. Electrical Characteristics

17.1 Absolute Maximum Ratings (*1)

Parameter Symbol Rating Units
Supply voltage VDDS

VDD2*
−0.3 ~ 4.5
−0.3 ~ 3.6

V
V

Input voltage for
RXD [1:0], CTS* [1:0], PCIAD [31:0],
PCICLK [3:0], GNT [3:0], REQ [3:0],
C_BE [3:0], IDSEL, FRAME*,
IRDY*, TRDY*, DEVSEL*,
STOP*, PERR*, SERR*, PAR

Input voltage for all other inputs

VIN1

VIN2

−0.3 ~ 6.7

−0.3 ~ VDDS + 0.3V

V

V

Storage temperature TSTG −40 ~ 125 °C
Maximum power dissipation PD 2.0 W

(*1) Don’t use the device under conditions in which any one of its absolute maximum ratings
is exceeded. Otherwise, the device may break down or its performance may be
degraded, causing it to catch fire or explode, resulting in injury to the user. Thus, when
designing a product which includes this device, ensure that no absolute maximum rating
value will ever be exceeded.

*: Including PLLVDD.

17.2 Recommended Operating Conditions (*2)

Parameter Symbol Conditions Min Max Units
I/O VDDS 3.0 3.6 V

TLB not used 2.3 2.7
Supply voltage

Internal logic VDD2*
TLB used 2.4 2.7

V

Operating temperature (case temperature) Tc 0 70 °C

Note: This product is designed principally for use in office equipment. If you intend to use it for
any other type of application, please contact Toshiba engineering staff.

(*2) The recommended operating conditions for the device are those necessary to
guarantee that the device will operate as specified. If the recommended operating
conditions (supply voltage, operating temperature range, specified AC and DC values
etc.) are exceeded, malfunction may occur. Thus, when designing a product which
includes this device, ensure that the recommended operating conditions for the device
are adhered to.

*: Including PLLVDD.

Chapter 17 Electrical Characteristics

17-2

17.3 DC Characteristics

17.3.1 DC Characteristics – Non-PCI Interface Pins

(Tc = 0 ~ 70°C, VDDS = 3.3V ± 0.3V, VDD2 = 2.5V ± 0.2V, VSS = 0V)
Parameter Symbol Conditions Min Max Units

Low-level input voltage VIL1
VIL2

Other than RXD[1:0] and CTS*[1:0]
RXD[1:0] and CTS*[1:0]

VDDS× 0.2
0.8

V

High-level input voltage VIH1
VIH2

Other than RXD[1:0] and CTS*[1:0]
RXD[1:0] and CTS*[1:0]

VDDS × 0.8
2.0

VDDS ☞
0.3
5.5

V

Low-level output current IOL1
IOL2

(Note 1) VOL = 0.4 V
(Note 2) VOL = 0.4 V

8
16

mA
mA

High-level output current IOH1
IOH2

(Note 1) VOH = 2.4 V
(Note 2) VOH = 2.4 V

−8
−16

mA
mA

I/O IDDS f = 133 MHz, VDDS = 3.6 V 120Operating current
Internal logic IDD2 f = 133 MHz, VDD2 = 2.7 V 420

mA

Input leakage current IIH
IIL

−10
−10

10
10

µA
µA

Pull-up resistance RST 50 300 kΩ

Note 1: Signals other than those shown in Note 2, below.

Note 2: ADDR[19:5], SDCLK[4:0], DQM[3:0], DATA[31:0], CAS*, RAS*, CKE, WE*, OE*,
SYSCLK, GDCLK, ACK*

Note 3: f = CPU core operating frequency

17.3.2 DC Characteristics – PCI Interface Pins

(Tc = 0 ∼ 70°C, VDDS = 3.3V ± 0.3V, VDD2 = 2.5V ± 0.2V, VSS = 0V)
Parameter Symbol Conditions Min Max Units

Low-level input voltage VIL3 −0.5 VDDS × 0.3 V

High-level input voltage VIH3 VDDS × 0.5 5.5 V

High-level output voltage VOH IOUT = −500 µA VDDS × 0.9 V
Low-level output voltage VOL IOUT = 1500 µA VDDS × 0.1 V
Input leakage current IIH

IIL
0 < VIN < 5 V −10

−10
10
10

µA
µA

Chapter 17 Electrical Characteristics

17-3

17.4 Crystal Oscillator Characteristics

17.4.1 Recommended Oscillator Conditions (with a PLL Multiplication Factor of 16)

Parameter Symbol Recommended value Units
Crystal oscillator frequency fIN 6.25 ~ 8.33 MHz
External capacitor CIN, COUT T.B.D. pF
Crystal oscillator

Rise time
Fall time

tr
tf

5(1)

5(1)
ns
ns

(1) These are reference values. Refer to the latest data provided by the manufacturer of
the crystal oscillator.

17.4.2 Recommended Input Clock Conditions (with a PLL Multiplication Factor of 2)

When using a multiplication factor of 2, an external clock should be supplied via the XIN pin, with
XOUT left open.

Parameter Symbol Recommended value Units
Input clock frequency fIN 50 ~ 66.67 MHz

17.4.3 Electrical Characteristics

(Tc = 0 ∼ 70°C, VDDS = 3.3V ± 0.3V, VDD2 = 2.5V ± 0.2V, VSS = 0V)
Parameter Symbol Conditions Min Typ. Max Units

Crystal oscillation start time tSTA f=6.25∼ 8.33 MHz  1 10 ms

TX3927F

XIN XOUT

COUTCIN

X’tal

Chapter 17 Electrical Characteristics

17-4

17.5 PLL Filter Circuit
An external filter capacitor is required between the Filter[1] and Filter[0] pins to configure the PLL filter.

Parameter Symbol Recommended value Units
External capacitor CFilter 1800 (with a PLL multiplication factor of 16)

220 (with a PLL multiplication factor of 2)
pF

Filter0 Filter1

Chapter 17 Electrical Characteristics

17-5

17.6 AC Characteristics – Non-PCI Interface Pins

17.6.1 AC Characteristics

(Tc = 0 ∼ 70°C, VDDS = 3.3 ± 0.3 V, VDD2 = 2.5 ± 0.2 V, VSS = 0 V, CL = 50 pF)
Parameter Signals Description Min Max Units
tsys SYSCLK/SDCLK[4:0] Cycle Time (Full-speed bus mode) 15 ns
tsysh SYSCLK Cycle Time (Half-speed bus mode) 30 ns
tsysm SYSCLK/SDCLK[4:0] Min High/Low Level 5 ns
tsysmh SYSCLK Min Half-Speed High/Low Level 12 ns
td (1) Output Delay 7 ns
toh (1) Output Hold 1 ns
tsu (2) Input Setup 7 ns
tih (2) Input Hold 0 ns
tdaz DATA[31:0], ACK* Data Active to Hi-Z 7 ns
tdza DATA[31:0], ACK* Data Hi-Z to Active 1 ns

(1) ACK*, DATA[31:0], CE[7:0]*, OE*, ACE*, SWE*, BWE[3:0]*, ADDR[19:2], DMAACK[3:0],
DMADONE*, PIO[15:0], TIMER[1:0]

(2) ACK*, DATA[31:0], NMI*, INT[5:0], DMAREQ[3:0], DMADONE*, PIO[15:0]

17.6.2 SDRAM Interface AC Characteristics

(Tc = 0 ∼ 70°C, VDDS = 3.3 ± 0.3 V, VDD2 = 2.5 ± 0.2 V, VSS = 0 V, CL = 50 pF for SDCLK[4:0])
50 pF 100 pF 150 pF

Parameter Signals Description
Min Max Min Max Min Max

Units

tsdclk SDCLK[4:0]/SYSCLK Cycle Time 15 15 15 ns
tsdclkm SDCLK[4:0]/SYSCLK Minimum High/Low Level 5 5 5 ns
tsd (3) Output Delay 7 8 9 ns
tsdd DATA[31:0] Output Delay 8 10 12 ns
tsoh (4) Output Hold 1 1 1 ns
tssu1 DATA[31:0] Input Setup (Internal clock) 7 7 7 ns
tssu2 DATA[31:0] Input Setup (Pin feedback clock) 2 2 2 ns
tsih DATA[31:0] Input Hold 0 0 0 ns
tsdaz DATA[31:0] Data Active to Hi-Z 7 7 7 ns
tsdza DATA[31:0] Data Hi-Z to Active 1 1 1 ns

(3) SDCS[7:0], RAS*, CAS*, WE*, CKE, OE*, DSF, ADDR[19:5], DQM[3:0]

(4) SDCS[7:0], RAS*, CAS*, WE*, CKE, OE*, DSF, ADDR[19:5], DQM[3:0], DATA[31:0]

Chapter 17 Electrical Characteristics

17-6

17.7 AC Characteristics – PCI Interface Pins

17.7.1 AC Characteristics

(PCI_CLK speed = 33 MHz, Tc = 0 ∼ 70°C, VDDS = 3.3 ± 0.3 V, VDD2 = 2.5 ± 0.2 V,
VSS = 0 V, CL = 50 pF)

Parameter Description Min Max Units
tcyc PCI_CLK cycle time 30 ns
thigh PCI_CLK High time 11 ns
tlow PCI_CLK Low time 11 ns
 PCI_CLK slew rate 1 4 V/ns
tval PCI_CLK to signal valid delay (bus signals) 2 11 ns
tval(ptp) PCI_CLK to signal valid delay (point-to-point signals) 2 12 ns
ton Hi-Z to active delay 2 ns
toff Active to Hi-Z delay 28 ns
tsu Input setup time to PCI_CLK (bus signals) 7 ns
tsu(ptp) Input setup time to PCI_CLK (point-to-point signals) 12 ns
th Input hold time from PCI_CLK 0 ns
trst Reset active time after power stable 1 ms
trst-clk Reset active time after PCI_CLK stable 100 us
trst-off Reset active to output Hi-Z delay 40 ns

Chapter 17 Electrical Characteristics

17-7

17.7.2 Timing Diagram for SDRAMC and ROMC Interface Pins

17.7.3 Timing Diagram for PCI Interface Pins

SYSCLK
/SDCLK[4:0]

td

tsysm, tsysmh

tsym, tsysh

tsysm, tsysmh

toh

tdaz tdza

Output

SYSCLK
/SDCLK[4:0]

tihtsu

Input

PCICLK

ton

Output Delay

Tri-state
Output

toff

0.4Vdd 0.4Vdd

0.4Vdd

0.4Vdd

tval
tcyc

tHigh tLow

PCICLK.

Intput Valid

tsu th

0.4Vdd 0.4Vdd

Chapter 17 Electrical Characteristics

17-8

17.8 Serial Input Clock

Equation CPU Operating Frequency = 133 MHz
Parameter Description

Min Max Min Max
Units

tSCY SCLK period 8X + 25 ns 85 ns
tSCYL SCLK low-level width 8X + 10 ns 40 ns
tSCYH SCLK high-level width 8X + 10 ns 40 ns

Note: X is the CPU operating clock period.

Chapter 18 Package Dimensions

18-1

18. Package Dimensions

P-QFP240-3232-0.50 Units: mm

Chapter 18 Package Dimensions

18-2

Chapter 19 Known Problems and Limitations

19-1

19. Known Problems and Limitations

19.1 Programming Restrictions for the TMPR3927A
Since the TX39 processor core has caches and a write buffer, bus operations may be executed in a

different order from the order in which they are specified in a program. For example, writes to the registers
of the SDRAMC, ROMC and IRC modules may occur out of order.

(1) Routines residing in uncacheable and cacheable spaces

Programs that reside in uncacheable space (see Section 4.1, "Memory Mapping") execute instructions
and bus operations in the exact order in which they are specified. On the other hand, programs that
reside in cacheable space may execute instructions and bus operations out of order on cache hits. (Read
operations are given precedence.)

(2) sync instruction

The sync instruction stalls the instruction pipeline until any bus operations initiated prior to this
instruction are completed. The sync instruction delays the processor writes to the write buffer, but the
write buffer continues to drain, writing to peripheral registers.

(3) Write buffer

There are two cases where the write buffer gives precedence to a write operation over a read operation:

• When the processor core issues a read request to the target address of one of the write buffer
entries

• When the processor core issues an unchacheable read reference while the write buffer has
uncacheable write data

For example, compare the codes shown in Figure 19.1.1 and Figure 19.1.2, which are both intended to
set an interrupt mask level and then enable interrupts.

sw r8, IRC_IRIMR_ADDR # Sets interrupt mask level in IRIMR.
mfc0 r9, r12 # Reads CP0 Status register.
or r9, r9, r10 # Prepares data to be written to IP[4:0] and IEc. r10 = 0x00007c01
mtc0 r9, r12 # Enables interrupts.

Figure 19.1.1 Program That Accepts Unintended Interrupt Requests

sw r8, IRC_IRIMR_ADDR # Sets interrupt mask level in IRIMR.
lw r8, IRC_IRSSR_ADDR # Previous write to IRIMR in uncacheable space occurs prior to

this uncacheable read.
mfc0 r9, r12 # Reads CP0 Status register.
or r9, r9, r10 # Prepares data to be written to IP[4:0] and IEc. r10 = 0x00007c01
mtc0 r9, r12 # Enables interrupts.

Figure 19.1.2 Program That Masks Interrupt Requests As Intended

If the program shown in Figure 19.1.1 resides in cacheble space with the cache enabled, interrupts could
be enabled before a write to the IRIMR takes place. If that happens, the TMPR3927 could accept unintended
interrupt requests.

Notice that the program shown in Figure 19.1.2 includes an lw instruction to read the IRSSR, which is in
uncachaeble space. This causes the immediately preceding write to the IRIMR to take place first. Thus,
interrupts are always enabled after the IRIMR is written with a new mask level.

Chapter 19 Known Problems and Limitations

19-2

19.2 ERT-TX3927-001

Issuance Number: ERT-TX3927-001
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
Floor life of packages after removed from drypack bags

[Out-of-Bag Conditions]

After the drypack is opened, packages must be stored at less than 30°C/60%RH and soldered within 48
hours.

Packages that have not been soldered within 48 hours must be baked for more than 20 hours at 125°C
prior to assembly. After baking, packages must be stored at less than 30°C /60%RH and soldered within 48
hours.

19.3 ERT-TX3927-002

Issuance Number: ERT-TX3927-002
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
ESD damage

[ESD Test Results]

The table below shows the results of electrostatic discharge (ESD) test on the TX3927.

ESD protection must be designed into a system and the ESD safety of the production environment must be
ensured. For details, refer to the "Handling Precautions" section at the beginning of this databook.

Standard Pins ESD Protection
RXD[1:0], CTS[1:0] 200 VMachine Model (MM)

(EIAJ Standard) Other Pins >250 V
Human-Body Model (HBM)
(MIL Standard) All Pins >2000 V

Chapter 19 Known Problems and Limitations

19-3

19.4 ERT-TX3927-003

Issuance Number: ERT-TX3927-003
Products: TMPR3927F TMPR3927AF TMPR3927BF TMPR3927CF

Note: See Section 17.2, "Recommended Operating Conditions."
Scope:
When the TLB is used

[Recommended Supply Voltage Ranges]

The table below shows the recommended supply voltage ranges for the TX3927.

The VDD2 rating differs, depending on whether the on-chip TLB is used or not.

Take precautions during system design in order to avoid exposure to voltages outside the recommended
supply voltage ranges.

Parameter Symbol Condition Min. Max. Unit
I/O VDDS 3.0 3.6 V

When TLB is not used 2.3 2.7Supply
Voltage Core VDD2 When TLB is used 2.4 2.7

V

19.5 ERT-TX3927-004

Issuance Number: ERT-TX3927-004
Products: TMPR3927F, TMPR3927AF(TMPR3927BF, TMPR3927CF)

Note: Although problems in the TMPR3927BF and the TMPR3927CF have been fixed, they still have some
usage restrictions.

Scope:
When the PCI Controller (PCIC) is used in Target mode

[Problem]

Under specific circumstances, the on-chip PCIC asserts the STOP* signal while the PCI bus is idle.

[Symptom]

Under specific circumstances, the on-chip PCIC asserts the STOP* signal while the PCI bus is idle. This
STOP* signal might affect devices on the PCI bus in some way.

Chapter 19 Known Problems and Limitations

19-4

[Situations in Which This Problem Occurs]

Normal Level

False STOP*
Pulse

#1

STOP*

DEVSEL*

TRDY*

IRDY*

FRAME*

PCICLK

External PCI Master

TX3927

Figure 19.5.1 Assertion of the STOP* Signal Under Specific Circumstances

Figure 19.5.1 shows the timing of the TX3927 PCIC generating a false STOP* pulse when operating in
Target mode. The STOP* signal is asserted at the point when an external PCI master completes a burst cycle.
This only occurs when the TX3927 has one of the following sets of conditions:

(1) All of the following are true:
a) The OFIFO8 Clock Rule Enable (OF8E) bit (bit 3) in the PCIC Target Control (TC) register (at

address 0xFFFE_D090) is cleared.
b) The burst cycle is a read access.
c) The OFIFO becomes empty immediately before #1 shown in Figure 19.5.1.

(2) All of the following are true:
a) The IFIFO8 Clock Rule Enable (IF8E) bit (bit 4) in the PCIC Target Control (TC) register (at

address 0xFFFE_D090) is cleared.
b) The burst cycle is a write access.
c) The IFIFO becomes full immediately before #1.

(3) All of the following are true:
a) The PCI Snoop (PSNP) bit (bit 11) in the Chip Configuration (CCFG) register (at address

0xFFFE_E000) is cleared.
b) The burst cycle is a write access.
c) The CPU core issues a bus release request simultaneous with #1 while another bus master owns the

on-chip bus (G-Bus).

Chapter 19 Known Problems and Limitations

19-5

[Workarounds]

There are different workarounds for burst reads and burst writes. Both workarounds are required if the PCI
master performs both burst reads and burst writes.

(1) For burst reads

Set the OF8E bit in the TC register.

(2) For burst writes

Do the following:
a) Set the IF8E bit in the TC register.
b) Set the PSNP bit in the CCFG register. Note, however, that, with the PSNP bit set, the data cache

can not be configured for write-back mode.

[Bug Fixes]

This bug was fixed in the TMPR3927BF release, as follows:

(1) Even when PCI snooping is disabled (i.e., the CCFG.PSNP bit is cleared), no problem will occur. Thus,
the data cache can be used in write-back mode.

(2) When the PCIC operates in Target mode, there is still a restriction. The OF8E and IF8E bits in the TC
register must be set.

19.6 ERT-TX3927-005

Issuance Number: ERT-TX3927-005
Products: TMPR3927F, TMPR3927AF
Scope:
When RESET is asserted while the TMPR3927 is active

[Problem]

When RESET is asserted under specific circumstances, the SDCLK, SYSCLK and PCICLK outputs might
assume the Hi-Z state.

[Symptom]

Under specific circumstances, assertion of RESET puts the SDCLK, SYSCLK and PCICLK outputs in the
Hi-Z state. Devices driven by these clocks might be affected.

For example, when in a Hi-Z state, the SDCLK output violates the constraint for the SDRAM clock. As a
result, the SDRAM devices occasionally transition to an unintended state.

Chapter 19 Known Problems and Limitations

19-6

[Situations in Which This Problem Occurs]

The states of the SDCLK, SYSCLK and PCICLK ouptuts are selectable at boot time using the ADDR pins
(which are inputs during reset):

• SDCLK: Configured as a clock output when ADDR[4] = 1 and assumes the Hi-Z state when
ADDR[4] = 0.

• SYSCLK: Configured as a clock output when ADDR[5] = 1 and assumes the Hi-Z state when
ADDR[5] = 0.

• PCICLK: Configured as a clock output when ADDR[6] = 1 and assumes the Hi-Z state when
ADDR[6] = 0.

Since the ADDR pins have an internal pull-up resistor, the SDCLK, SYSCLK and PCICLK outputs are,
by default, configured as clock outputs.

However, if a logic 0 is present on an ADDR pin when the RESET signal of the TX3927 is asserted, it
takes some time for the pull-up resistor to pull that ADDR pin to logic 1. During that time, SDCLK,
SYSCLK or PCICLK assumes the Hi-Z state.

[Workaround]

When RESET is applied to the TX3927, devices connected to SDCLK, SYSCLK and PCICLK must also
be reset, except SDRAM devices, which do not have a reset pin.

SDRAM devices must be powered off and back on to put them in a power-on-reset state.

[Bug Fixes]

This bug was fixed in the TMPR3927BF release, as follows:

(1) SDCLK and SYSCLK are always configured as outputs during reset, irrespective of the values present
on the ADDR[4] and ADDR[5] pins.

(2) After boot-up, the SDCLK and SYSCLK outputs can still be disabled by clearing the relevant bits in the
Pin Configuration (PCFG) register (at address 0xFFFE_E008). When disabled, SDCLK and SYSCLK
assume the Hi-Z state, as in the previous versions of the TX3927.

(3) The specs for PCICLK remain unchanged.

Chapter 19 Known Problems and Limitations

19-7

19.7 ERT-TX3927-006

Issuance Number: ERT-TX3927-006
Products: TMPR3927F, TMPR3927AF

Note: This is a bug in a version of the TX39/H2 Core with PRID = 0x0000_2240.
Scope:
When the TLB is used

[Problem]

With the on-chip TLB enabled, executing a branch-likely instruction under specific circumstances might
alter the program behavior incorrectly.

[Symptom]

With the on-chip TLB enabled, executing a branch-likely instruction under specific circumstances might
alter the program behavior incorrectly.

[Situations in Which This Problem Occurs]

Under normal circumstances, if a branch-likely is not taken, the instruction in the delay slot is nullified.
However, regardless of whether a branch-likely is taken or not, the instruction in the delay slot is executed if
the following conditions are true:

(1) The instruction is referenced through the TLB.

(2) The last two instructions in a TLB page are a branch-likely instruction and an instruction in its delay
slot.

(3) An INT or DINT exception occurs in that delay slot (Note 1).

(4) The branch condition is false.

(5) The instruction following the branch delay slot causes an ITLB miss (Note 2).

If all of the above conditions are true, the address of the delay slot is incorrectly loaded into the EPC (or
DEPC) register instead of the address of the branch-likely instruction, and the BD (or DBD) bit in the Cause
(or Debug) register is not set. Consequently, upon return from the exception handler, the instruction in the
delay slot gets executed even though the branch condition is false.

Note 1: This phenomenon also occurs with the NMI and bus error exceptions. However, the NMI
exception is an imprecise exception, meaning it is not originally guaranteed that execution
can be resumed, and the bus error exception is a fatal error and recoverable.

Note 2: The TX39/H2 processor core has a two-entry Instruction TBL (ITLB) cache. When an
instruction translation misses in the ITLB cache, it is refilled from the main TLB by
hardware. Thus, no TLB exception occurs.

Chapter 19 Known Problems and Limitations

19-8

[Workaround]

Enter the code shown below in the exception handler.

// Modifies the EPC (or DEPC) register if it points to the end of a page and the preceding instruction is
// a branch-likely instruction.

<Example: INT>
 if ((EPC & 0xffc == 0xffc) &&
 ((* (unsigned long *) (EPC - 4) & 0xf0000000 == 0x50000000) ||/*1*/
 (* (unsigned long *) (EPC - 4) & 0xfc0e0000 == 0x04020000) ||/*2*/
 (* (unsigned long *) (EPC - 4) & 0xf3fe0000 == 0x41020000))) /*3*/
 EPC -= 4;

 /*1*/ --> beql, bnel, blezl, bgtzl
 /*2*/ --> bltzl, bgezl, bltzall, bgezall
 /*3*/ --> bczfl, bcztl

Note: The above code can not be used if there is any chance that the delay slot of a branch-
likely instruction could be the destination of a jump or branch instruction.

An example of a patch program is shown in the "Programming Example" section.

[Bug Fixes]

This bug was fixed in the TMPR3927BF release.

[Programming Example]

Example of patch code related to the branch-likely operation

Example of patch procedure related Branch Likely operation

#define BADADDR_OFF 0xffc

mfc0 a0, EPC_SAVE_AREA // Save EPC -> a0 (Note)

li a1, BADADDR_OFF
and a2, a0, a1
bne a2, a1, patch_exit
nop

lw a1, -4(a0)

li a2, 0xf0000000
li a3, 0x50000000
and a2, a1, a2
beq a2, a3, err_intr
nop

li a2, 0xfc0e0000
li a3, 0x04020000
and a2, a1, a2
beq a2, a3, err_intr
nop

Chapter 19 Known Problems and Limitations

19-9

 li a2, 0xf3fe0000 // li a2, 0xf01e0000
 li a3, 0x41020000 // li 0x40020000

and a2, a1, a2
beq a2, a3, err_intr
nop

j patch_exit
nop

err_intr:
addiu a0, a0, -4
sw a0, EPC_SAVE_AREA

patch_exit:

Note: Modify the address of EPC_SAVE_AREA and register numbers, depending on the
operating system used.

Chapter 19 Known Problems and Limitations

19-10

19.8 ERT-TX3927-007

Issuance Number: ERT-TX3927-007
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the PCI Controller (PCIC) is used

[Problem]

If a bus error exception occurs during a PCI configuration read cycle, exception processing might not be
performed properly.

Bus error exceptions generated by other causes are processed correctly.

[Symptom]

When all of the conditions described below are true, the bus error exception is not processed properly.

[Situations in Which This Problem Occurs]

This problem occurs when all of the following conditions are true:

(1) Bus time-out errors are enabled.

In other words, the Time-Out Bus Error Enable (TOE) bit in the Chip Configuration (CCFG) register is
set.

(2) A PCI configuration read is in progress in Direct mode.

More specifically, the TX3927 is performing a PCI configuration read using the Initiator Configuration
Data Register (ICDR) at address 0xFFFE_D13C and the Initiator Configuration Address Register
(ICAR) at address 0xFFFE_D138.

No problem occurs during PCI configuration write transactions.

(3) A G-Bus time-out caused a bus error exception.

Possible causes of a bus error are:
a) In response to a PCI configuration read request, a PCI device repeatedly issues retries to the

TX3927, for example, because the PCI device initialization is not complete. (The PCI device does
not assert the TRDY* signal and keeps issuing retry requests using the STOP* signal.)

b) A PCI device and the TX3927 repeatedly issue retires to each other, causing PCI bus deadlock.
(This could occur in a system in which the TX3927 is used in both Target and Initiator modes. See
page 12-81.)

c) A PCI device can not respond to the PCI configuration read request within 512 G-Bus clock cycles
due to heavy bus traffic on the PCI bus.

Chapter 19 Known Problems and Limitations

19-11

[Workarounds]

There are two wrokarounds for this problem.

(1) Perform a PCI configuration read in Indirect mode. More specifically, program the following registers:

• Initiator Indirect Address Register (IPCIADDR) at address 0xFFFE_D150

• Initiator Indirect Data Register (IPCIDATA) at address 0xFFFE_D154

• Initiator Direct Command/Byte Enable Register (IPCIICBE) at address 0xFFFE_D0158

• Initiator Status Register (ISTAT) at address 0xFFFE_D044

In Direct mode, a PCI configuration read cycle is begun by the CPU reading the ICDR register. The
CPU read cycle does not end until the PCI configuration read cycle is completed.

In Indirect mode, a PCI bus cycle begins asynchronously from a CPU read access when the CPU writes
an address and command to the IPCIADDR and IPCIICBE registers respectively.

The result of a PCI configuration read is stored in the IPCIDATA register. The completion of a PCI bus
cycle can be determined by polling the ISTAT register. (Alternatively, an interrupt can be generated by
programming the Initiator Interrupt Mask (IIM) register at address 0xFFFE_D048.)

In Indirect mode, the CPU bus cycle completes without waiting for a response from a target PCI device.
Thus, no bus error will occur due to time-out.

It must be noted that, in Indirect mode, the value of the IPCIADDR register is placed onto PCIAD[31:0]
during the address phase of a PCI bus cycle and that the values of the ICMD and IBE fields in the
IPCICBE register are placed onto C_BE[3:0] as a PCI command and byte enables respectively.

See the "Programming Example" section for a sample program for Indirect mode. The correct operation
of the sample program is not guaranteed; it is the user's responsibility to verify its operation on a target
system.

(2) Disable bus time-out errors by clearing the TOE bit in the CCFG register.

Clearing the TOE bit disables all types of bus errors. However, since the bus master on the G-Bus keeps
waiting for an acknowledge from the target PCI device, there is still a chance of bus deadlock. For
example, the target PCI device might keep issuing retries without returning an acknowledge, causing the
CPU bus cycle to be deadlocked.

To prevent bus deadlocks, a watchdog timer should be used to detect a bus time-out and reset the whole
system on a time-out.

Chapter 19 Known Problems and Limitations

19-12

[Programming Example]

The following code is an example of performing a PCI configuration cycle in Indirect mode. It should be
considered merely as a sample.

It must be ensured that any routine called on an interrupt or by the RTOS will not alter the contents of the
ISTAT, IPCIADDR, IPCIDATA and IPCICBE registers. To this end, mutually exclusive control of these
registers is strongly recommended.

--
/* This sample program is suitable for Type 0 configuration cycle */

#define WAITTIME 0x1000

void dummyloop(void){
int i;
for(i=0; i< WAITTIME;i++);

}

unsigned int
indirect_config_read(unsigned int dev, unsigned int func, unsigned int reg)
{

/* dev : target device number : 0x00 -- 0x14(AD[11] -- AD[31]) */
/* func : target device function number : 0x0 -- 0x7 */
/* reg : terget device configuration space address offset
 : 0x00 -- 0x3f */
unsigned int address; /* ad[31:0] during the address phase */
unsigned int read_data; /* the value of configuration read data */

/* ISTAT register IDICC bit == 1 , write clear */
if(*(unsigned int *)(0xfffed044) & 0x00001000){

*(unsigned int *)(0xfffed044) = 0x00001000;
}

/* make address value */
address = 0x00000000 |((0x1) << (11 + (dev & 0x1f)))|((func & 0x7) << 8) | ((reg & 0x3f)<<2);
*(unsigned int *)(0xfffed150) = address;

/* execute indirect configuration read */
*(unsigned int *)(0xfffed158) = 0x000000a0;

/* status polling configuration access */
while(1){

if(*(unsigned int *)(0xfffed044) & 0x00001000){
/* ISTAT register IDICC bit == 1 , indirect initiator command terminates */
break;

}
dummyloop();

}

/* read configuration register value from internal register */
read_data = *(unsigned int *)(0xfffed154);

/* clear IDICC bit(ISTAT register's all bit are R/WC) */
*(unsigned int *)(0xfffed044) = 0x00001000;

 return read_data;
}

Chapter 19 Known Problems and Limitations

19-13

void indirect_config_wirte(unsigned int dev, unsigned int func, unsigned int reg, unsigned int data)
{

unsigned int address; /* ad[31:0] during the address phase */

/* ISTAT register IDICC bit == 1 , write clear */
if(*(unsigned int *)(0xfffed044) & 0x00001000){

*(unsigned int *)(0xfffed044) = 0x00001000;
}

/* make address value */
address = 0x00000000 |((0x1) << (11 + (dev & 0x1f)))|((func&0x7) << 8) | ((reg & 0x3f)<<2);
*(unsigned int *)(0xfffed150) = address;

/* write value set internal register */
*(unsigned int *)(0xfffed154) = data;

/* execute indirect configuration write */
*(unsigned int *)(0xfffed158) = 0x000000b0;

/* status polling configuration access */
while(1){

if(*(unsigned int *)(0xfffed044) & 0x00001000){
/* ISTAT register IDICC bit == 1 , indirect initiator command terminates */
break;

}
dummyloop();

}

/* clear IDICC bit(ISTAT register's all bit are R/WC) */
*(unsigned int *)(0xfffed044) = 0x00001000;

}
--

Chapter 19 Known Problems and Limitations

19-14

19.9 ERT-TX3927-008

Issuance Number: ERT-TX3927-008
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the ROMC is used in Half-Speed mode

[Problem]

When the External Bus Controller (ROMC) accesses an address via a channel configured for Half-Speed
mode, the assertions of the ADDR, ACE*, CE*, OE* and BE* signals might be delayed by half a cycle of
the half-speed clock. Deassertions of these signals are not affected. Thus, the time periods during which
these signals remain asserted are reduced by half a cycle of the half-speed clock.

Full-Speed mode has no problem.

[Symptom]

If a ROMC channel is configured for Half-Speed mode, the assertions of the ADDR, ACE*, CE*, OE*
and BE* signals might be delayed by half a cycle of the half-speed clock. Consequently, the time periods
during which these signals remain asserted are reduced by half a cycle of the half-speed clock.

[Situations in Which This Problem Occurs]

The ROMC channels can be configured for Half-Speed mode by setting the RHS bit (bit 4) in the ROM
Channel Control Registers (RCCR0 to RCCR7 at addresses 0xFFFE_9000 to 0xFFFE_901C). For Half-
Speed channels, this problem occurs when all of the following conditions are true:

(1) On the TX3927 on-chip bus (G-Bus), an address change occurs simultaneous with the assertion of
GBSTART*, which signals the start of a bus cycle.

This situation occurs for three cases:
a) When the DMAC starts a bus cycle.
b) When the PCIC starts a bus cycle.
c) When the CPU starts a bus cycle immediately after deasserting one of the bus grant signals,

GHPGGNT*. The CPU deasserts GHPGGNT* when GHPGREQ* or GHAVEIT* is deasserted. (In
other words, when the DMAC and the PCIC are programmed to use GHPGREQ* and when the
CPU starts a bus cycle as soon as the DMAC or PCIC relinquishes the bus.)

(2) The above bus cycle accesses an address in a Half-Speed ROMC channel.

(3) The bus cycle starts on the falling edge of the half-speed clock.

When all of the above conditions are true, the assertions of the ADDR, ACE*, CE*, OE* and BE* signals
are delayed by half a cycle of the half-speed clock. Since the deassertions of these signals are not affected,
the time periods during which these signals remain asserted is reduced by half a cycle of the half-speed
clock.

Note: GHPGGNT*, GHPGREQ* and GHAVEIT* are internal signals of the TX3927.

Chapter 19 Known Problems and Limitations

19-15

[Workarounds]

There are three workarounds for this problem.

(1) Program the PCIC and the DMAC to use GSREQ* instead of GHPGREQ* to request the G-Bus. Don't
let them access a ROMC channel configured for Half-Speed mode. Specifically, do the following:
a) Set the PCI Snoop (PSNP) bit (bit 11) in the Chip Configuration (CCFG) register at address

0xFFFE_E000.
b) Set the Snoop (SNOP) bit (bit 7) in the DMAC Channel Control Registers (CCRn) at address

0xFFFE_B018, 0xFFFE_B038, 0xFFFE_B058 and 0xFFFE_B078.
c) Clear the Write-Back Mode On (WBON) bit (bit 13) in the TX39/H2 Config register (Register #3).

This configures the data cache for write-through, non-write-allocate mode. This setting is required
because the TX3927 does not allow data cache snooping in write-back mode.

d) Don't let the DMAC access a ROMC channel configured for Half-Speed mode.
e) Don't let the PCIC access a ROMC channel configured for Half-Speed mode.

It should be noted that the above workaround allows the data cache to be used only in write-through
mode.

Note: GSREQ* requests the G-Bus with data cache snooping. It is not driven outside the
TX3927.

(2) Observe the ac specs shown on the next page when at least one ROMC channel is configured for Half-
Speed mode.

(3) Use the ROMC only in Full-Speed mode.

Chapter 19 Known Problems and Limitations

19-16

[AC Specs of the SDRAMC and ROMC Interface Pins]

• Differences from the ac specs listed in the previous version of the databook

The following table shows the output delay parameters separately for Full-Speed (td) and Half-
Speed (tdh) bus modes. In Half-Speed mode, the output delay of the ADDR, ACE*, CE* and BE*
signals differ from that of the other output signals.

(Tc = 0 ∼ 70°C, VDDS = 3.3 V ± 0.3 V, VDD2 = 2.5 V ± 0.2 V, VSS = 0 V, CL = 50 pF)

Symbol Signals Parameter Min Max Unit
tsys SYSCLK/SDCLK[4:0] Cycle Time (Full-speed bus mode) 15 ns
tsysh SYSCLK Cycle Time (Half-speed bus mode) 30 ns
tsysm SYSCLK/SDCLK[4:0] Min High/Low Level 5 ns
tsysmh SYSCLK Min Half-Speed High/Low Level 12 ns
td (1) Output Delay (Full-speed bus mode) 7 ns
tdh (3) Output Delay (Half-speed bus mode) 7 ns
tdh (4) Output Delay (Half-speed bus mode) tsysh/2 + 7 ns
toh (1) Output Hold 1 ns
tsu (2) Input Setup 7 ns
tih (2) Input Hold 0 ns
tdaz DATA[31:0], ACK* Data Active to High-Z 7 ns
tdza DATA[31:0], ACK* Data High-Z to Active 1 ns

(1) ACK*, DATA[31:0], CE[7:0]*, OE*, ACE*, SWE*, BWE[3:0]*, ADDR[19:2], DMAACK[3:0],
DMADONE*, PIO[15:0], TIMER[1:0]

(2) ACK*, DATA[31:0], NMI*, INT[5:0], DMAREQ[3:0], DMADONE*, PIO[15:0]

(3) ACK*, DATA[31:0], BWE[3:0] *SWE*, DMAACK[3:0], DMADONE*, PIO[15:0], TIMER[1:0]

(4) CE[7:0]*, BE*[3:0], OE*, ACE*, ADDR[19:2]

[Timing Diagram for the SDRAMC and ROMC Interface Pins]

SYSCLK

td, tdh
tsysm, tsysmh

tsym, tsysh
tsysm, tsysmh

toh
tdaz tdza

Output

SYSCLK

tihtsu

Input

Chapter 19 Known Problems and Limitations

19-17

19.10 ERT-TX3927-009

Issuance Number: ERT-TX3927-009
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF

Note: This is a bug in versions of the TX39/H2 Core with PRID = 0x0000_2240, 0x0000_2241 and
0x0000_2242.

Scope:
When data cache snooping is used in Doze mode

[Problem]

In Doze mode, data cache snooping does not invalidate cache entries.

Setting the Doze bit (bit 9) in the CP0 Config register (r3) puts the TX3927 in the Doze mode. In Doze
mode, the TX3927 recognizes bus requests and grants the bus to requesting masters.

During external bus mastership, the TX3927 continually samples a snoop signal on the rising edge of the
clock. When the snoop signal is sampled as asserted, the TX3927 captures the address on the address bus and
compares it to the addresses of all data items held in the data cache. If the snoop address hits in the data
cache, the cache entry should be invalidated.

In Doze mode, however, the matching cache entry is not invalidated properly.

[Symptom]

After return from Doze mode, the data cache might be in possession of stale data.

[Situations in Which This Problem Occurs]

This problem occurs when data cache snooping is performed in Doze mode.

This problem does not occur in any other mode.

[Workarounds]

There are three workarounds for this problem:

(1) Don't perform data cache snooping at all.

(2) Don't put the TX3927 in Doze mode when data cache snooping is performed.

By default, UDEOS/r39 automatically sets the Doze bit in the Config register when it relinquishes
control to an idle task. So that Doze mode will not be used, the source file kidle.c of the operating
system needs to be modified.

However, this workaround is not applicable to the library package. Instead, create a task with the lowest
priority. See the section "Workarounds for UDEOS/r39."

(3) Invalidate all the cache entries upon exit from Doze mode if data cache snooping was performed in
Doze mode.

Chapter 19 Known Problems and Limitations

19-18

[Operating System Usage Considerations]

(1) UDEOS/r39 Uses Doze mode.
(2) VxWorks No problem (Doze mode is not used.)
(3) WinCE See 3) below.
(4) Linux No problem (Doze mode is not used.)

(1) UDEOS/r39

By default, versions of UDEOS/r39 3.3.0 and earlier automatically set the Doze bit (bit 9) in the CP0
Config register (r3) when relinquishing control to an idle task. So that Doze mode will not be used, it is
necessary to modify the source file kidle.c of the operating system and rebuild the kernel.

However, this workaround is not applicable to the library package. Instead, create a task with the lowest
priority.

Use one of the workarounds if the TX3927 is put in Doze mode.

(2) VxWorks

The VxWorks for the TX3927 consists of the Tornado 2.0/R3000 VxWorks kernel and a cache library
specifically designed for the TX39/H2 Core. That is, all routines except those in the cache library are
R3000-compatible.

The operating system itself does not provide support for Doze mode; it is the user's responsibility to
properly use Doze mode. Use one of the workarounds if the TX3927 is put in Doze mode.

(3) WinCE

For details, consult with your SI vendor. If the user system uses Doze mode, follow one of the
workarounds.

(4) Linux

The kernel of the MontaVista Linux does not use Doze mode. If the user system uses Doze mode,
follow one of the workarounds.

Chapter 19 Known Problems and Limitations

19-19

[Workarounds for UDEOS/r39]

The workarounds for UDEOS/r39 are described below.

(1) Modifying an OS source file

./src/kidle.c in UDEOS/r39 V3.3.0 and earlier manipulates the Config register to put the TX3927 in
Doze mode when the task state transitions to Idle.

Origianl kidle.c
TASK TR_Eidl(void)
{

for(;;){
#if defined(TR_KNL_LOG) || defined(TR_MTD_LOG)
 /* Creates an idle log.*/

 TR_writeLog(TR_LOG_IDL, 0, (ID)0, (ID)0, 0);
#endif

 /* Low-power mode */
 TR_lowPower();
}

}

Modify this file as follows so that the TX3927 is not put in Doze mode. After modifying kidle.c, it is
necessary to rebuild the kernel.

kidle.c after modification
TASK TR_Eidl(void)
{

for(;;);
}

The code for creating an idle log has been deleted to prevent the idle log from filling the buffer. In this
case also, it is possible to know when the TX3927 becomes idle.

(2) Creating a lowest-priority task

Create a task with a priority level lower than that of the lowest priority in the application. Register this
task with the configuration macro.
CRE_TSK(id, exinf, TA_HLNG | TA_START, task, pri, stk)

This task should be as shown below.
TASK
task()
{

for(;;);
}

The library package does not contain the kidle.c file. Therefore, the first workaround can not be used. Use
the second workaround instead.

Chapter 19 Known Problems and Limitations

19-20

19.11 ERT-TX3927-010

Issuance Number: ERT-TX3927-010
Products: TMPR3927F, TMPR3927AF, TMPR3927BF

Note: This is a bug in versions of the TX39/H2 Core with PRID = 0x0000_2240 and 0x0000_2241.
Scope:
When the data cache is configured for write-back mode

[Problem]

If the data cache in write-back mode is flushed using a CACHE instruction, the G-Bus and external buses
such as the SDRAM bus might be locked. This occurs when the DMAC or PCIC assumes mastership of the
on-chip bus (G-Bus) without data cache snooping,

This problem does not cause a bus error even if bus time-out errors are enabled with the TOE bit (bit 14)
in the Chip Configuration (CCFG) register set. Using a watchdog timer causes the TX3927 to be reset, but
whether the entire system is reset or not depends on the system design. If the entire system is not reset, it
becomes necessary to power off the entire system.

[Symptom]

The G-Bus and external buses such as the SDRAM bus might be locked.

[Situations in Which This Problem Occurs]

This problem might occur when both of the following conditions are true:

(1) The data cache is configured for write-back mode.

(2) The data cache is flushed using a CACHE instruction during external bus mastership.

The CACHE instructions with the op field (bits 20 to 16) set to 0x01, 0x15 and 0x19 flush the data
cache.

A burst write operation for cache replacement on a cache miss does not cause this problem.

[Workarounds]

There are two workarounds for this problem:

(1) Use the data cache in write-through mode.

(2) Don't flush the data cache with the CACHE instruction during external bus mastership if the data cache
is used in write-back mode. See the "Workaround Examples" section.

[Bug Fixes]

This bug has been fixed in the TMPR3927CF release.

Chapter 19 Known Problems and Limitations

19-21

[Workaround Examples]

The following describes two methods for implementing workaround 2), which flushes the data cache
without using the CACHE instruction.

Method 1:

The virtual address ranges 0x8000_0000 to 0x9FFF_FFFF and 0xA000_0000 to 0xBFFF_FFFF are
mapped to the same physical address range, 0x0000_0000 to 0x1FFF_FFFF. While 0x8000_0000 to
0x9FFF_FFFF is a cacheable segment, 0xA000_0000 to 0xBFFF_FFFF is an uncacheable segment.

Therefore, data cache flushing using the CACHE instruction can be equated to reading from the cacheable
segment (0x8000_0000 to 0x9FFF_FFF) and writing to the physical address to which the corresponding
uncacheable virtual address is mapped.

For example, the cache data at address 0x8000_0000 can be flushed, as follows:

(1) Read the data from 0x8000_0000.

Since 0x8000_0000 to 0x9FFF_FFFF is a cacheable segment, the data cache is first searched to see if
the target address, 0x8000_0000, is cache-resident. If 0x8000_0000 is cache-resident, the cache
contents will be read. If the cache lookup misses, the desired data is read from main memory at physical
address 0x0000_0000.

(2) Write the same data to 0xA000_0000.

Since 0xA000_0000 to 0xBFFF_FFFF is an uncacheable segment, the data is directly written to main
memory at physical address 0x0000_0000, without changing cache contents.

(3) Invalidate the cache data for address 0x8000_0000. This can be done using a CACHE instruction with
the op field (bits 20 to 16) set to 0x11.

If a read access hits in the data cache, the above sequence of operations is equivalent to cache flushing.

The catch is that when a read access misses in the data cache, a read and a write are wastefully performed
to the same address.

0x0000_0000

0xFFFF_FFFF

0xC000_0000

0xA000_0000

0x8000_0000

0x2000_0000

0x0000_0000

0xFFFF_FFFF

kseg0
(Cacheable)

kseg1
(Uncacheable)

Virtual Memory Physical Memory

Chapter 19 Known Problems and Limitations

19-22

Method 2:

If the cacheable memory segment has more than 4-K consecutive bytes of free space, reading those 4
Kbytes in succession will result in the flushing of the entire data cache (due to cache replacement).

19.12 ERT-TX3927-011

Issuance Number: ERT-TX3927-011
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the PCI Controller (PCIC) is used in Target mode

[Problem]

Under specific circumstances, a PCI read access does not read the desired address, but an address that was
written immediately before the read access.

[Symptom]

Under specific circumstances, a PCI read access reads an incorrect address.

[Situations in Which This Problem Occurs]

This problem only occurs when PCI accesses occur in a particular order, with particular PCIC settings.

<PCIC settings>

(1) When the OFIFO retains data after PCI transactions are completed.

In other words, the OFCAD bit (bit 19) in the Target Control (TC) register is cleared to zero. The reset
value is zero.

(2) When the PCIC streams data from local memory into the OFIFO until it becomes full or a PCI
transaction is completed.

In other words, the OFPFO bit (bit 12) in the TC register is cleared to zero. The reset value is zero.

<PCI access order>

(1) A PCI device reads the TX3927's local memory.

A PCI read cycle is terminated with a retry because data is not yet available in the OFIFO. (The
TX3927 was reading data from local memory into the OFIFO.)

(2) The PCI device writes data to the TX3927's local memory.

Actually, the PCI transaction is completed at the point when data has been written into the IFIFO.

A write from the IFIFO to memory does not occur until the previous read is completed.

(3) The PCI device re-reads data from the TX3927's local memory.

This time, since data is available in the OFIFO, the TX3927 returns data and terminates the PCI
transaction.

(4) The write operation from the IFIFO to local memory has been completed prior to Step 3 or is in
progress at the end of Step 3.

Chapter 19 Known Problems and Limitations

19-23

(5) The PCI device reads data from a local memory address that immediately follows the address
previously read.

If Step 4 above is true, the current local bus address (i.e., the write address) gets latched into OFIFO's
local bus address pointer. With the PCIC settings shown above, the pointer is not updated at Step 5, since it is
an access to a successive address. Consequently, the previous write address is used for this read operation,
reading data from a wrong address.

[Workarounds]

There are two workarounds for this problem:

(1) Discard data in the OFIFO when a PCI transaction is completed.

Set bit 19 in the TC register to one. (The reset value is zero.)

(2) For each PCI read request, perform only one read from local memory into the OFIFO. (Disable OFIFO
streaming.)

Set bit 12 in the TC register to one. (The reset value is zero.)

[Operating System Usage Considerations]

See the section "Operating System Usage Considerations for ERT-TX3927-011 to ERT-TX3927-014" in
Section 19.15.

19.13 ERT-TX3927-012

Issuance Number: ERT-TX3927-012
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the PCIC "never time-out" feature is enabled

[Problem]

The PCI bus might be locked when the PCIC's "never time-out" feature is enabled and the TBL_OFIFO
field (bits 7 to 4) in the Target Burst Length (TBL) register is programmed for 16 Dwords.

The "never time-out" feature is enabled when all of the OFNTE bit (bit 18), the OF16E bit (bit 5) and the
OF8E bit (bit 3) are set. The target burst length is programmed for 16 Dwords when the TBL_OFIFO field in
the TBL register is 01XX or 1X1X.

[Symptom]

The PCI bus might be locked when the PCIC's "never time-out" feature is enabled and the PCIC is
accessed as a target under specific circumstances.

Chapter 19 Known Problems and Limitations

19-24

[Situations in Which This Problem Occurs]

This problem occurs as follows:

<PCIC Settings>

(1) The "never time-out" feature is enabled.

This is the case where bit 18 in the TC register is set to one. The reset value is zero.

(2) The TBL_OFIFO field (bits 7 to 4) in the TBL register is 01XX or 1X1X.

<Problem Occurrence Sequence>

This problem occurs when an external PCI bus master deasserts IRDY* to insert a wait state while it is
reading the last beat of a 16-Dword burst from the TX3927. The problem occurs as follows:

(1) When 15 Dwords have been read, the TX3927 falsely considers that the PCI transaction will complete
in the next clock cycle and terminates.

(2) The external PCI bus master deasserts IRDY* and keeps waiting for the next data item.

If the "never time-out" feature is enabled, the TX3927 can not terminate the transaction by asserting the
STOP* signal. Because the burst length of 16 Dwords is the same size as the OFIFO, the last one Dword will
remain in the OFIFO. As a result, the TX3927 can not read the next Dword into the OFIFO and thus can not
meet the trigger level at which a PCI bus cycle occurs.

Since the PCI transaction is not completed, the PCI bus master will not release the bus, causing it to be
locked.

[Workarounds]

There are two workarounds for this problem:

(1) Disable the "never time-out" feature.

That is, clear bit 18 of the TC register to zero. (The reset value is zero).

(2) Set the TBL_OFIFO field (bits 7 to 4) in the TBL register to a value other than 01XX or 1X1X.

[Operating System Usage Considerations]

See the section "Operating System Usage Considerations for ERT-TX3927-011 to ERT-TX3927-014" in
Section 19.15.

Chapter 19 Known Problems and Limitations

19-25

19.14 ERT-TX3927-013

Issuance Number: ERT-TX3927-013
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the PCI Controller (PCIC) is used in Target mode

[Problem]

The Target Memory Base Address (MBA) and Target I/O Base Address (IOBA) registers specify the base
addresses of the PCIC address spaces. The last four Dwords of the PCIC address spaces are reserved for the
PCIC. According to the TX3927 specification, when the OFARD bit (bit 8) or the IFARD bit (bit 7) of the
Target Control (TC) register is cleared, "the PCIC issues a target abort if an external PCI master steps into or
access the reserved areas." The actual PCIC behavior is, however, as follows:

• For burst accesses

The last 3 Dwords of the reserved area are accessible. The PCIC issues a target abort when an
external PCI master reaches the last 1 Dword.

• For single-beat accesses

The first 1 Dword of the reserved area is accessible. The PCIC issues a master abort, instead of a
target abort, when an external PCI master accesses the subsequent Dwords.

[Symptom]

The PCIC behaves differently from its specification when an external PCI master accesses the reserved
areas of the PCIC address spaces.

[Situations in Which This Problem Occurs]

This problem occurs when the PCIC is programmed as either one of the following:

(1) The OFIFO address range checking is enabled.

In other words, bit 8 of the TC register is cleared to zero. The reset value is zero.

(2) The IFIFO address range checking is enabled.

In other words, bit 7 of the TC register is cleared to zero. The reset value is zero.

[Workaround]

Don't access the reserved areas of the PCIC address spaces.

[Operating System Usage Considerations]

See the section "Operating System Usage Considerations for ERT-TX3927-011 to ERT-TX3927-014" in
Section 19.15.

Chapter 19 Known Problems and Limitations

19-26

19.15 ERT-TX3927-014

Issuance Number: ERT-TX3927-014
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the PCI Controller (PCIC) is used in Initiator mode

[Problem / Symptom]

When the PCIC, as an initiator, performs a triple-byte access to the PCI bus, it automatically negates
IRDY* on the fifth clock when C_BE[3:0] = 0001b. Therefore, unless TRDY* is kept asserted up to this
point, the following problems occur:

• Data is not read or written properly.

• The PCI target device can not negate TRDY*.

[Situations in Which This Problem Occurs]

This problem might occur when the following two conditions are true:

(1) The PCIC, as an initiator, performs a triple-byte access to the PCI bus.

This happens for these two cases:
a) The CPU performs a triple-byte access in Direct mode.
b) The CPU performs a triple-byte access in Indirect mode.

(2) The value of C_BE[3:0] equals 0001b.

[Workaround]

There is no workaround for this problem. When operating as an initiator, the PCIC must not perform a
triple-byte access to the PCI bus.

[Operating System Usage Considerations for ERT-TX3927-011 to ERT-TX3927-014]

Problems described in ERT-TX3927-011 to ERT-TX3927-014 have impacts on the following operating
systems. These problems might also affect other operating systems, drivers and middleware.

(1) UDEOS/r39

UDEOS/r39 has no control over the PCIC. If the user's system uses the PCIC, follow the workarounds
described in ERT-TX3927-011 to ERT-TX3927-014.

(2) VxWorks

• ERT-TX39270-011 and ERT-TX3927-012

The board support package (BSP) for the JMR-TX3927 from WindRiver causes these problems.
When modifying its settings, follow the workarounds described in ERT-TX39270-011 and ERT-
TX3927-012.

The sample BSPs from Toshiba might cause these problems, depending on their dates of releases.
If a BSP from Toshiba is used, check the settings of the TC and TBL registers.

Chapter 19 Known Problems and Limitations

19-27

• ERT-TX3927-013

The setting of the TC register in the JMR-TX3927 BSP meets the condition that causes this
problem. Thus, the reserved areas of the PCIC address spaces must not be accessed.

• ERT-TX3927-014

This problem has no impact on the PCI drivers (TC35815, RTL8029 and Intel 82557 to 82559)
prepared by Toshiba for JMR-TX3927+VxWorks. If other drivers are used, follow the workaround
described in ERT-TX3927-014.

(3) WinCE

The problems described in ERT-TX3927-011 to ERT-TX3927-014 might occur. For details, contact
your SI vendor.

(4) MontaVista Linux

If the BSP for the JMR-TX3927 from MontaVista Software, Inc. is used without modification, the
problems described in ERT-TX3927-011 to ERT-TX3927-014 do not occur. For user system creation,
follow the workarounds described in ERT-TX3927-011 to ERT-TX3927-014.

19.16 ERT-TX3927-015

Issuance Number: ERT-TX3927-015
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF

Note: This is a bug in versions of the TX39/H2 Core with PRID = 0x0000_2240, 0x0000_2241 and
0x0000_2242.

Scope:
When bus time-out errors are enabled

[Problem]

If the TOE bit (bit 14) in the Chip Configuration (CCFG) register is set, a bus error occurs unless an
internal bus cycle completes before the time-out period expires. On a bus error, the CPU core might hang.

[Symptom]

The CPU core might hang on a bus error.

[Situations in Which This Problem Occurs]

This problem occurs when all of the following conditions are true:

(1) Bus time-out errors are enabled. In other words, the TOE bit in the CCFG register is set to one. (The
reset value is zero.)

(2) The Bus Error exception vector address resides in a cacheable address segment. In other words, the
BEV bit (bit 22) in the CP0 Status register is cleared to zero. (The reset value is one.)

(3) No bus read operation occurs between when a bus error occurs and when the 4-deep write buffer
becomes full.

(4) A CPU write request occurs, with the 4-deep write buffer full.

Chapter 19 Known Problems and Limitations

19-28

[Workarounds]

There are two workarounds for this problem.

(1) At the beginning of the exception handler, place a load instruction that reads from a cacheable segment.

An example of workaround code is shown in Example 1 below. This workaround code needs to be
executed prior to the first store instruction that is executed after a bus error.

This workaround code does not work if the data cache is disabled.

The problem can not be prevented when a load address hits in the data cache because in this case no bus
operation occurs on the internal bus. To avoid this situation, perform cache invalidate operations on all
cache entries before executing the load instruction.

Keep in mind that if the data cache is configured for write-back mode, the cache invalidate operation in
the workaround code could discard valid data in the cache. To avoid this situation, read-only data must
be loaded. In the TX39/H2 Core, the cache line size is 4 words; in the case of Example 1, the 4-word
block from 0x8000_0000 to 0x8000_000c must contain read-only data.

[Example 1]
0x80000080 lui r10, 0x8000

84 ori r10, r10, 0x0000 ;r10 0x80000000 (Cacheable segment)
88 cache 17, 0(r10) ; Invalidates data cache line with an address indicated by r10.
8c lw r11, 0(r10) ; Reads the address pointed to by r10.

(2) At the beginning of the exception handler, perform an instruction fetch from an uncacheable segment.

An example of workaround code is shown in Example 2 below.

This workaround code needs to be executed prior to the first store instruction that is executed after a bus
error.

Example 2 assumes that the normal exception handler is stored, starting at 0x8000_0090. Jumps are to
made first to an uncacheable segment, then to the normal exception handler.

[Example 2]
0x80000080 lui r10, 0xbfc0 ; Cacheable segment

84 ori r10, r10, 0x1000
88 jr r10 ; Jump to an uncacheable segment
8c nop

… ; Exception handler
0xbfc01000 lui r11, 0x8000 ; Uncacheable segment

04 ori r11, r11, 0x0090
08 jr r11 ; Jump to exception handler
0c nop

Chapter 19 Known Problems and Limitations

19-29

[Operating System Usage Considerations]

(1) UDEOS/r39

UDEOS/r39 provides source code of the exception vector code. If there is any chance of this problem
occurring, use one of the workarounds.

(2) VxWorks

The VxWorks kernel sets up the exception vector code. When a bus error exception is taken, this
problem might occur, depending on whether exception vector code hits or misses in the cache. To
prevent this problem, the exception vector code needs to be modified. For how to do this, contact your
Toshiba microprocessor applications engineer.

The bus error exception does not occur when bus time-out errors are disabled.

In the BSPs for the JMR-TX3927 from Wind Rivers and Toshiba, bus time-out errrors are enabled.

(3) WinCE

WinCE might have conditions that cause this problem. Contact your Toshiba microprocessor
applications engineer.

(4) MontaVista Linux

The MontaVista Linux provides source code of the exception vector code. If there is any chance of this
problem occurring, use one of the workarounds.

19.17 ERT-TX3927-016

Issuance Number: ERT-TX3927-016
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the SIO break conditions are used

[Problem]

If the transmitter sends a break to the TX3927 in the middle of the transmit data stream, the TX3927 can
detect the first frame error, but not the break condition.

If the start bit is immediately followed by the break condition (i.e., the serial input remains continuously
low), the TX3927 detects the break condition properly.

(Incorrect Operation)

* The TX3927 does not recognize the start bit following a frame error. The receiver stops in the Idle state.

(Correct Operation)

* If the serial input remains continuously low following the start bit, the TX3927 detects the break condition.

S 1 2 3 4 5 6 7 8 P SStatus
SIN

↑
Start

↑
Flame Error

S 1 2 3 4 5 6 7 8 P S S 1 2 3 4 5 6 7 8 P SStatus
SIN

↑
Start

↑
1st Break

↑
2nd Break

Chapter 19 Known Problems and Limitations

19-30

[Symptom]

The TX3927 might not be able to receive a break character.

[Situations in Which This Problem Occurs]

This problem might occur when the transimitter sends a break to the TX3927 in the middle of the transmit
data stream.

[Workaround]

Begin a break condition (i.e,. keep the serial input low) immediately following the start bit.

[Operating System Usage Considerations]

(1) UDEOS/r39

The UDEOS/r39 does not provide an SIO driver. If the user application uses break conditions in the SIO
routine, follow the workaround.

(2) VxWorks

The IO driver in VxWorks does not support break conditions. The IO driver in VxWorks or the
application using it is never affected by this problem. If the user application uses break conditions in the
SIO routine, follow the workaround.

(3) WinCE

Depending on the error handling performed in the user application, this problem could occur. In this
case, the TX3927 can not detect the break condition. Use the frame error for error handling.

(4) MontaVista Linux

The MontaVista Linux does not support break conditions. The IO driver in the MontaVista Linux or the
application using it is never affected by this problem. If the user application uses break conditions in the
SIO routine, follow the workaround.

Chapter 19 Known Problems and Limitations

19-31

19.18 ERT-TX3927-017

Issuance Number: ERT-TX3927-017
Products: TMPR3927F, TMPR3927AF, TMPR3927BF, TMPR3927CF
Scope:
When the PCIC Controller (PCIC) is used in Satellite mode

[Problem]

Under normal circumstances, external PCI masters can not write to the R/WL bits in the PCI configuration
registers. However, the R/WL bits get written when a specific timing is met.

The specific timing is when an external PCI master writes to the TX3927 PCIC configuration space while
the CPU core is writing to the on-chip bus. The data that the PCI master writes is written to the PCIC
configuration register.

The R/WL bits are:

• FBBCP and USPCP bits in the PCISTAT register (at address 0xFFFE_D006)

• CC register (at address 0xFFFE_D008)

• SCC register (at address 0xFFFE_D009)

• RID register (at address 0xFFFE_D00B)

• SVID register (at address 0xFFFE_D02C)

• ML register (at address 0xFFFE_D03C)

• MG register (at address 0xFFFE_D03D)

• IP register (at address 0xFFFE_D03E)

[Symptom]

External PCI masters might alter the contents of the R/WL bits in the TX3927 PCIC configuration
registers.

[Situations in Which This Problem Occurs]

This problem occurs when both of the following two conditions are true simultaneously:

(1) An external PCI master writes to R/WL bits of the TX3927 PCIC configuration register.

(2) The TX3927 CPU core performs a write operation on the on-chip bus.

[Workaround]

To write to the PCIC configuration register including R/WL bits, an external PCI master must perform a
read-modify-write, without altering the values of the R/WL bits.

[Operating System Usage Considerations]

If the TX3927 operates in Satellite mode, the user system might be affected by this problem.

Chapter 19 Known Problems and Limitations

19-32

Appendix A TX3927 Programming Samples

A-1

Appendix A. TX3927 Programming Samples

Note 1: Toshiba does not guarantee that the sample programs shown in this appendix function properly in
your operating environment.

Note 2: The program source codes are provided for explanation and cannot be compiled and executed as
is. Some examples assume the use of UDEOS, a feeware µITRON-compliant operating system
from Toshiba Information Systems Corporation.

A.1 Programming Tips for Beginners

A.1.1 Memory-Mapped I/O

The MIPS architecture employs memory-mapped I/O. Programmers who don’t have experience with
many types of microprocessors seem to get puzzled first by this scheme, because there are no
input/output instructions or functions to access peripheral registers, (i.e., those equivalent to the x86
in/out instructions and inp/outp functions).

In a memory-mapped I/O system, I/O and control registers are acccessed in the same way as memory
locaitons. Any instruction that can be used to access memory such as Store Byte or Store Word can also
be used to access I/O registers. Those registers are located at fixed addresses as described in this
manual. For example, to write a value of 0x0000f000 to the PIODIR register (at address 0xfffef508),
first define the following:
 volatile int *pdir;
 pdir = (volatile int*) 0xfffef508;
Then, execute:
 *pdir = 0x0000f000;

Remember that "volatile" is required. Without "volatile," the register access might be optimized out
of the program by the compiler.

A.1.2 Accessing Coprocessor 0 Registers

With the MIPS architecture, System Control Coprocessor 0 (CP0) registers are used to write system
programs, such as interrupt handling routines. Since C does not support CP0 instructions, the compiler
library does not provide functions to access CP0 registers. CP0 registers, therefore, entail programming
in assembly language. If you want to code software in C, you must create an additional library of your
own or use inline assembly code programs. Following is a sample CP0 register access routine which
can be called from a C program:

• File name: cp0ins.S

.macro getcp0reg name,regno # getcp0_xx();

 .globl \name

 .ent \name

\name:

 mfc0 $2,\regno # reg->$2

 jr $31

 nop

 .end \name

 .endm

 .macro putcp0reg name,regno # put cp0_xx(val);

 .globl \name

 .ent \name

Appendix A TX3927 Programming Samples

A-2

\name:

 mtc0 $4,\regno # reg->$2

 jr $31

 nop

 .end \name

 .endm

 .macro setcp0reg name,regno # setcp0_xx(mask,val);

 .globl \name

 .ent \name

\name:

 mfc0 $2,\regno

 nop

 and $1,$2,$4

 or $1,$1,$5

 mtc0 $1,\regno # val->CP reg

 jr $31

 nop

 .end \name

 .endm

 .set noat

 getcp0reg getcp0_0 $0

 putcp0reg putcp0_0 $0

 setcp0reg setcp0_0 $0

 getcp0reg getcp0_1 $1

 putcp0reg putcp0_1 $1

 setcp0reg setcp0_1 $1

 getcp0reg etcp0_2 $2

 putcp0reg putcp0_2 $2

 setcp0reg setcp0_2 $2

 getcp0reg getcp0_3 $3

 putcp0reg putcp0_3 $3

 setcp0reg setcp0_3 $3

 getcp0reg getcp0_4 $4

 putcp0reg putcp0_4 $4

 setcp0reg setcp0_4 $4

 getcp0reg getcp0_5 $0

 putcp0reg putcp0_5 $0

 setcp0reg setcp0_5 $0

 getcp0reg getcp0_6 $6

 putcp0reg putcp0_6 $6

 setcp0reg setcp0_6 $6

 getcp0reg getcp0_7 $7

 putcp0reg utcp0_7 $7

 setcp0reg setcp0_7 $7

 getcp0reg getcp0_8 $8

 putcp0reg putcp0_8 $8

 setcp0reg setcp0_8 $8

 getcp0reg getcp0_9 $9

 putcp0reg putcp0_9 $9

 setcp0reg setcp0_9 $9

 getcp0reg getcp0_10 $10

 putcp0reg putcp0_10 $10

 setcp0reg setcp0_10 $10

 getcp0reg getcp0_11 $11

 putcp0reg putcp0_11 $11

 setcp0reg setcp0_11 $11

 getcp0reg getstatus $12

 putcp0reg putstatus $12

 setcp0reg setstatus $12

 getcp0reg getcp0_13 $13

 putcp0reg putcp0_13 $13

 setcp0reg setcp0_13 $13

 getcp0reg getcp0_14 $14

Appendix A TX3927 Programming Samples

A-3

 putcp0reg putcp0_14 $14

 setcp0reg setcp0_14 $14

 getcp0reg getprid $15

 putcp0reg putcp0_15 $15

 setcp0reg setcp0_15 $15

 getcp0reg getcp0_16 $16

 putcp0reg putcp0_16 $16

 setcp0reg setcp0_16 $16

 getcp0reg getcp0_17 $17

 putcp0reg putcp0_17 $17

 setcp0reg setcp0_17 $17

 getcp0reg getcp0_18 $18

 putcp0reg putcp0_18 $18

 setcp0reg setcp0_18 $18

 getcp0reg getcp0_19 $19

 putcp0reg putcp0_19 $19

 setcp0reg setcp0_19 $19

 getcp0reg getcp0_20 $20

 putcp0reg putcp0_20 $20

 setcp0reg setcp0_20 $20

 getcp0reg getcp0_21 $21

 putcp0reg putcp0_21 $21

 setcp0reg setcp0_21 $21

 getcp0reg getcp0_22 $22

 putcp0reg putcp0_22 $22

 setcp0reg setcp0_22 $22

 getcp0reg getcp0_23 $23

 putcp0reg putcp0_23 $23

 setcp0reg setcp0_23 $23

 getcp0reg getcp0_24 $24

 putcp0reg putcp0_24 $24

 setcp0reg setcp0_24 $24

 getcp0reg getcp0_25 $20

 putcp0reg putcp0_25 $20

 setcp0reg setcp0_25 $20

 getcp0reg getcp0_26 $26

 putcp0reg putcp0_26 $26

 setcp0reg setcp0_26 $26

 getcp0reg getcp0_27 $27

 putcp0reg putcp0_27 $27

 setcp0reg setcp0_27 $27

 getcp0reg getcp0_28 $28

 putcp0reg putcp0_28 $28

 setcp0reg setcp0_28 $28

 getcp0reg getcp0_29 $29

 putcp0reg putcp0_29 $29

 setcp0reg setcp0_29 $29

 getcp0reg getcp0_30 $30

 putcp0reg putcp0_30 $30

 setcp0reg setcp0_30 $30

 getcp0reg getcp0_31 $31

 putcp0reg putcp0_31 $31

 setcp0reg setcp0_31 $31

 .globl getstackp

 .ent getstackp

getstackp:

 addu $2,$0,$29

 jr $31

 nop

 .end getstackp

Appendix A TX3927 Programming Samples

A-4

A.2 Basic Operation

A.2.1 Header File

• File name: tx3927.h

/**

 * MODULE NAME: tx3927.h TX 3927 REG. INFO. *

 * FUNCTION : tx 3927 header *

 * UPDATE : 1998.07.15 *

 ***/

#ifndef __TX3927__

#define __TX3912

#include "cosbd_27.h"

/************

 * SDRAM *

 ************/

/* ***** Channel Control Register ***** */

 /* Memory Type */

#define SDM_SDRAM 0x00000000 /* 0x00000000...SDRAM */

#define SDM_DIMM 0x00040000 /* 0x00040000...DIMM FLASH */

#define SDM_SMROM 0x00080000 /* 0x00080000...SMROM */

#define SDM_SGRAM 0x000C0000 /* 0x000C0000...SGRAM */

 /* SDRAM Enable */

#define SDE_ENA 0x00020000 /* Enable */

#define SDE_DIS 0x00000000 /* Disable */

 /* BANK# */

#define SDB_0 0x00000000 /* Type 0 */

#define SDB_1 0x00010000 /* Type 1 */

 /* Address Mask Register */

#define SDAM 0x0000ffe0 /* */

 /* SDRAM Row Size */

#define SDRS_2048 0x00000000 /* 2048 Rows */

#define SDRS_4096 0x00000008 /* 4096 Rows */

#define SDRS_8192 0x00000010 /* 8192 Rows */

 /* DRAM Colum Size */

#define SDCS_256 0x00000000 /* 256 Word */

#define SDCS_512 0x00000002 /* 512 Word */

#define SDCS_1024 0x00000004 /* 1024 Word */

#define SDCS_2048 0x00000006 /* 2048 Word */

 /* SDRAM Memory Width */

#define SDMW_32 0x00000000 /* 0:32 Bit */

#define SDMW_16 0x00000001 /* 1:16 Bit */

/* ***** SDRAM Shard Timing Register ***** */

 /* BANK Cycle Time */

#define SDBC_5TCK 0x00000000 /* 5 tck(Reset) */

#define SDBC_6TCK 0x20000000 /* 6 tck */

#define SDBC_7TCK 0x40000000 /* 7 tck */

#define SDBC_8TCK 0x60000000 /* 8 tck */

#define SDBC_9TCK 0x80000000 /* 9 tck */

#define SDBC_10TCK 0xa0000000 /* 10 tck */

 /* SDACP Time */

#define SDACP_3TCK 0x00000000 /* 3 tck(Reset) */

#define SDACP_4TCK 0x08000000 /* 4 tck */

#define SDACP_5TCK 0x10000000 /* 5 tck */

#define SDACP_6TCK 0x18000000 /* 6 tck */

 /* Precharge Time */

#define SDP_2TCK 0x00000000 /* 2 tck(Reset) */

#define SDP_3TCK 0x04000000 /* 3 tck */

 /* RAS to CAS Delay */

#define SDCD_2TCK 0x00000000 /* 2 tck(Reset) */

#define SDCD_3TCK 0x02000000 /* 3 tck */

 /* Refresh Counter */

Appendix A TX3927 Programming Samples

A-5

#define SDRC(cnt) ((cnt & 0x0000003F) << 18)

 /* CAS Latency */

#define CASL_2TCK 0x00000000 /* 2 tck(Reset) */

#define CASL_3TCK 0x00020000 /* 3 tck */

 /* Data Read Bypass */

#define DRB_REG 0x00000000 /* (Reset) */

#define DRB_NORMAL 0x00010000 /* */

 /* Slow Write Burst */

 /* SGRAM Black Write */

 /* SGRAM Write Pre Bit */

 /* Refresh Period */

/* ***** FLASH Shard Timing Register ***** */

/* ***** SMROM Shard Timing Register ***** */

/* ***** SDRAM Command Register ***** */

 /* Channel Mask */

#define SDCMSK_CH0 0x00000010 /* Channel #0 */

#define SDCMSK_CH1 0x00000020 /* Channel #1 */

#define SDCMSK_CH2 0x00000040 /* Channel #2 */

#define SDCMSK_CH3 0x00000080 /* Channel #3 */

#define SDCMSK_CH4 0x00000100 /* Channel #4 */

#define SDCMSK_CH5 0x00000200 /* Channel #5 */

#define SDCMSK_CH6 0x00000400 /* Channel #6 */

#define SDCMSK_CH7 0x00000800 /* Channel #7 */

 /* Command */

#define SDC_NOP 0x00000000 /* NOP Command */

#define SDC_SDMOD 0x00000001 /* Set SDRAM Mode Register */

#define SDC_SMMOD 0x00000002 /* Set SMROM Mode Register */

#define SDC_PRE 0x00000003 /* Precharge All SDRAM Banks */

#define SDC_LPMOD 0x00000004 /* Enter Low Power Mode */

#define SDC_PDMOD 0x00000005 /* Enter Power Down Mode */

#define SDC_POWEXT 0x00000006 /* Exit Low Power/Power Down Mode */

/* ***** SGRAM Load Mask Register ***** */

/* ***** SGRAM Load Color Register ***** */

/* ************ *

 * ROMC *

 * ************ */

typedef struct{

 volatile int RCCR; /* ***** Channel Control Register ***** */

}ROMCC;

#define S_RCCR0 0x1fc3e200 /* Initial Data */

 /* ROM control Page Mode ROM Page Size */

#define RPS_NON 0x00000000 /* 4-Word */

#define RPS_4 W 0x00040000 /* 4-Word */

#define RPS_8 W 0x00080000 /* 8-Word */

#define RPS_16 W 0x000c0000 /* 16-Word */

 /* ROM control Page Read Mode Wait Time on

 channel0 */

#define RPWT_0 0x00000000 /* 0 Wait */

#define RPWT_1 0x00010000 /* 1 Wait */

#define RPWT_2 0x00020000 /* 2 Wait */

#define RPWT_3 0x00030000 /* 3 Wait */

 /* ROM control Wait Time on channel0 */

#define RWT(wc) ((wc & 0xf)<< 12) /* wc : Wait Count */

 /* ROM control Channel Size on channel0 */

#define RCS_1 M 0x00000000 /* 1 Mbyte */

#define RCS_2 M 0x00000100 /* 2 Mbyte */

#define RCS_4 M 0x00000200 /* 4 Mbyte */

#define RCS_8 M 0x00000300 /* 8 Mbyte */

#define RCS_16 M 0x00000400 /* 16 Mbyte */

#define RCS_32 M 0x00000500 /* 32 Mbyte */

#define RCS_64 M 0x00000600 /* 64 Mbyte */

#define RCS_128 M 0x00000700 /* 128 Mbyte */

#define RCS_256 M 0x00000800 /* 256 Mbyte */

#define RCS_512 M 0x00000900 /* 512 Mbyte */

Appendix A TX3927 Programming Samples

A-6

 /* ROM control BUS Size */

#define BUS16 0x00000080 /* ROM control 16bit width bus size on channel0

 */

#define BUS32 0x00000000 /* ROM control 32bit width bus size on channel0

 */

#define RPM 0x00000001 /* ROM control Page Mode on channel0 */

/************

 * DMA *

 ************/

/* ***** Master Control Register ***** */

#define S_MCR 0x00000000 /* Initial Data */

#define FIFOVC(vc) ((wc & 0x0002c000) << 14) /* FIFO Valid Entry Count */

#define FIFWP(wp) ((wp & 0x00003800) << 11) /* FIFO Write Pointer */

#define FIFRP(rp) ((rp & 0x00000700) << 8) /* FIFO Read Pointer */

#define RSFIF 0x00000080 /* Reset FIFO */

#define FIFUM 0x00000078 /* FIFO Use Mask */

#define LE 0x00000004 /* Little Endian */

#define RRPT 0x00000002 /* Round Robin Priority */

#define MSTEN 0x00000001 /* Master Enable */

/* ***** Channel Control Register ***** */

#define S_CNTL 0x00000000 /* Initial Data */

#define CH_reset 0x01000000 /* Channel Reset */

#define RVBYTE 0x00800000 /* Reverse Byte */

#define ACKPOL 0x00400000 /* Acknowledge Polarity */

#define REQPL 0x00200000 /* Request Polarity */

#define EGREQ 0x00100000 /* Edge Request */

#define CHDN 0x00080000 /* Chain Done */

 /* Done Control */

 /* External Request */

 /* Internal Request Delay */

 /* Interrupt Enable on Error */

 /* Interrupt Enable on Chain Done */

 /* Interrupt Enable on Transfer Done */

 /* Chain Enable */

 /* Transfer Active */

 /* Snop */

 /* Mixed Destination Increment */

 /* Mixed Source Increment */

 /* Transfer Size */

 /* Memory to I/O */

 /* One Address */

/* ***** Channel Status Register ***** */

#define S_STS 0x00000000 /* Initial Data */

#define WAITC(wc) ((wc & 0x0000ffc000) << 14) /* Internal Wait Counter */

#define CHNACT 0x00000100 /* Channel Active */

#define ABCHC 0x00000080 /* Abnormal Chain Completion */

#define NCHNC 0x00000040 /* Normal Chain Completion */

#define NTRNFC 0x00000020 /* Normal Transfer Completion */

#define EXTDN 0x00000010 /* External Done Asserted */

#define CFERR 0x00000008 /* Configuration Error */

#define CHERR 0x00000004 /* Chain Bus Error */

#define DESERR 0x00000002 /* Destination Bus Error */

#define SORERR 0x00000001 /* Source Bus Error */

/* ***** Source Address Register ***** */

/* ***** Destination Address Register ***** */

/* ***** Chain Address Register ***** */

/* ***** Source & Destination Address Increment ***** */

/* ***** Count Register ***** */

Appendix A TX3927 Programming Samples

A-7

/************

 * TIMMER *

 ************/

/* ***** Timer Control Register ***** */

#define S_TMTCR 0x00000000 /* Initial Data */

#define TCE 0x00000080 /* Timer Count Enable */

#define CCDE 0x00000040 /* Counter Clock Divide Enable */

#define CRE 0x00000020 /* Counter Reset Enable */

#define ECES 0x00000008 /* External Clock Edge Select */

#define CCS 0x00000004 /* Counter Clock Select */

/* Timer Mode */

#define TMODE_WT 0x00000002 /* Watchdog Timer Mode */

#define TMODE_PG 0x00000001 /* Pulse Generator Mode */

#define TMODE_IT 0x00000000 /* Interval Timer Mode */

/* ***** Timer Interrupt Status Register ***** */

#define S_TMTISR 0x00000000 /* Initial Data */

#define TWIS 0x00000008 /* Timer Watchdog Interrupt Status */

#define TPIBS 0x00000004 /* Timer Pulse Generator Interrupt by CPRB

 Status */

#define TPIAS 0x00000002 /* Timer Pulse Generator Interrupt by CPRA

 Status */

#define TIIS 0x00000001 /* Timer Interval Interrupt Status */

/* ***** Compare Register A ***** */

#define S_TMCPRA 0x00000000 /* Initial Data */

/* ***** Compare Register B ***** */

#define S_TMCPRB 0x00000000 /* Initial Data */

/* ***** Interval Timer Mode Register ***** */

#define S_TMITMR 0x00000000 /* Initial Data */

#define TIIE 0x00008000 /* Timer Interval Interrupt Enable */

#define TZCE 0x00000001 /* Interval Timer Zero Clear Enable */

/* ***** Divider Register ***** */

#define S_TMCCDR 0x00000000 /* Initial Data */

#define CCD_1 0x00000000 /* Counter clock Divided by 1st power of 2 */

#define CCD_2 0x00000001 /* Counter clock Divided by 2nd power of 2 */

#define CCD_3 0x00000002 /* Counter clock Divided by 3rd power of 2 */

#define CCD_4 0x00000003 /* Counter clock Divided by 4th power of 2 */

#define CCD_5 0x00000004 /* Counter clock Divided by 5th power of 2 */

#define CCD_6 0x00000005 /* Counter clock Divided by 6th power of 2 */

#define CCD_7 0x00000006 /* Counter clock Divided by 7th power of 2 */

#define CCD_8 0x00000007 /* Counter clock Divided by 8th power of 2 */

/* ***** Pulse Generator Mode Register ***** */

#define S_TMPGMR 0x00000000 /* Initial Data */

#define TPIBE 0x00008000 /* Timer Pulse Generator Interrupt by CPRB

 Enable */

#define TPIAE 0x00004000 /* Timer Pulse Generator Interrupt by CPRA

 Enable */

#define FFI 0x00000001 /* Timer Flip-Flop Initial */

/* ***** Watchdog Timer Mode Register ***** */

#define S_TMWTMR 0x00000000 /* Initial Data */

#define TWIE 0x00008000 /* Timer Watchdog Interrupt Enable */

#define WDIS 0x00000080 /* Watchdog Timer Disable */

#define TWC 0x00000001 /* Timer Watchdog Clear */

/* *** Timer Read Register *** */

#define S_TMTRR 0x00000000 /* Initial Data */

/****************

 * CHIP CONFIG *

 ****************/

/* *** Chip Configuration Register *** */

/* #define S_CCFG 0x0000 /* Initial Data */

#define CCFG_GHA 0x00040000 /* GBus Half Speed */

#define CCFG_TOF 0x00020000 /* TLB Off(On) */

#define CCFG_BEW 0x00010000 /* Bus Error on Write */

#define CCFG_WRS 0x00008000 /* Watchdog Timer for Reset/NMI */

#define CCFG_TOE 0x00004000 /* Timeout Enable for Bus Error */

#define CCFG_PAB 0x00002000 /* Internal or External PCI arbiter */

Appendix A TX3927 Programming Samples

A-8

#define CCFG_PCI 0x00001000 /* PCI Clock Divider Control(1/2) */

#define CCFG_PSN 0x00000800 /* PCI Bus Request Snoop(Ena. Cache) */

#define CCFG_PRI 0x00000400 /* Select PCI Arbitration Priority */

 /* PLL Offset */

#define CCFG_PLO(off) ((off & 0x00000003) << 8)

 /* PLL Gain */

#define CCFG_PLG(gn) ((gn & 0x00000003) << 6)

 /* PLL Multiplier */

#define CCFG_PLM(adr) ((adr & 0x00000003) << 4)

#define CCFG_POF 0x00000008 /* PLL Off(ON) */

#define CCFG_END 0x00000004 /* Current Endian Setting of G-Bus */

#define CCFG_HLF 0x00000002 /* System Clock Half-Speed Mode */

#define CCFG_HLD 0x00000001 /* ACE Address Hold */

/* *** Pin Configuration Register *** */

#define S_PINCFG 0x00000000 /* Initial Data */

#define S_PIN_ENA 0x0fffffff /* Enable All Pins */

#define PINC_SCE 0x08000000 /* System Clock Enable */

/* SDRAM Clock Enable */

#define SDCLK_4 0x04000000 /* SDCLK[4] Enable */

#define SDCLK_3 0x02000000 /* SDCLK[3] Enable */

#define SDCLK_2 0x01000000 /* SDCLK[2] Enable */

#define SDCLK_1 0x00800000 /* SDCLK[1] Enable */

#define SDCLK_0 0x00400000 /* SDCLK[0] Enable */

/* SDRAM Clock Enable */

#define PCICLK_3 0x00200000 /* PCICLK[3] Enable */

#define PCICLK_2 0x00100000 /* PCICLK[2] Enable */

#define PCICLK_1 0x00080000 /* PCICLK[1] Enable */

#define PCICLK_0 0x00040000 /* PCICLK[0] Enable */

#define PINC_SCS 0x00020000 /* Select DMA/SDCS_CE Function */

#define PINC_SDF 0x00010000 /* Select DSF Function */

/* Select SIO Control Pins */

#define SELSIOC_1 0x00008000 /* Select the Function CTS[1]/PIO[2]

 and RTS[1]/PIO[1]/DSF. */

#define SELSIOC_0 0x00004000 /* Select the Function CTS[0]/INT[5]

 and RTS[0]/INT[4] */

/* Select SIO/PIO function Select */

#define SELSIO_1 0x00002000 /* Select the Function RXD[1]/PIO[6]

 and TXD[1]/PIO[5] */

#define SELSIO_0 0x00001000 /* Select the Function RXD[0]/PIO[4]

 and TXD[0]/PIO[3] */

/* Select Timer PIO function Select */

#define SELTMR_2 0x00000800 /* Select the Function */

#define SELTMR_1 0x00000400 /* Select the Function */

#define SELTMR_0 0x00000200 /* Select the Function */

/* Select DMADONE/PIO */

#define SELDONE 0x00000100 /* Select the Function */

/* Internal/External DMA Source Connection */

#define INTDMA_3 0x00000080 /* DMAREQ/ACK[3] connect to SIO[1] TXREQ/ACK */

#define INTDMA_2 0x00000040 /* DMAREQ/ACK[3] connect to SIO[0] TXREQ/ACK */

#define INTDMA_1 0x00000020 /* DMAREQ/ACK[3] connect to SIO[1] RXREQ/ACK */

#define INTDMA_0 0x00000010 /* DMAREQ/ACK[3] connect to SIO[1] RXREQ/ACK */

/* Select DMA/PIO/TIMER Function */

#define DMAREQ_3 0x00000008 /* Used to select the function of

 DMAREQ[3]/PIO[15]/TIMER[1]

 DMAACK[3]/PIO[14]/TIMER[0] */

#define DMAREQ_2 0x00000004 /* Used to select the function of

 DMAREQ[2]/PIO[13]

 DMAACK[2]/PIO[12] */

#define DMAREQ_1 0x00000002 /* Used to select the function of

 DMAREQ[1]/PIO[11]

 DMAACK[1]/PIO[10] */

#define DMAREQ_0 0x00000001 /* Used to select the function of

 DMAREQ[0]/PIO[9] DMAACK[0]/PIO[8] */

/* *** Power Down Control Register *** */

/* interrupt signals wake from power down mode */

#define PDNMSK_NMI 0x00800000

Appendix A TX3927 Programming Samples

A-9

#define PDNMSK_INT5 0x00400000

#define PDNMSK_INT4 0x00200000

#define PDNMSK_INT3 0x00100000

#define PDNMSK_INT2 0x00080000

#define PDNMSK_INT1 0x00040000

#define PDNMSK_INT0 0x00020000

/* Power Down Trigger */

#define PDN 0x00010000

/* PIO Output Direction */

#define PIO_0 0x00000001

#define PIO_1 0x00000002

#define PIO_2 0x00000004

#define PIO_3 0x00000008

#define PIO_4 0x00000010

#define PIO_5 0x00000020

#define PIO_6 0x00000040

#define PIO_7 0x00000080

#define PIO_8 0x00000100

#define PIO_9 0x00000200

#define PIO_10 0x00000400

#define PIO_11 0x00000800

#define PIO_12 0x00001000

#define PIO_13 0x00002000

#define PIO_14 0x00004000

#define PIO_15 0x00008000

/* PIO Open Drain Mode */

#define ALL_TOTEM 0x0000ffff /* PIO All Totem-pole Mode */

/************

 * SIO *

 ************/

/* *** Line Control Register *** */

#define S_SILCR 0x4000 /* Initial Data */

#define SILC_RWUB 0x8000 /* Wake Up Bit for Receive */

#define SILC_TWUB 0x4000 /* Wake Up Bit for Transmit */

#define SILC_UODE 0x2000 /* SOUT Open Drain Enable */

#define SILC_HS_CTS 0x0100 /* Hand Shake Enable(CTS) */

#define SILC_SCS_I 0x0000 /* SIO Clock Select:

 T0 (Internal System Clock) */

#define SILC_SCS_B 0x0020 /* SIO Clock Select: Baud Rate Generator */

#define SILC_SCS_E 0x0040 /* SIO Clock Select: External Clock (SCLK) */

#define SILC_UPE_ODD 0x0010 /* UART Parity Odd */

#define SILC_UPE_EVN 0x0008 /* UART Parity Enable */

#define SILC_UPE_NON 0x0000 /* UART Parity Non */

#define SILC_U2STOP 0x0004 /* UART 2 Stop Bit */

#define SILC_UM_8 0x0000 /* UART MODE: 8-bit Data Length */

#define SILC_UM_7 0x0001 /* UART MODE: 7-bit Data Length */

#define SILC_UM_M8 0x0002 /* UART MODE: Multidrop 8-bit Data Length */

#define SILC_UM_M7 0x0003 /* UART MODE: Multidrop 7-bit Data Length */

/* *** DMA/Interrupt Control Register *** */

#define S_SILSR 0x0000 /* Initial Data */

#define TDR 0x8000 /* Tran. DMA Request(Enable) */

#define RDR 0x4000 /* Rsv. DMA Request(Enable) */

#define TIR 0x2000 /* Tran. Interrupt Request(Enable) */

#define RIR 0x1000 /* Rsv. Interrupt Request(Enable) */

#define SPIR 0x0800 /* Sp. Interrupt Request(Enable) */

/* CTSS Status active condition */

#define CTS_DIS 0x0000 /* Disable */

#define CTS_UEG 0x0200 /* Rising Edge od CTS */

#define CTS_DEG 0x0400 /* Falling Edge of CTS */

#define CTS_BEG 0x0600 /* Both Edge of CTS */

/* Status Change Interrupt Enable */

#define STIE_OVE 0x0020 /* Overrun Error Status */

#define STIE_CTS 0x0010 /* CTS Terminal Status */

#define STIE_RBK 0x0008 /* Receive Break */

#define STIE_TRD 0x0004 /* Transmit Ready */

Appendix A TX3927 Programming Samples

A-10

#define STIE_TXA 0x0002 /* Transmit All Sent */

#define STIE_UBK 0x0001 /* UART Break Detect */

/* *** DMA/Interrupt Status Register *** */

#define S_SIDISR 0x4100 /* Initial Data */

#define SIDI_UBK 0x8000 /* UART Break Detect */

#define SIDI_UVA 0x4000 /* UART Available Data */

#define SIDI_UFE 0x2000 /* UART Frame Error */

#define SIDI_UPE 0x1000 /* UART Parity Error */

#define SIDI_UOE 0x0800 /* UART Overrun Error */

#define SIDI_ERI 0x0400 /* Error Interrupt */

#define SIDI_TOU 0x0200 /* Time Out */

#define SIDI_TEMP 0x0100 /* Transmit DMA/Interrupt Status */

#define SIDI_RFUL 0x0080 /* Receive DMA/Interrupt Status */

#define SIDI_STI 0x0040 /* Status Change Interrupt Status */

/* *** Status Change Interrupt Status Register *** */

#define S_SICISR 0x0006 /* Initial Data */

#define SICI_OVE 0x0020 /* Overrun Error Detect */

#define SICI_CTS 0x0010 /* CTS Terminal Status(Signal High) */

#define SICI_RBK 0x0008 /* Receive Break */

#define SICI_TRD 0x0004 /* Transmit Ready */

#define SICI_TXA 0x0002 /* Transmit All Sent */

#define SICI_UBK 0x0001 /* UART Break Detect */

/* *** FIFO Control Register *** */

#define S_SIFCR 0x0000 /* Initial Data */

#define SISF_RDL 0x0010 /* Receive FIFO DMA Request Trigger Level */

#define SISF_TDL 0x0008 /* Transfer FIFO DMA Request Trigger Level */

#define SISF_TFR 0x0004 /* Transmit FIFO Reset */

#define SISF_RFR 0x0002 /* Receive FIFO Reset */

#define SISF_FRS 0x0001 /* FIFO Reset Enable */

/* *** FLOW Control Register *** */

#define S_SIFLCR 0x0182 /* Initial Data */

#define SIFL_RCS 0x1000 /* RTS Control Select */

#define SIFL_TES 0x0800 /* Transmit Enable Select */

#define SIFL_RTS 0x0200 /* RTS Software Control */

#define SIFL_RSE 0x0100 /* Receive Serial Data Enable */

#define SIFL_TSE 0x0080 /* Transmit Serial Data Enable */

 /* RTS Trigger Level (1 to 15)*/

#define SIFL_RTSTL(lvl) ((lvl & 0xf) << 1)

#define SIFL_TBK 0x0001 /* Break Transmit(Enable) */

/* *** Baud Rate Generator Clock *** */

#define S_SIBGR 0x03FF /* Initial Data */

#define BCLK_FC4(n) (0x0000|(n&0xff)) /* Select Prescalar Output T0(fc/4) */

#define BCLK_FC16(n) (0x0100|(n&0xff)) /* Select Prescalar Output 2(fc/16) */

#define BCLK_FC64(n) (0x0200|(n&0xff)) /* Select Prescalar Output T4(fc/64) */

#define BCLK_FC256(n) (0x0300|(n&0xff)) /* Select Prescalar Output T6(fc/256) */

/************************

 * Data Format Table *

 ************************/

/**************

 * DMA *

 **************/

typedef struct {

 volatile int CHAR; /* ***** Chained Address Register ***** */

 volatile int SAR; /* ***** Source Address Register ***** */

 volatile int DAR; /* ***** Destination Address Register ***** */

 volatile int CTR; /* ***** Count Register ***** */

 volatile int SAI; /* ***** Source Address Increment Register ***** */

 volatile int DAI; /* ***** Destination Address Increment Register ***** */

 volatile int CCR; /* ***** Control Register ***** */

 volatile int CSR; /* ***** Status Register ***** */

 } DMA;

Appendix A TX3927 Programming Samples

A-11

/**************

 * INTR *

 **************/

typedef struct {

 volatile int IRCER; /* ***** Interrupt Control Enable Register ***** */

 volatile int IRCR[2]; /* ***** Interrupt Control Mode Register ***** */

 int tmp1;

 volatile int IRILR[8]; /* ***** Interrupt Level Register ***** */

 volatile int dummy23[4];

 volatile int IRIMR; /* ***** Interrupt Mask Register ***** */

 volatile int dummy24[7];

 volatile int IRSCR;

 /* ***** Interrupt Status Control Register ***** */

 volatile int dummy25[7];

 volatile int IRSSR; /* ***** Interrupt Source Register ***** */

 volatile int dummy26[7];

 volatile int IRCSR; /* ***** Interrupt Current Register ***** */

 char tmp9[0xd000-0xc0a4];

 } INTR;

/**************

 * PCI *

 **************/

typedef struct{ /* PCI Configuration Hader */

 int DID;

 int PCISTAT; /* Status reg.*/

#define DECPE 0x80000000 /*Detected Parity Error(write clear)*/

#define SIGSE 0x40000000 /*Signaled System Error(write clear)*/

#define RECMA 0x20000000 /*Received Master Abort(write clear)*/

#define RECTA 0x10000000 /*Received Target Abort(write clear)*/

#define SIGTA 0x08000000 /*Signaled Target Abort(write clear)*/

#define PERPT 0x01000000 /*Parity Error Reported(write clear)*/

#define FBBCP 0x00800000 /*Fast Back-to-Back Capabe*/

#define USPCP 0x00200000 /*USPCP bit field*/

/* Command reg.*/

#define FBBEN 0x00000200 /*Fast Back-to-Back Enable*/

#define SEEN 0x00000100 /*SERR Enable*/

#define PEREN 0x00000040 /*PERR Enable*/

#define MWIEN 0x00000010 /*Memory Write and Invalidate Enable*/

#define SCREC 0x00000008 /*Special Cycle Recognition*/

#define MEN 0x00000004 /*Master Enable*/

#define MACEN 0x00000002 /*Memory Access Enable*/

#define IACEN 0x00000001 /*I/O Access Enable*/

 int CC;

 int INF;

 int IOBA,MBA,BA2,BA3,BA4,BA5; /* chenge MBA<->IOBA tanka 990429 */

 int non[2];

 int EXTIOBA;

 int non2[2];

 int ML;

}PCI_CONF;

typedef struct{ /* PCI initiator Configuration */

 int IC; /* Initiator Control register */

 int ISTAT; /* initiator Status register */

 int IIM; /* Initiator Interrupt Mask register */

 int RRT; /* Retry/Reconnect Timer Register */

 int tmp1[3];

 int IPBMMAR; /* Initiator Local bus IO Mapping register */

 int IPBIOMAR; /* Initiator Local bus Memory Mapping register */

 int ILBMMAR; /* Initiator PCI bus IO Mapping register */

 int ILBIOMAR; /* Initiator PCI bus Memory Mapping register */

 char tmp2[0x90-0x6c];

 }PCI_ICONF;

typedef struct{ /* PCI target Configuration */

Appendix A TX3927 Programming Samples

A-12

 int TC; /* Target Control register */

 int TSTAT; /* Target status register */

 int TIM; /* Target Interrupt Mask register */

 int TCCMD; /* Target Current Command register */

 int PCIRRT; /* PCI Read Retry Tag register */

 int PCIRRT_CMD; /* PCI Read Retry Timer Command Register */

 int PCIRRDT; /* PCI Read Retry Discard Timer register */

 int tmp1[3];

 int TLBOAP; /* Target Local bus Output FIFO Address Pointer */

 int TLBIAP; /* Target Local bus Input FIFO Address Pointer */

 int TLBMMA; /* Target Local bus Memory Mapping Address register */

 int TLBIOMA; /* Target Local bus IO Mapping Address register */

 int SC_MSG; /* Special Cycle Message register */

 int SC_BE; /* Special Cycle Byte Enable register */

 int TBL; /* Target Burst Length */

 char tmp2[0x100-0xd4];

}PCI_TCONF;

typedef struct{ /* PCI bus Arbiter/Park */

 int REQ_TRACE; /* Request Trace register */

 int PBAPMC; /* PCI Bus Arbiter/Park Master Control register */

#define BARST 0x04 /* Reset Bus Arbiter */

#define BAENA 0x02 /* Enable Bus Arbiter */

#define MBCENA 0x01 /* Broken Master Check Enable */

 int PBAPMS; /* PCI Bud Arbiter/Park Master Status register */

 int PBAPMIM; /* PCI Bus Arbiter/Park Master Interrupt Mask register */

 int BM; /* Broken Master register */

 int CPCIBRS; /* Current PCI bus Request register */

 int CPCIBGS; /* Current PCI bus Grant Status register */

 int PBACS; /* Current PCI bus Arbiter Status register */

}PCI_EXT;

typedef struct{/* PCI local bus */

 int IOBAS; /* Target IO Base Address Register */

 int MBAS; /* Target Memory Base Address Register */

 int LBC; /* Local bus Control register */

#define HRST 0x00000800 /*Hard Reset */

#define SRST 0x00000400 /*Soft Reset */

#define EPCAD 0x00000200 /*External PCI Configuration Access Disable */

#define MSDSE 0x00000100 /*Memory Space Dynamic Swap Enable */

#define CRR 0x00000080 /*Configuration Registers Ready for Access */

#define ILMDE 0x00000040 /*Initiator Local Bus Memory Address Space

 Decoder Enable */

#define ILIDE 0x00000020 /*Initiator Local Bus I/O Address Space Decoder

 Enable */

#define TPIIC 0x00000010 /*Test PCI I/O Buffer Idd Current */

 int LBSTAT; /* Local bus Status register */

 int LBIM; /* Interrupt Mask register */

 int PCISTATIM; /* Interrupt Mask Status register */

#define LS_PERR 0x20

#define LS_SERR 0x10

#define LS_GERR 0x08

#define LS_IAS 0x04

#define LS_RST 0x02

 int ICAR; /* Initiator Configuration Address register */

 int ICDR; /* Initiator Configuration Data register */

 int IIADP; /* Initiator Interrupt Acknowledge Data Port register */

 int ISCDP; /* Initiator Special Cycle Data Port register */

 int MMAS; /* Initiator Memory Mapping Address register */

 int IOMAS; /* Initiator IO Mapping Address register */

Appendix A TX3927 Programming Samples

A-13

 int IPCIADDR; /* Initiator Indirect Address register */

 int IPCIDATA; /* Initiator Indirect Data register */

 int IPCICBE; /* initiator Indirect Command/Byte Enable register */

}PCI_LSP;

/**************

 * TMR *

 * ************/

typedef struct {

 volatile int TMTCR; /* Timer Control Register */

 volatile int TMTISR; /* Timer Interrupt Status Register */

 volatile int TMCPRA; /* Compare Register A */

 volatile int TMCPRB; /* Compare Register B */

 volatile int TMITMR; /* Interval Timer Mode Register */

 volatile int dummy1[3];

 volatile int TMCCDR; /* Clock Divider Register */

 volatile int dummy2[3];

 volatile int TMPGMR; /* Pulse Generator Mode Register */

 volatile int dummy3[3];

 volatile int TMWTMR; /* Watchdog Timer Mode Register */

 volatile int dummy4[43];

 volatile int TMTRR; /* Timer Read Register */

 volatile int dummy5[3];

} TMR;

/* *************

 * SIO *

 * *************/

typedef struct { /* little */

 volatile int SILCR;

 volatile int SIDICR;

 volatile int SIDISR;

 volatile int SISCISR;

 volatile int SIFCR;

 volatile int SIFLCR;

 volatile int SIBGR;

 volatile int SITFIFO;

 volatile int SIRFIFO;

 char dumy[0x100-0x24];

} SIO;

#if 0

/* 0xfffe8000 * SDRAM Channel Control Register */

 volatile int SDRAMC[8]; /* 0x1fc00000 (0x00000000)...Base Address */

#endif

/***********************

 * TX3927 Register Map *

 ***********************/

typedef struct {

/* 0xfffe8000 * SDRAM Channel Control Register */

 volatile int SDRAMC[8];

 volatile int SDCTR1; /* SDRAM Shard Timing Register */

 volatile int SDCTR2; /* FLASH Shard Timing Register */

 volatile int SDCTR3; /* SMROM Shard Timing Register */

 volatile int SDCCMD; /* SDRAM Command Register */

 volatile int SDCSMRS1; /* SGRAM Load Mask Register */

 volatile int SDCSMRS2; /* SGRAM Load Color Register */

 char tmp1[0x9000-0x8000-0x38];

/* 0xfffe9000 * ROM Channel Control Register *** */

 ROMCC ROMC[8];

 Char tmp2[0xb000-0x9000-sizeof(ROMCC)*8];

/* 0xfffeb000 * DMA Register *** */

 DMA DREG[4]; /* Data Buffer Register */

Appendix A TX3927 Programming Samples

A-14

 volatile int DBR[8]; /* Temporary Data Holding Register */

 volatile int TDHR; /* Muster Control Register */

 volatile int DMACR;

 char tmp3[0xc000-0xb0a8];

/* 0xfffec000 <<Interrupt Controller>>*/

 INTR IREG;

/* 0xfffed000 * << PCI Controller>> */

 PCI_CONF pci_conf;

 PCI_ICONF pci_iconf;

 PCI_TCONF pci_tconf;

 PCI_EXT pci_ext;

 PCI_LSP pci_lsp;

 Char tmp10[0xe000-0xd15c];

/* 0xfffee000 Chip Configuration Register *** */

 volatile int CCFG; /* Chip Revision ID Register */

 volatile int CREVID; /* Pin Configuration Register */

 volatile int PINCFG; /* Timeout Error Register */

 volatile int TMOUTERR; /* Power Down Control Register */

 volatile int PDNCTL;

 volatile int dummy29[1019];

/* 0xfffef000 Timer Register *** */

 TMR TREG[3];

/* 0xfffef300 SIO Register *** */

 SIO SREG[2];

/* 0xfffef500 PIO Register *** */

 volatile int PIODO; /* PIO Output Register */

 volatile int PIODI; /* PIO Input Register */

 volatile int PIODIR; /* PIO Direction Control Register */

 volatile int PIOOD; /* PIO Open Drain Control Register */

 volatile int PIOFLAG0; /* PIO Flag Register */

 volatile int PIOFLAG1; /* PIO Flag Register */

 volatile int PIOPOL; /* PIO Flag Polarity Control Register */

 volatile int PIOINT; /* PIO Interrupt Control Register */

 volatile int PIOMASKCPU; /* CPU Interrupt Mask Register */

 volatile int PIOMASKEXT; /* External Interrupt Mask Register */

 char tmp12[0x10000-0xf528];

}TX3927;

/* *** Physical Address *** */

#define CPUReg ((TX3927 *)0xfffe8000)

/* ***** End Of File "tx3927.h" ***** */

#endif

Appendix A TX3927 Programming Samples

A-15

A.2.2 Start Routine

This section shows a simple start routine for the TX3904, a member of the TX39 family, that
initializes the processor following power-on reset and then transfers control to the user’s main routine.
The start routine is placed at the Reset exception vector address when your application is ROMed.

The start routine performs the following tasks:

• Determines whether the exception was caused by NMI or RESET*.

• Initializes the memory controller (boot_initreg).

• Clears the Bss section (using boot_memset).

• Copies the initial program data in the data section from ROM to RAM (using boot_memcpy).
* Memory writes are followed by a routine which ensures that the external memory is
synchronized with the internal caches (boot_synccache).

• Enables the caches.

• Initializes the gp, sp and pid_base registers.

• Jumps to the main routine.

The exception vectors other than the reset vector are implemented as dummy (dummy software loop).

The TX39 does not require any settings for the processor core to become operational. (The
COLDRESET input disables the caches and TLB.) The above tasks are most commonly used in
applications comprised of ELF object files; the coding style largely depends on the compiler used.

In TX3927, memory controller settings and cache operations have been changed from the TX3904.
Refer to the appropriate chapters in this manual.

Note: The following start routine example was generated using a GHS compiler; so the resulting
code uses symbols and tables that have been automatically generated by the GHS linker.
Specifically, the following symbols starting with __ghs are used:

__ghsbinfo_clear, __ghseinfo_clear: Start and end addresses of initialization section table
__ghsbinfo_copy, __ghseinfo_copy: Start and end addresses of initial data section table
__ghsbegin_sdabase: Lowest address of the SDA section
__ghsend_stack: Highest address of the stack space

You cannot use these symbols with other compilers, and other versions of the GHS compilers
may use symbols differently. It is recommended to refer to the crt0 source program that comes
with the GHS compiler.

Cygnus' GNUPro does not generate the above symbols automatically. The user can, however,
write a linker script file to define arbitrary symbols and use them in the same way.

• File name: Boot.mip

 # Id

 #

 # ROM Boot Routine for TX3904

 # Copyright(c) 1998 TOSHIBA Corp.

 #

 # Depend on GHS Cross MIPS Compiler ver.1.8.8

Appendix A TX3927 Programming Samples

A-16

 #

 .file "boot.mip"

 .section ".boot",.text

 .set noreorder

$status=$12

$config=$3

/* $k0=$26 */

/* $k1=$27 */

 # --

 # Exception Vector

 # --

 .globl ResetVector

ResetVector: # Reset and NMI vector

 J boot_main

 nop

 .word Revision /* Required by Test Monitor on JMR-TX3904 */

Revision:

 .byte "ApplicationName ver.0.01"

 .offset 0x100

UtlbExcVector:

1: b 1b

 nop

 .offset 0x180

GeneralExcVector:

1: b 1b

 nop

 .offset 0x200

DebugExcVector:

1: b 1b

 nop

 .offset 0x300

 # --

 # Boot Main Routine

 # --

boot_main:

 # Check NMI

 mfc0 $k1,$status

 nop

 srl $k1,$k1,16

 andi $k1,$k1,0x1 # select NMI bit

 beq $k1,$0,1f # go ahead if not NMI

 nop

 jal NMIHandler

 nop

1:

 # Initialize ROMC and RAMC and Etc.

 jal boot_initreg

 nop

 # Copy Rom Image into Ram and Sync Cache

 # Clear bss area with zero

 lui $16,%hi(__ghsbinfo_clear)

 addiu $16,$16,%lo(__ghsbinfo_clear)

 lui $17,%hi(__ghseinfo_clear)

 addiu $17,$17,%lo(__ghseinfo_clear)

 b 2f

 nop # delay slot

1: addi $16,$16,4

 lw $5,0($16)

 addi $16,$16,4

 lw $6,0($16)

Appendix A TX3927 Programming Samples

A-17

 jal boot_memset

 addi $16,$16,-8 # delay slot

 lw $4,0($16)

 addi $16,$16,8

 lw $5,0($16)

 jal boot_synccache

 addi $16,$16,4 # delay slot

2: bne $16,$17,1b

 lw $4,0($16) # delay slot

 # Copy Rom to Ram

 lui $16,%hi(__ghsbinfo_copy)

 addiu $16,$16,%lo(__ghsbinfo_copy)

 lui $17,%hi(__ghseinfo_copy)

 addiu $17,$17,%lo(__ghseinfo_copy)

 b 2f

 nop # delay slot

1: addi $16,$16,4

 lw $5,0($16)

 addi $16,$16,4

 lw $6,0($16)

 jal boot_memcpy

 addi $16,$16,-8 # delay slot

 lw $4,0($16)

 addi $16,$16,8

 lw $5,0($16)

 jal boot_synccache

 addi $16,$16,4 # delay slot

2: bne $16,$17,1b

 lw $4,0($16) # delay slot

 # Cache ON

 mfc0 $k1,$config

 nop

 ori $k1,$k1,0x30

 mtc0 $k1,$config

 j 3f

 nop

3:

 # Set Global Pointer

 lui $gp, %hi(__ghsbegin_sdabase) # set gp

 addiu $gp, $gp, %lo(__ghsbegin_sdabase)

 addiu $gp, $gp, 0x4000 # Add 32K to $gp

 addiu $gp, $gp, 0x4000

 # Clear PIC Pointer($23) with zero

 addi $23,$0,$0

 # Set Stack Pointer

 lui $sp, %hi(__ghsend_stack) # set sp

 addiu $sp, $sp, %lo(__ghsend_stack)

 # Jump into Entry Point of Program

 lui $4,%hi(main)

 addiu $4,$4,%lo(main)

 jr $4

 nop

 # --

 # SyncCache Routine

 # void boot_synccache(void* addr, unsigned size)

 # --

boot_synccache:

 mfc0 $2,$config

 li $3,0xffffffcf

 and $3,$2,$3

Appendix A TX3927 Programming Samples

A-18

 mtc0 $3,$config

 j 1f

 nop

1: add $5,$5,$4

2: bge $4,$5,3f

 nop

 .align 16

 cache 0,0($4)

 nop

 .align 16

 cache 1,0($4)

 j 2b

 addi $4,$4,4

3: mtc0 $2,$config

 jr $31

 nop

 # --

 # NMI handler

 # --

NMIHandler:

1: b 1b

 nop

Appendix A TX3927 Programming Samples

A-19

A.2.3 Initializing the Memory Controller (SDRAMC)

This section demonstrates how to initialize the SDRAMC on the TX3927 evaluation board, the JMR-
TX3927, from Toshiba Information Systems Corporation.

The first several instructions form a timer-loop in order to wait for the SDRAM to be ready by way
of precaution.

The 32-bit SDRAM bank is formed using two TC59S6416BFTL-80 1Mx16-bitx4-bank SDRAMs for
a total of 16 MB.

The SDRAM memory space begins at physical address 0.

Following are excerpts from the TC59S6416BFTL-80 datasheet that require initialization in the
SDRAMC:

Page1: 64 ms, 4K-cycle refresh (refreshing 4096 rows) ----------- (a)

Page3: 4096 rows × 256 colums × 16 bits ----------- (b)

Page6: tRC 64 ns (min) ----------- (c)
tRAS 48 ns (min), 100000 ns (max) ----------- (d)
tRCD 20 ns (min) ----------- (e)
tRP 20 ns (min) ----------- (f)
tWR 10 ns (min) (CL=2) ----------- (g)

Page 29 Address inputs (Row addressing: A0-A11, column addressing: A0-A7) ----------- (b)

When the TX3927 operates at 133 MHz, the SDRAM clock frequency is 66 MHz (with a 15-ns clock
cycle).

The SDRAMC registers are programmed as follows in the sample code:

SDCCR0
SDBA0 = 0x0000
SDM0 = 0 (SDRAM)
SDE0 = 1 (Enable)
SDBS0 = 1 (4 banks)
SDAM0 = 0x000e (16 MB)
SDRS0 = 1 (4096 rows) ------- (b)
SDCS0 = 0 (256 columns) ------- (b)
SDMW0 = 0 (32-bit width)

SDCTR1
SDBC1 = 0 (5 tCK = 75 ns) ------- (c)
SDACP1 = 1 (4 tCK = 60 ns) ------- (d)
SDP1 = 0 (2 tCK = 30 ns) -------- (f)
SDCD1 = 0 (2 tCK = 30 ns) ------- (e)
WRT1 = 0 (1 tCK = 15 ns) ------- (g)
SDRC1 = 0 (Counter not used)
CASL1 = 0 (2 tck) A CAS latency of 2 is sufficient because the TX3927 bus

clock runs at 66 MHz.
DRB1 = 1 (TX3927) SDRAMC-specific setting. In principle, set this bit when

the AC timing is tight. SDRAMs that don’t function

Appendix A TX3927 Programming Samples

A-20

properly with DRB1 = 0 could function with DRB1 = 1,
but the opposite is not possible; so a DRB1 value of 1 is
used here.

SWB1 = 0 (Slow write burst is usually not used.)

BW1 = 0 This bit is not used for SDRAM.

WpB1 = 0 This bit is not used for SDRAM.

SDRP1 = 0x400 (15.5 µs)

64 ms / 4096 = 15.625 µs (time required to refresh a row)
15.625 µs / 15 ns = 1041.7 = 0x411 (CLK)
* Refresh cycles have sufficient timing slack. No strict setting is required.

SDCCMD
Command #1

SDCMSK3 = 1 (Channel 0)
SDCMD3 = 3 (Precharge all SDRAM banks)

Command #2
SDCMSK3 = 1 (Channel 0)
SDCMD3 = 1 (Write to SDRAM Mode register)

• File name: sdramc.s

/*Wait for about 200us to make SDRAM ready when core speed 200Mhz */

/* li $9, 4000000 /*TX3927*/

 li $9, 800000

 li $8, 0x00000000

sdram:

 bne $9, $8, sdram

 addiu $8, $8, 1

 /*initialize SDRAMC*/

 la $8, 0xfffe8000 /*SDRAM0*/

 li $9, 0x000300e8

 sw $9, 0x00($8)

 la $8, 0xfffe8020 /*shared Timing Reg*/

 li $9, 0x08010400

 sw $9, 0x00($8)

 la $8, 0xfffe802c /*command Reg*/

 li $9, 0x00000013 /*all refresh */

 sw $9, 0x00($8)

 li $9, 0x00000011 /* mode set */

 sw $9, 0x00($8)

Appendix A TX3927 Programming Samples

A-21

A.2.4 Interrupt Handling Routines

This section shows a simple routine for interrupt handling. This routine is not for any specific device;
it is intended to demonstrate how to determine the cause of interrupts and control branches.

The TX3927 interrupt handling consists of two stage: the TX39 core (CPU) exception/interrupt
processing and the Interrupt Controller processing. Refer to the TX39/H2 Core Architecture manual and
the Interrupt Controller (IRC) chapter in this manual.

The following routine assumes that an array named swIntVector already contains the addresses for
each exception/interrupt handler (written in C).

The swIntVector array must be initialized as follows:

swIntVector[0]-[12]: Corresponds to the ExCode values of 0 to 12 in the Cause register.

swIntVector[13]-[14]: Corresponds to software interrupts.

swIntVector[15]-[30]: Corresponds to the IP[4:0] field (0-15) of the Cause register encoded in
the Interrupt Controller.

The following shows an example of an swIntVector-setting routine and an interrupt-enabling
function:

• File name: intttx3927.c

/**/

/* TX3927 Interrupt information */

/**/

typedef int (*VINTFUNC)(void);

#define CPUEXC_BASE 0

#define INTNO_Int 0

#define INTNO_Mod 1

#define INTNO_TLBL 2

#define INTNO_TLBS 3

#define INTNO_AdEL 4

#define INTNO_AdES 5

#define INTNO_IBE 6

#define INTNO_DEB 7

#define INTNO_Sys 8

#define INTNO_Bp 9

#define INTNO_RI 10

#define INTNO_CpU 11

#define INTNO_Ov 12

#define INTNO_SW0 13

#define INTNO_SW1 14

#define TX3927INT_BASE (CPUEXC_BASE+15)

#define INTNO_TMR2 (TX3927INT_BASE+15)

#define INTNO_TMR1 (TX3927INT_BASE+14)

#define INTNO_TMR0 (TX3927INT_BASE+13)

#define INTNO_NU0 (TX3927INT_BASE+12)

#define INTNO_NU1 (TX3927INT_BASE+11)

#define INTNO_PCI (TX3927INT_BASE+10)

#define INTNO_PIO (TX3927INT_BASE+9)

#define INTNO_DMA (TX3927INT_BASE+8)

#define INTNO_SIO1 (TX3927INT_BASE+7)

#define INTNO_SIO0 (TX3927INT_BASE+6)

Appendix A TX3927 Programming Samples

A-22

#define INTNO_INT5 (TX3927INT_BASE+5) /* JMR-TX3927: m pin */

#define INTNO_INT4 (TX3927INT_BASE+4) /* : m pin */

#define INTNO_INT3 (TX3927INT_BASE+3) /* : 100M,10M ether */

#define INTNO_INT2 (TX3927INT_BASE+2) /* : ISA */

#define INTNO_INT1 (TX3927INT_BASE+1) /* : IOC */

#define INTNO_INT0 (TX3927INT_BASE+0) /* : PCI INTA,C 10M? */

#define MAXINT_TABLE (TX3927INT_BASE+16)

VINTFUNC swIntVector[MAXINT_TABLE];

/***

 * Register Virtual Interrupt Vector *

 ***/

VINTFUNC setIntVect(int no,VINTFUNC func)

{

 VINTFUNC ret;

 ret = swIntVector[no];

 swIntVector[no] = func;

 return ret;

}

/***

 * Initialize Interrupt Processing *

 ***/

#define GINT_VECT 0x80000080 /* Interrupt vector address */

extern int org_GINT_VECT(void); /* First program for interrupt vector */

 /* (Assembly language routine) */

extern int org_EXT_INT_VECT(void); /* External interrupt (Excode=0) Handler */

 /* (Assembly language routine) */

extern int size_org_GINT_VECT ;

int size = (int)(&size_org_GINT_VECT) ;

int intInt(void)

{

 memcpy((void *)GINT_VECT,org_GINT_VECT,size);

 setIntVect(INTNO_Int,org_EXT_INT_VECT);

 CPUReg->IREG.IRCER = 1; /* Enable interrupts in Interrupt Controller */

 CPUReg->IREG.IRIMR = 1; /* INT0 interrupt = High level */

 setstatus(~SR_BEV,SR_IE | 0xff00); /* Enable interrupts in Status register */

 return 0;

}

The following shows an example of an interrupt handling routine written in assembly language:

• File name: aintcosmp.S

/**

 TX3927 Interrupt Handling Assembler Module

org_GINT_VECT:

 Entry point for general exception handling. Use the table to pass control to a

handler.

 # go swIntVector[C0_CAUSE]

return_GINTVECT:

 Handler called from org_GINT_VECT returns control to instruction at which interrupt

Appendix A TX3927 Programming Samples

A-23

 occurred

 # retuen GINT

org_EXT_INT_VECT:

 Branch to external interrupt handler (org_GINT_VECT processing for 0)

 Destination depends on TX3927 external interrupt status (PI).

 If return value is 0, control is returned to address at which interrupt occurred. If

not 0, control is returned to original interrupt vector. Nested interrupts are

supported.

 # go &(swIntVector[TX3927INT_BASE])[IP]

**/

 .text

 .set mips1

 .set noreorder

 .set noat

/* --*/

/* Entry point for TX3927 general interrupt handling (Branch, using Cause register */

/* excCode) */

/* --*/

 .globl org_GINT_VECT

 .globl size_org_GINT_VECT

 .ent org_GINT_VECT

org_GINT_VECT: # go swIntVector[C0_CAUSE]

 mfc0 k0,C0_CAUSE

 nop

 andi k0,0x7c # isolate exception code

 la k1,swIntVector

tablejmp:

 add k0,k1,k0 # offset of VSR entry

tablejmp2:

 lw k0,0(k0) # ke = pointer to vsr

 jr k0 # jump into virtual vector handler

 nop

/* --*/

/* Return from branch destination to instruction at which interrupt occurred */

/* --*/

 .globl return_GINT_VECT

return_GINTVECT: # return GINT

 mfc0 k1, C0_EPC

 nop

 jr k1

 rfe

 nop

end_org_GINT_VECT:

 .equ size_org_GINT_VECT,end_org_GINT_VECT-org_GINT_VECT

 .end org_GINT_VECT

/* --*/

/* Interrupt stack definitions */

/* --*/

#define GINT_STACKSIZE 4096 /* allocate 4K bootstack */

 .globl gint_stack_end

gint_stack_end:

 .space GINT_STACKSIZE /* allocate the exception stack */

 .globl gint_stack

gint_stack: /* stack top here (stack grows DOWN) */

 .space 8 /* allocate dummy stack */

#define ik0 k0

Appendix A TX3927 Programming Samples

A-24

#define ik1 k1

#define GISTACK_SIZE REG_SIZE*(26+1)

 /* 17 1-15,24-25(at,t0-1,a0-3,t0-9)

 5 16(s0),23(s7),29(sp),28(gp),31(ra)

 4 cp0*4(hi,lo,status,ecp)

 26 */

#define MAXINT 8

/* ---*/

/* Branch for external interrupt */

/* Set interrupt stack */

/* Save registers */

/* Branch using Cause register IP */

/* ---*/

 .globl org_EXT_INT_VECT

 .ent org_EXT_INT_VECT

org_EXT_INT_VECT:

#if 1

 la ik0,gint_stack /* normal stack hi address */

 sltu ik1,ik0,sp

 bne ik1,zero,1f

 addiu ik1,ik0,-GINT_STACKSIZE

 sltu ik1,ik1,sp

 beq ik1,zero,1f

 nop

#else

 la ik0,gint_stack /* normal stack Low address */

 addiu ik1,ik0,-GINT_STACKSIZE

 sltu ik1,ik1,sp

 beq ik1,zero,1f

 sltu ik1,ik0,sp

 bne ik1,zero,1f

 nop

#endif

 add ik0,zero,sp

1: /* ik1 = temp stack */

 addiu ik0,ik0,-(GISTACK_SIZE) /* Save Registers */

 sw at,REG_SIZE*1(ik0)

 sw v0,REG_SIZE*2(ik0)

 sw v1,REG_SIZE*3(ik0)

 sw a0,REG_SIZE*4(ik0)

 sw a1,REG_SIZE*5(ik0)

 sw a2,REG_SIZE*6(ik0)

 sw a3,REG_SIZE*7(ik0)

 sw t0,REG_SIZE*8(ik0)

 sw t1,REG_SIZE*9(ik0)

 sw t2,REG_SIZE*10(ik0)

 sw t3,REG_SIZE*11(ik0)

 sw t4,REG_SIZE*12(ik0)

 sw t5,REG_SIZE*13(ik0)

 sw t6,REG_SIZE*14(ik0)

 sw t7,REG_SIZE*15(ik0)

 sw t8,REG_SIZE*16(ik0)

 sw t9,REG_SIZE*17(ik0)

 sw gp,REG_SIZE*18(ik0)

 sw ra,REG_SIZE*19(ik0)

 sw s0,REG_SIZE*20(ik0)

 sw s7,REG_SIZE*21(ik0)

 mflo t0

 sw t0,REG_SIZE*22(ik0)

 mfhi t0

 sw t0,REG_SIZE*23(ik0)

 mfc0 t0,C0_STATUS

 sw t0,REG_SIZE*24(ik0)

 mfc0 t0,C0_EPC

Appendix A TX3927 Programming Samples

A-25

 sw t0,REG_SIZE*25(ik0)

 sw sp,REG_SIZE*26(ik0)

 addu sp,zero,ik0

 lui s0,%hi(_gint_count) # Increment Interrupt counter

 lw a1,%lo(_gint_count)(s0)

 addiu a1,a1,1

 sw a1,%lo(_gint_count)(s0)

 la gp,_gp # set the global data pointer

 mfc0 k0,C0_CAUSE

 nop

 andi k1,k0,0x0300

 bne k1,zero,1f # sw interrupt

 srl k0,k0,8

 andi k0,0x3c

 la k1,swIntVector+15*4 # go &(swIntVector[TX3927INT_BASE])[]

 j 3f

 addu k0,k0,k1

1:

 andi k1,k1,0x0100

 beq k1,zero,2f

 la k0,swIntVector+13*4 # go sw0

 j 3f

 nop

2:

 la k0,swIntVector+14*4 # go sw1

3:

 lw k0,0(k0) # swIntVector read

 jalr k0 # call

 nop

 lw a1,%lo(_gint_count)(s0)

 addiu at,a1,-MAXINT

 bgtz at,99f /* over multi interrupt */

 addiu a1,a1,-1

 sw a1,%lo(_gint_count)(s0)

 lw at,REG_SIZE*1(sp) /* return target */

 lw v1,REG_SIZE*3(sp)

 lw a0,REG_SIZE*4(sp)

 lw a1,REG_SIZE*5(sp)

 lw a2,REG_SIZE*6(sp)

 lw a3,REG_SIZE*7(sp)

 lw t1,REG_SIZE*9(sp)

 lw t2,REG_SIZE*10(sp)

 lw t3,REG_SIZE*11(sp)

 lw t4,REG_SIZE*12(sp)

 lw t5,REG_SIZE*13(sp)

 lw t6,REG_SIZE*14(sp)

 lw t7,REG_SIZE*15(sp)

 lw t8,REG_SIZE*16(sp)

 lw t9,REG_SIZE*17(sp)

 lw gp,REG_SIZE*18(sp)

 lw ra,REG_SIZE*19(sp)

 lw s0,REG_SIZE*20(sp)

 lw s7,REG_SIZE*21(sp)

 lw t0,REG_SIZE*22(sp)

 mtlo t0

 lw t0,REG_SIZE*23(sp)

 mthi t0

 lw t0,REG_SIZE*24(sp)

 mtc0 t0,C0_STATUS

 lw k1,REG_SIZE*25(sp)

 mtc0 k1,C0_EPC

Appendix A TX3927 Programming Samples

A-26

 lw t0,REG_SIZE*8(sp)

 lw v0,REG_SIZE*2(sp)

 lw sp,REG_SIZE*26(sp)

 sync /* Flush the write buffer to memory. */

 jr k1 /* Return to the user program. */

 rfe

 nop

99: /* stack overflow */

 b 99b

 nop

Interrupt handling flow:

(1) Examine the ExCode field of the Cause register and pass control to the appropriate exception
handler (swIntVect[0-12]). (In this example, only the external interrupt (ExCode = 0) handling
routine is provided.)

(2) For an external interrupt (swIntVect[0]), read the IP field of the Cause register and pass control to
the appropriate handler (swIntVect[13-30]).
This routine sets the interrupt stack, and saves and restores registers. It does not save all registers
because the program assumes that the body of interrupt handling is written in C. Those registers
not saved here will be saved and restored, as required, in the C function.
When this example is used, the actual interrupt handling section is written in C, as follows:

 int C_int_timer0(void)

 {

 static int count = 0;

 count++; /* Count number of interrupts */

 CPUReg->TREG[0].TMTISR = 0; /* Negate interrupt */

 return 0;

 }

The C function should include the following processes:

• Appropriately handles the interrupt.

• Clears the interrupt condition.

• (Optionally) allows nested interrupts.

Appendix A TX3927 Programming Samples

A-27

A.2.5 Manipulating the Caches

The following sample functions are provided for data and instruction caches:

• FlushDCache If the cache block contains data of specified size from the specified
address, write back the data and invalidate the cache block.

• FlushDCacheAll Write back and invalidate all blocks in data cache

• InvalidateICache If cache contains an instruction of specified size from the specified
address, invalidate the cache block.

• InvalidateICacheAll Invalidate all instructions in the instruction cache

Note that any instruction cache operation requires invalidating the cache block first.

• File name: cache.c

/*===

 * Id

 *---

 * Copyright(C) 1991-1998 TOSHIBA CORPORATION All rights reserved.

 *===

 * TX39/H2 cache control routines

 */

/* TX39H2 Core Cache Size */

#define ICACHE_SIZE 0x2000 /* 8KB */

#define DCACHE_SIZE 0x1000 /* 4KB */

void

FlushDCache(unsigned int address, int size)

{

 __asm(".set noreorder");

 __asm("add $5, $4");

 __asm("li $6, ~0xf"); /* TX39/H2 line size 16 bytes */

 __asm("and $4, $4, $6");

 __asm("1:");

 __asm("bge $4, $5, 2f");

 __asm("nop");

 __asm("cache 21, 0($4)"); /* Hit_Writeback_Invalidate */

 __asm("b 1b");

 __asm("addi $4, $4, 16");

 __asm("2:");

}

void

FlushDCacheAll()

{

 __asm(".set noreorder");

 __asm("lui $4, 0x8000"); /* start address */

 __asm("addi $5, $4, 0x800"); /* end address */

 __asm("1:");

 __asm("bge $4, $5, 2f");

 __asm("nop");

 __asm("cache 1, 0($4)"); /* Index_Writeback_Inv_D way 0 */

 __asm("cache 1, 1($4)"); /* Index_Writeback_Inv_D way 1 */

 __asm("b 1b");

 __asm("addi $4, $4, 16");

 __asm("2:");

}

void

InvalidateICache(unsigned int address, int size)

{

Appendix A TX3927 Programming Samples

A-28

 __asm(".set noreorder");

 __asm("add $5, $4");

 __asm("li $6, ~0xf"); /* line size 16 bytes */

 __asm("and $4, $4, $6");

 __asm("mfc0 $6, $3"); /* get C0_Config */

 __asm("nop");

 __asm("andi $7, $6, 0xffdf"); /* ICE OFF */

 __asm("mtc0 $7, $3"); /* set C0_Config */

 __asm("1:");

 __asm("bge $4, $5, 2f");

 __asm("nop");

 __asm("cache 16, 0($4)"); /* Hit_Invalidate_I */

 __asm("b 1b");

 __asm("addi $4, $4, 16");

 __asm("2:");

 __asm("mtc0 $6, $3"); /* set C0_Config */

}

void

InvalidateICacheAll()

{

 __asm(".set noreorder");

 __asm("lui $4, 0x8000"); /* start address */

 __asm("addi $5, $4, 0x1000"); /* end address */

 __asm("mfc0 $6, $3"); /* get C0_Config */

 __asm("nop");

 __asm("andi $7, $6, 0xffdf"); /* ICE OFF */

 __asm("mtc0 $7, $3"); /* set C0_Config */

 __asm("1:");

 __asm("bge $4, $5, 2f");

 __asm("nop");

 __asm("cache 0, 0($4)"); /* Index_Invalidate_I way 0 */

 __asm("cache 0, 1($4)"); /* Index_Invalidate_I way 1 */

 __asm("b 1b");

 __asm("addi $4, $4, 16");

 __asm("2:");

 __asm("mtc0 $6, $3"); /* set C0_Config */

}

Appendix A TX3927 Programming Samples

A-29

A.3 Examples of Using On-Chip Peripherals

A.3.1 Timer/Counter

The following sample program uses Timer 0 in interval timer mode to generate interrupts:

• File name: TimerInt.c

#include "tx3927.h"

#include "intcosmp27.h"

/* Sample program. Initialize interrupt handler and generate timer interrupts */

int test_timerInt0(void)

{

 initInt(); /* Initialize interrupt handler */

 setIntVect(INTNO_TMR0,C_int_timer0); /* Register interrupt handler */

 CPUReg->TREG[0].TMTCR = TCE | CCDE; /* Start timer */

 CPUReg->TREG[0].TMITMR = TIIE | TZCE;

 CPUReg->IREG.IRILR[6] = (CPUReg->IREG.IRILR[6] & 0x000f) | 0x0300;

/* Set interrupt level */

 CPUReg->IREG.IRCER = 1; /* Enable interrupts in interrupt controller */

 CPUReg->IREG.IRIMR = 1;

 setstatus(~SR_BEV,SR_IE | 0xff00); /* Enable interrupts in CPU’s Status register*/

 return 0;

}

int off_timerInt0(void)

{

 CPUReg->TREG[0].TMTCR = 0; /* Stop timer */

 CPUReg->TREG[0].TMITMR = 0;

 return 0;

}

/* Timer interrupt handling routine */

int C_int_timer0(void)

{

 static int count = 0;

 count++; /* Count number of interrupts */

 CPUReg->TREG[0].TMTISR = 0; /* Negate interrupt */

 return 0;

}

Appendix A TX3927 Programming Samples

A-30

A.3.2 SIO

This sample contains the following operational settings:

send-polling & receive-polling mode

send-interrupt & receive-interrupt mode

send-polling & receive-interrupt mode

send-interrupt & receive-polling mode

DMA-SEND & polling-RECEIVE mode

DMA-SEND & interrupt-RECEIVE mode

polling-send & DMA-RECEIVE mode

interrupt-send & DMA-RECEIVE mode

DMA-SEND & DMA-RECEIVE mode

polling loopback mode

interrupt loopback mode

dma loopback mode

receive overflow test

• File name: 3927sio.c

/*===

 * Id

 *---

 * Copyright(C) 1998-1999 TOSHIBA CORPORATION All rights reserved.

 *===

 */

/*

 * TX3927 SIO Control Routine

 *

 * This is a sample routine to control the TX3927 SIO.

 *

 * Notes on using the TX3927 SIO:

 *

 * Macro:

 * USE_UDEOS Required when used as an application program for

 * UDEOS/r39, a µITRON 3.0-compliant operating system from Toshiba
 * Information Systems Corp.

 * This macro will affect configurations; Be sure to add the definition to

 * the cfo files.

 * Operation tested with:

 * • COSMP2-TX3927 evaluation board
 * • GHS C Compiler & MULTI Debugger ver.1.8.8 for Win32
 * • GHS Monitor Server RS232C connection or HP.ProcessorProbe
 *

 * Reference material:

 * • 32-bit RISC Microprocessor Family TX39 Family
 * TMPR3901F User's Manual

 * • 32-bit RISC Microprocessor Family TX39 Family
 * TMPR3927F User's Manual Rev.0.5

 *

 * History:

 * 1999/05/06 ver.0.21 yasui based on r3904sio.c ver.1.08

 ***/

#include <itron.h>

#include "3927sio.h"

Appendix A TX3927 Programming Samples

A-31

/* vertiul address to physical address */

#define Vadrs2Padrs(adrs) ((unsigned int)(adrs) & 0x5FFFFFFF)

/* I/O Base Addr */

#define REG3927SIO_BASE 0xfffef300

/* Semaphore */

#ifdef USE_UDEOS

#define SIGNAL_SEMAPHORE(x) isig_sem(SIO_SEMID0+x)

#define WAIT_SEMAPHORE(x) wai_sem(SIO_SEMID0+x)

#define SIGNAL_SEMAPHORE_TX(x) isig_sem(SIO_SEMID0+2+x)

#define WAIT_SEMAPHORE_TX(x) wai_sem(SIO_SEMID0+2+x)

#endif

/* Etc */

#define WAIT_TIME (CPU_CLOCK/500)

#define INCIDX(a) ((a+1)&(SIO_RCVBUFSZ-1))

/* Structure */

typedef struct {

 int type;

 int (*getc)();

 int (*putc)();

 volatile int sndbuf_beg;

 volatile int sndbuf_end;

 volatile int rcvbuf_beg;

 volatile int rcvbuf_end;

 int sndbuf_ovf;

 int rcvbuf_ovf;

 char sndbuf[SIO_SNDBUFSZ];

 char rcvbuf[SIO_RCVBUFSZ];

} type3927sio;

typedef struct {

 unsigned int silcr;

 unsigned int sidicr;

 unsigned int sidisr;

 unsigned int sicisr;

 unsigned int sifcr;

 unsigned int siflcr;

 unsigned int sibgr;

 unsigned int sitfifo;

 unsigned int sirfifo;

 int pad[55];

} reg3927sio;

#define SILCR_SCS_BGIMCLK 0x20

#define SILCR_SCS_EXTSCLK 0x40

#define SILCR_SCS_BGSCLK 0x60

#define SILCR_UMODE 0x00000001

#define SILCR_USBL 0x00000004

#define SILCR_UPEN 0x00000008

#define SILCR_UEPS 0x00000010

#define SIDISR_ERRMASK 0x0000b800

#define SIDISR_RDIS 0x00000080

#define SIDISR_TDIS 0x00000100

#define SIDISR_TOUT 0x00000200

#define SIDISR_ERI 0x00000400

#define SIDISR_UOER 0x00000800

#define SIDISR_UPER 0x00001000

#define SIDISR_UFER 0x00002000

#define SIDISR_UBRK 0x00008000

#define SIDISR_UVALID 0x00004000

#define SICISR_TRDY 0x00000004

#define SICISR_TXALS 0x00000002

#define SIFCR_FRSTE 0x00000001

Appendix A TX3927 Programming Samples

A-32

#define SIFCR_RFRST 0x00000002

#define SIFCR_TFRST 0x00000004

#define SIFCR_TDIL1 0x00000000

#define SIFCR_TDIL4 0x00000008

#define SIFCR_TDIL8 0x00000010

#define SIFCR_RDIL1 0x00000000

#define SIFCR_RDIL4 0x00000080

#define SIFCR_RDIL8 0x00000100

#define SIFCR_RDIL12 0x00000180

#define SIFLCR_TSDE 0x00000080

#define SIFLCR_RSDE 0x00000100

#define SIFLCR_RTSTL(x) ((x&0xf)<<1)

#define SIDICR_TDE 0x00008000

#define SIDICR_RDE 0x00004000

#define SIDICR_TIE 0x00002000

#define SIDICR_RIE 0x00001000

#define SIDICR_SPIE 0x00000800

#define SIFCR_RDIL_MASK 0x00000180

#define SIFCR_TDIL_MASK 0x00000018

/* Data */

static type3927sio siotbl[2];

static unsigned int dma_req_flag, dma_end_flag;

/**

 * Wait loop

 **/

static int

noop (int i){

 int a=10;

 while (i--)

 while(a)

 a--;

 return a;

}

/***

 * Initialize SIO

 *

 * siono is 0 or 1. baud is baud-rate(ie.9600,38400,etc.).

 * type is

 * SIO_TXPOL output is polling.

 * SIO_TXINT output is interrupt.

 * SIO_TXDMA output is DMA.

 * SIO_RXPOL input is polling.

 * SIO_RXINT input is interrupt.

 * SIO_RXDMA input is DMA

 ***/

int

tx3927sio_init(int siono,int type,int baud)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio* sio;

 int bclk,regbaud,silcr;

 unsigned int *dma_adrs;

 /* check parameter (0 or 1) */

 if(siono & ~0x1)

 return -1; /* ERROR: illegal siono */

Appendix A TX3927 Programming Samples

A-33

 /* preparing */

 sioreg+=siono;

 sio = &siotbl[siono];

 sio->type = type;

 /* calcualte baud value */

 bclk=0;

#ifdef CPU133M

 regbaud = CPU_CLOCK/128/baud;

#else

 regbaud = CPU_CLOCK/64/baud;

#endif

 while(regbaud>=256){

 bclk++;

 regbaud /= 4;

 }

 if(bclk>3)

 return -2; /* ERROR: illegal baud */

 /* general setting */

 silcr = 0;

 if(type & SIO_PARITY_ODD)

 silcr |= SILCR_UPEN;

 if(type & SIO_PARITY_EVEN)

 silcr |= SILCR_UPEN|SILCR_UEPS;

 if(type & SIO_STOP2)

 silcr |= SILCR_USBL;

 if(type & SIO_7BIT)

 silcr |= SILCR_UMODE;

 sioreg->silcr = silcr|SILCR_SCS_BGIMCLK; /* BRG-IMCLK */

 sioreg->siflcr = SIFLCR_TSDE|SIFLCR_RSDE|SIFLCR_RTSTL(1);

 sioreg->sidicr = 0x0;

 sioreg->sifcr = SIFCR_TFRST|SIFCR_RFRST|SIFCR_FRSTE; /* Reset FIFO */

 sioreg->sifcr = 0x0;

 sioreg->sibgr = (bclk<<8)|regbaud; /* Set baudrate */

 sioreg->sidisr = 0x0;

 sioreg->sicisr = 0x0;

 if(type & SIO_TXPOL){

 sio->putc = (int(*)())tx3927sio_pol_putc;

 sioreg->siflcr &= ~SIFLCR_TSDE; /* enable TX */

 sioreg->siflcr |= 0x200;

 }

 if(type & SIO_RXPOL){

 sio->getc = (int(*)())tx3927sio_pol_getc;

 sioreg->siflcr &= ~SIFLCR_RSDE; /* enable RX */

 }

 if(type & SIO_TXINT){

 sio->sndbuf_beg = sio->sndbuf_end = sio->sndbuf_ovf = 0;

 sio->putc = (int(*)())tx3927sio_int_putc;

 if (type & SIO_TFIFO_1) { /* trigger byte */

 sioreg->sifcr |= SIFCR_TDIL1;

 }else if (type & SIO_TFIFO_4) {

 sioreg->sifcr |= SIFCR_TDIL4;

 } else if (type & SIO_TFIFO_8) {

 sioreg->sifcr |= SIFCR_TDIL8;

 } else {

Appendix A TX3927 Programming Samples

A-34

 sioreg->sifcr |= SIFCR_TDIL8; /* default 8byte */

 }

 sioreg->siflcr &= ~SIFLCR_TSDE; /* enable TX */

 chg_ilv(INTNO_SIO0+siono,2); /* set int level */

 }

 if(type & SIO_RXINT){

 sio->rcvbuf_beg = sio->rcvbuf_end = sio->rcvbuf_ovf = 0;

 sio->getc = (int(*)())tx3927sio_int_getc;

 if (type & SIO_RFIFO_1) { /* trigger byte */

 sioreg->sifcr |= SIFCR_RDIL1;

 } else if (type & SIO_RFIFO_4) {

 sioreg->sifcr |= SIFCR_RDIL4;

 } else if (type & SIO_RFIFO_8) {

 sioreg->sifcr |= SIFCR_RDIL8;

 } else if (type & SIO_RFIFO_12) {

 sioreg->sifcr |= SIFCR_RDIL12;

 } else {

 sioreg->sifcr |= SIFCR_RDIL12; /* default */

 }

 sioreg->sidicr |= SIDICR_RIE+SIDICR_SPIE; /* enable RX int */

 sioreg->siflcr &= ~SIFLCR_RSDE; /* enable RX */

 chg_ilv(INTNO_SIO0+siono,2); /* set int level */

 }

 if(type & SIO_TXDMA){

 sio->sndbuf_beg = sio->sndbuf_end = sio->sndbuf_ovf = 0;

 if (type & SIO_TFIFO_1) { /* trigger byte */

 sioreg->sifcr |= SIFCR_TDIL1;

 } else if (type & SIO_TFIFO_4) {

 sioreg->sifcr |= SIFCR_TDIL4;

 } else if (type & SIO_TFIFO_8) {

 sioreg->sifcr |= SIFCR_TDIL8;

 } else {

 sioreg->sifcr |= SIFCR_TDIL8; /* default 8byte */

 }

 sioreg->siflcr &= ~SIFLCR_TSDE; /* enable TX */

 dma_adrs = (unsigned int *)(0xfffeb0a4) ;

 /* MCR(Master Control Register) */

 dma_adrs = 0x00000000; / MASTEN(bit0)=off */

 chg_ilv(INTNO_DMA,2); /* set int level */

 }

 if(type & SIO_RXDMA){

 sio->rcvbuf_beg = sio->rcvbuf_end = sio->rcvbuf_ovf = 0;

 if (type & SIO_RFIFO_1) { /* trigger byte */

 sioreg->sifcr |= SIFCR_RDIL1;

 } else if (type & SIO_RFIFO_4) {

 sioreg->sifcr |= SIFCR_RDIL4;

 } else if (type & SIO_RFIFO_8) {

 sioreg->sifcr |= SIFCR_RDIL8;

 } else if (type & SIO_RFIFO_12) {

 sioreg->sifcr |= SIFCR_RDIL12;

 } else {

 sioreg->sifcr |= SIFCR_RDIL12; /* default */

 }

 sioreg->sidicr |= SIDICR_SPIE; /* enable RX int */

 sioreg->siflcr &= ~SIFLCR_RSDE; /* enable RX */

 dma_adrs = (unsigned int *)(0xfffeb0a4) ;

 /* MCR(Master Control Register) */

 dma_adrs = 0x00000000; / MASTEN(bit0)=off */

 chg_ilv(INTNO_SIO0+siono,2); /* set int level */

Appendix A TX3927 Programming Samples

A-35

 chg_ilv(INTNO_DMA,2); /* set int level */

 }

 return 0; /* Successful */

}

/***

 * Finish SIO

 *

 * siono is 0 or 1.

 * clear register. reset fifo. disable interrupt.

 **/

int

tx3927sio_fini(int siono){

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio* sio;

 int bclk,regbaud;

 /* check parameter */

 if(siono!=0 && siono!=1)

 return -1; /* ERROR: illegal siono */

 tx3927sio_all_sent(siono);

 /* initialize */

 chg_ilv(INTNO_SIO0+siono,0); /* clear int level */

 sioreg->siflcr |= SIFLCR_RSDE; /* disable RX */

 sioreg->siflcr |= SIFLCR_TSDE; /* disable TX */

 sioreg->sidicr &= ~SIDICR_TIE; /* disable TX int */

 sioreg->sidicr &= ~SIDICR_RIE; /* disable TX int */

 sio = &siotbl[siono];

 sio->putc = 0;

 sio->getc = 0;

 sio->type = 0;

}

/**

 * SIO interrupt handler

 *

 * clear interrupt. read data and put into buffer.

 ***/

static void

tx3927sio_int(int siono)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int sidisr,next,err,c;

 sioreg += siono;

 sidisr = sioreg->sidisr;

 if(sidisr & 0xbc00){

 printf("error1(sidisr=%x) \n", sidisr);

 if(sidisr & SIDISR_UBRK)

 printf("break during int mode \n");

 if(sidisr & SIDISR_UFER)

 printf("frame error during int mode \n");

 if(sidisr & SIDISR_UPER)

 printf("parity error during int mode \n");

 if(sidisr & SIDISR_UOER)

 printf("overflow during int mode \n");

 if(sidisr & 0x0400)

 printf("error interrupt during int mode \n");

 c = sioreg->sirfifo;

Appendix A TX3927 Programming Samples

A-36

 }

 sidisr = sioreg->sidisr;

 if(sidisr & 0xbc00){

 printf("error1(sidisr=%x) \n", sidisr);

 if(sidisr & SIDISR_UBRK)

 printf("break during int mode \n");

 if(sidisr & SIDISR_UFER)

 printf("frame error during int mode \n");

 if(sidisr & SIDISR_UPER)

 printf("parity error during int mode \n");

 if(sidisr & SIDISR_UOER)

 printf("overflow during int mode \n");

 if(sidisr & 0x0400)

 printf("error interrupt during int mode \n");

 c = sioreg->sirfifo;

 }

 if(sidisr & (SIDISR_RDIS | SIDISR_TOUT)){

 while(!(sidisr & SIDISR_UVALID) && !(sidisr & SIDISR_ERRMASK)){

 c = sioreg->sirfifo;

 if(sio->rcvbuf_beg != (next=INCIDX(sio->rcvbuf_end))){

 if(sio->rcvbuf_beg == sio->rcvbuf_end)

 SIGNAL_SEMAPHORE(siono);

 sio->rcvbuf[sio->rcvbuf_end] = c;

 sio->rcvbuf_end = next;

 }

 else{

 sio->rcvbuf_ovf++; /* Overflow */

 printf("receive buffer overflow \n");

 }

 sidisr = sioreg->sidisr;

 if(sidisr & 0xbc00)

 printf("error2(sidisr=%x) \n", sidisr);

 }

 sioreg->sidisr = ~(SIDISR_RDIS|SIDISR_TOUT);

 }

 if(sidisr & SIDISR_ERI){

 sioreg->sidisr = ~SIDISR_ERI; /* Clear Error Status */

 /* routine after error */

 sioreg->sirfifo; /* waiste */

 }

 if(sidisr & SIDISR_TDIS){

 while((sio->sndbuf_beg != sio->sndbuf_end) &&

 (sioreg->sicisr & SICISR_TRDY)){

 sioreg->sitfifo = sio->sndbuf[sio->sndbuf_beg];

 sio->sndbuf_beg = INCIDX(sio->sndbuf_beg);

 }

 if(sio->sndbuf_beg != sio->sndbuf_end){

 sioreg->sidisr &= ~SIDISR_TDIS;

 }

 else{

 sioreg->sidicr &= ~SIDICR_TIE;

 if(sio->sndbuf_ovf){

 SIGNAL_SEMAPHORE_TX(siono);

 }

 }

 }

 return;

}

void tx3927sio0_int()

{

 tx3927sio_int(0);

Appendix A TX3927 Programming Samples

A-37

}

void tx3927sio1_int()

{

 tx3927sio_int(1);

}

void tx3927dma_int()

{

 unsigned int *dma_adrs, *dma0_adrs, *dma2_adrs, dma_status;

#if 0

 dma_adrs = (unsigned int *)(0xfffeb0a4) ; /* MCR(Master Control Register) */

 dma_adrs = 0x00000000; / MASTEN(bit0)=off */

#endif

 if(dma_req_flag == 2){

 dma2_adrs = (unsigned int *)(0xfffeb05c);

 /* Channel Status Register(CSR2) */

 dma_status = *dma2_adrs; /* read status register */

 if(dma_status != 0x60) /* NCHNC & NTRNFC(Normal Transfer Completion) */

 printf(" dma2 complete status error=%x \n", dma_status);

 dma2_adrs = 0xffffffff; / clear CSR2 */

 dma_end_flag = 1;

 }

 if(dma_req_flag == 0){

 dma0_adrs = (unsigned int *)(0xfffeb01c);

 /* Channel Status Register(CSR0) */

 dma_status = *dma0_adrs; /* read status register */

 if(dma_status != 0x60) /* NCHNC & NTRNFC(Normal Transfer Completion) */

 printf(" dma0 complete status error=%x \n", dma_status);

 dma0_adrs = 0xffffffff; / clear CSR0 */

 dma_end_flag = 1;

 }

 return;

}

/***

 * Get & Put one byte data in interrupt handler

 *

 * if data is bufferd, return soon. otherwise sleep.

 * use message box.

 ***/

int

tx3927sio_int_getc(int siono)

{

 type3927sio *sio = &siotbl[siono];

 int c;

 if(sio->rcvbuf_beg == sio->rcvbuf_end)

 WAIT_SEMAPHORE(siono);

 if(sio->rcvbuf_beg != sio->rcvbuf_end){

 c = sio->rcvbuf[sio->rcvbuf_beg] & 0xff;

 sio->rcvbuf_beg = INCIDX(sio->rcvbuf_beg);

 return c;

 }

 else

 return -1;

}

int

tx3927sio_int_putc(int siono, char c)

Appendix A TX3927 Programming Samples

A-38

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int next=INCIDX(sio->sndbuf_end);

 /* check console's sio */

 if(siono!=0 && siono!=1)

 return -1; /* ERROR:illegal siono */

 sioreg+=siono;

 retry_tx:

 if((sio->sndbuf_beg == sio->sndbuf_end) && (sioreg->sicisr & SICISR_TRDY)){

 sioreg->sitfifo = c;

 return 0;

 }

 else

 if(sio->sndbuf_beg != next){

 sio->sndbuf[sio->sndbuf_end] = c;

 sio->sndbuf_end = next;

 sioreg->sidisr &= ~SIDISR_TDIS;

 sioreg->sidicr |= SIDICR_TIE;

 return 0;

 }

 else{

 sio->sndbuf_ovf++; /* Overflow */

 WAIT_SEMAPHORE_TX(siono);

 sio->sndbuf_ovf--;

 goto retry_tx;

 }

 return -1;

}

/***

 * Get & Put data block dma handler

 *

 * if data is bufferd, return soon. otherwise sleep.

 * use message box.

 ***/

int

tx3927sio_dma_getc(int siono, char *rcv_buf, int buf_size, int *rcvd_size)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int c,i,sidisr,work;

 unsigned int *dma0_adrs, *pcr, dma_status;

 pcr = (unsigned int *)(0xfffee008) ; /* Pin Configuration Register */

 *pcr |= 0x0000f0f0;

 dma0_adrs = (unsigned int *)(0xfffeb0a4) ; /* MCR(Master Control Register) */

 dma0_adrs = 0x00000001; / MASTEN(bit0)=on */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x00000000; / CHRST(bit24)=off(enable channel) */

 dma0_adrs = (unsigned int *)(0xfffeb004) ; /* Source Address Register(SAR0) */

 dma0_adrs = 0xfffef320+3; / Receive FIFO buffer 0 */

 dma0_adrs = (unsigned int *)(0xfffeb008) ;

 /* Destination Address Register(DAR0) */

 dma0_adrs = Vadrs2Padrs(rcv_buf); / receive buffer physical address */

 dma0_adrs = (unsigned int *)(0xfffeb00c) ; /* Count Register(CNAR0) */

 dma0_adrs = buf_size; / receive buffer size */

 dma0_adrs = (unsigned int *)(0xfffeb010) ;

 /* Source Address Incremnet Register(SAI0) */

 dma0_adrs = 0x0000000; / no increment */

 dma0_adrs = (unsigned int *)(0xfffeb014) ;

Appendix A TX3927 Programming Samples

A-39

 /* Destination Address Incremnet Register(DAI0) */

 dma0_adrs = 0x0000001; / transfer size one byte */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x00011500; / EXTRQ,INTENE,INTENT,XTACT,XFSZ=0 */

 dma_req_flag = 0; /* dma channel number 0 */

 dma_end_flag = 0;

 sioreg->sidicr |= SIDICR_RDE; /* enable receive DMA */

 do{

 for(i=0;i<100;i++); /* don't disturb DMA(memory) bus */

 }while(dma_end_flag == 0);

 sidisr = sioreg->sidisr;

 if(sidisr & 0xbc00)

 printf("error3(sidisr=%x) \n", sidisr);

 dma0_adrs = (unsigned int *)(0xfffeb01c) ; /* Channel Status Register(CSR0) */

 dma0_adrs = 0xffffffff; / clear CSR0 */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

 dma0_adrs = (unsigned int *)(0xfffeb008) ;

 /* Destination Address Register(DAR0) */

 work = *dma0_adrs; /* end buffer pointer */

 work = work - Vadrs2Padrs(rcv_buf); /* receive buffer physical address */

 rcvd_size = work; / return received size */

 return 0;

}

int

tx3927sio_dma_putc(int siono, char *send_buf, int send_size)

{

 unsigned int *dma2_adrs, *pcr, dma_status;

 int i, c=0x12345678;

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int next=INCIDX(sio->sndbuf_end);

 /* check console's sio */

 if(siono!=0 && siono!=1)

 return -1; /* ERROR:illegal siono */

 sioreg += siono;

 pcr = (unsigned int *)(0xfffee008) ; /* Pin Configuration Register */

 *pcr |= 0x0000f0f0;

 dma2_adrs = (unsigned int *)(0xfffeb0a4) ; /* MCR(Master Control Register) */

 dma2_adrs = 0x00000001; / MASTEN(bit0)=on */

 dma2_adrs = (unsigned int *)(0xfffeb058) ; /* Channel Control Register(CCR2) */

 dma2_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

 dma2_adrs = (unsigned int *)(0xfffeb058) ; /* Channel Control Register(CCR2) */

 dma2_adrs = 0x00000000; / CHRST(bit24)=off(enable channel) */

 dma2_adrs = (unsigned int *)(0xfffeb044) ; /* Source Address Register(SAR2) */

 dma2_adrs = Vadrs2Padrs(send_buf); / physical memory address */

 dma2_adrs = (unsigned int *)(0xfffeb048) ;

 /* Destination Address Register(DAR2) */

 dma2_adrs = 0xfffef31c+3; / Transmit FIFO Channel-0(SITFIFO0) */

 dma2_adrs = (unsigned int *)(0xfffeb04c) ; /* Count Register(CNAR2) */

 dma2_adrs = send_size; / transfer size(force short alignment) */

 dma2_adrs = (unsigned int *)(0xfffeb050) ;

 /* Source Address Incremnet Register(SAI2) */

Appendix A TX3927 Programming Samples

A-40

 dma2_adrs = 0x00000001; / transfer size = 1byte */

 dma2_adrs = (unsigned int *)(0xfffeb054) ;

 /* Destination Address Incremnet Register(DAI2) */

 dma2_adrs = 0x0000000; / no increment */

 dma2_adrs = (unsigned int *)(0xfffeb058) ; /* Channel Control Register(CCR2) */

 dma2_adrs = 0x00011500; / EXTRQ,INTENE,INTENT,XTACT,XFSZ=0*/

 dma_req_flag = 2; /* dma channel number 2 */

 dma_end_flag = 0;

 sioreg->sidicr |= SIDICR_TDE; /* enable transmit DMA */

 do{

 for(i=0;i<100;i++); /* don't disturb DMA(memory) bus */

 }while(dma_end_flag == 0);

 return 0;

}

int

tx3927sio_dma_putc_getc(int siono, char *send_buf, int send_size, char *rcv_buf, int

*rcvd_size)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int c,i,sidisr,work;

 unsigned int *dma0_adrs, *pcr, dma_status, *dma2_adrs;

 pcr = (unsigned int *)(0xfffee008) ; /* Pin Configuration Register */

 *pcr |= 0x0000f0f0;

 dma0_adrs = (unsigned int *)(0xfffeb0a4) ; /* MCR(Master Control Register) */

 dma0_adrs = 0x00000001; / MASTEN(bit0)=on */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x00000000; / CHRST(bit24)=off(enable channel) */

 dma0_adrs = (unsigned int *)(0xfffeb004) ; /* Source Address Register(SAR0) */

 dma0_adrs = 0xfffef320+3; / Receive FIFO buffer 0 */

 dma0_adrs = (unsigned int *)(0xfffeb008) ;

 /* Destination Address Register(DAR0) */

 dma0_adrs = Vadrs2Padrs(rcv_buf) ; / receive buffer physical address */

 dma0_adrs = (unsigned int *)(0xfffeb00c) ; /* Count Register(CNAR0) */

 dma0_adrs = send_size; / receive buffer size */

 dma0_adrs = (unsigned int *)(0xfffeb010) ;

 /* Source Address Increment Register(SAI0) */

 dma0_adrs = 0x0000000; / no increment */

 dma0_adrs = (unsigned int *)(0xfffeb014) ;

 /* Destination Address Increment Register(DAI0)*/

 dma0_adrs = 0x0000001; / transfer size one byte */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x00011500; / EXTRQ,INTENE,INTENT,XTACT,XFSZ=0*/

 sioreg->sidicr |= SIDICR_RDE; /* enable receive DMA */

 dma2_adrs = (unsigned int *)(0xfffeb0a4) ; /* MCR(Master Control Register) */

 dma2_adrs = 0x00000001; / MASTEN(bit0)=on */

 dma2_adrs = (unsigned int *)(0xfffeb058) ; /* Channel Control Register(CCR2) */

 dma2_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

Appendix A TX3927 Programming Samples

A-41

 dma2_adrs = (unsigned int *)(0xfffeb058) ; /* Channel Control Register(CCR2) */

 dma2_adrs = 0x00000000; / CHRST(bit24)=off(enable channel) */

 dma2_adrs = (unsigned int *)(0xfffeb044) ; /* Source Address Register(SAR2) */

 dma2_adrs = Vadrs2Padrs(send_buf); / physical memory address */

 dma2_adrs = (unsigned int *)(0xfffeb048) ; /* Destination Address Register(DAR2)

 */

 dma2_adrs = 0xfffef31c+3; / Transmit FIFO Channel-0(SITFIFO0)

 */

 dma2_adrs = (unsigned int *)(0xfffeb04c) ; /* Count Register(CNAR2) */

 dma2_adrs = send_size; / transfer size(force short

 alignment) */

 dma2_adrs = (unsigned int *)(0xfffeb050) ;

 /* Source Address Incremnet Register(SAI2) */

 dma2_adrs = 0x00000001; / transfer size = 1byte */

 dma2_adrs = (unsigned int *)(0xfffeb054) ;

 /* Destination Address Incremnet Register(DAI2) */

 dma2_adrs = 0x0000000; / no increment */

 dma2_adrs = (unsigned int *)(0xfffeb058) ; /* Channel Control Register(CCR2) */

 dma2_adrs = 0x00011500; / EXTRQ,INTENE,INTENT,XTACT,XFSZ=0*/

 dma_req_flag = 2; /* dma channel number 2 */

 dma_end_flag = 0;

 sioreg->sidicr |= SIDICR_TDE; /* enable transmit DMA */

 do{

 for(i=0;i<100;i++); /* don't disturb DMA(memory) bus */

 }while(dma_end_flag == 0);

 dma_req_flag = 0; /* dma channel number 0 */

 dma_end_flag = 0;

 do{

 for(i=0;i<100;i++); /* don't disturb DMA(memory) bus */

 }while(dma_end_flag == 0);

 sidisr = sioreg->sidisr;

 if(sidisr & 0xbc00)

 printf("error3(sidisr=%x) \n", sidisr);

 dma0_adrs = (unsigned int *)(0xfffeb01c) ; /* Channel Status Register(CSR0) */

 dma0_adrs = 0xffffffff; / clear CSR0 */

 dma0_adrs = (unsigned int *)(0xfffeb018) ; /* Channel Control Register(CCR0) */

 dma0_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

dma0_adrs = (unsigned int *)(0xfffeb008) ;

/* Destination Address Register(DAR0) */

 work = *dma0_adrs; /* end buffer pointer */

 work = work - Vadrs2Padrs(rcv_buf); /* receive buffer physical address */

 rcvd_size = work; / return received size */

 return 0;

}

/**

 * Get & Put one byte data with polling

 *

 * if successful, return charactor.

 * if timeout, return -1.

 * interruptible.

 * not return until get a charactor.

 ***/

Appendix A TX3927 Programming Samples

A-42

int

tx3927sio_pol_getc(int siono)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int t = WAIT_TIME;

 int c, silsr, sidisr;

 /* check console's sio */

 if(siono!=0 && siono!=1)

 return -1; /* ERROR:illegal siono */

 sioreg+=siono;

 while (t--) {

 if((sidisr=sioreg->sidisr) & SIDISR_RDIS){ /* Check status */

 c = sioreg->sirfifo; /* Read data */

 sioreg->sidisr = ~SIDISR_RDIS;

 if(sidisr & SIDISR_ERI){

 sioreg->sidisr = ~SIDISR_ERI;

 }

 if(!(sidisr & SIDISR_ERRMASK)){

 return c;

 }

 if(sidisr & SIDISR_UBRK){ /* Break signal */

 c = c | 0xfffb0000;

 return c;

 }

 if(sidisr & SIDISR_UFER){ /* Frame Error */

 c = c | 0xfffe0000;

 return c;

 }

 if(sidisr & SIDISR_UPER){ /* Parity Error */

 c = c | 0xfffd0000;

 return c;

 }

 if(sidisr & SIDISR_UOER){ /* Over Run Error */

 sioreg->sifcr = 0x00008000;

 c = c | 0xfffc0000;

 return c;

 }

 }

 noop(2);

 }

 return -1; /* timed out */

}

int

tx3927sio_pol_putc(int siono, char c)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 type3927sio *sio = &siotbl[siono];

 int t = WAIT_TIME;

 int silsr, sidisr;

 /* check console's sio */

 if(siono!=0 && siono!=1)

 return -1; /* ERROR:illegal siono */

 sioreg+=siono;

 while (t--) {

 if (sioreg->sidisr & SIDISR_TDIS) {

Appendix A TX3927 Programming Samples

A-43

 sioreg->sitfifo = c;

 sioreg->sidisr = ~SIDISR_TDIS;

 return 0;

 }

 noop(2);

 }

 return -1; /* timeout */

}

int

tx3927sio_getc(int siono){

 int(*func)() = siotbl[siono].getc;

 if(func)

 return func(siono);

 return -1;

}

int

tx3927sio_putc(int siono, char c){

 int(*func)() = siotbl[siono].putc;

 if(func)

 return func(siono,c);

 return -1;

}

/***

 * Wait until all data is sent

 ***/

int

tx3927sio_all_sent(int siono)

{

 reg3927sio *sioreg = (reg3927sio *)REG3927SIO_BASE;

 /* check parameter */

 if(siono!=0 && siono!=1)

 return -1; /* ERROR: illegal siono */

 sioreg+=siono;

 while(!(sioreg->sicisr & SICISR_TXALS));

}

Appendix A TX3927 Programming Samples

A-44

• File name: 3927sio.h

/*===

 * Id

 *---

 * Copyright(C) 1998-1999 TOSHIBA CORPORATION All rights reserved.

 *===

 */

#ifndef __TX3927SIO_H

#define __TX3927SIO_H

#define CPU133M

/* imclock */

#ifndef CPU_CLOCK

#ifdef CPU133M

#define CPU_CLOCK 132710400

#else

#define CPU_CLOCK 58982400

#endif

#endif

/* buffer size between interrupt and task. multiple of 2 */

#define SIO_RCVBUFSZ 4096

#define SIO_SNDBUFSZ 4096

#ifdef USE_UDEOS

#ifndef SIO_SEMID_BASE

#define SIO_SEMID_BASE 2

#endif

#define SIO_SEMID0 (SIO_SEMID_BASE)

#define SIO_SEMID1 (SIO_SEMID_BASE+1)

#define SIO_SEMID0TX (SIO_SEMID_BASE+2)

#define SIO_SEMID1TX (SIO_SEMID_BASE+3)

CRE_SEM(SIO_SEMID0,"sem_sio0",TA_TFIFO,0)

CRE_SEM(SIO_SEMID1,"sem_sio1",TA_TFIFO,0)

CRE_SEM(SIO_SEMID0TX,"sem_sio0tx",TA_TFIFO,0)

CRE_SEM(SIO_SEMID1TX,"sem_sio1tx",TA_TFIFO,0)

/* define for interrupt handler */

/* not required if you use only polling */

DEF_INT(INTNO_SIO0,TA_HLNG,tx3927sio0_int)

/* DEF_INT(INTNO_SIO1,TA_HLNG,tx3927sio1_int) */

#endif

/* type */

#define SIO_DISABLE 0x00000000

#define SIO_TXPOL 0x00000001

#define SIO_TXINT 0x00000002

#define SIO_TXDMA 0x00000004

#define SIO_RXPOL 0x00000010

#define SIO_RXINT 0x00000020

#define SIO_RXDMA 0x00000040

#define SIO_PARITY_ODD 0x00000100

#define SIO_PARITY_EVEN 0x00000200

#define SIO_STOP2 0x00000400

#define SIO_7BIT 0x00000800

#define SIO_HWFLOW 0x00001000

#define SIO_RFIFO_1 0x00002000

Appendix A TX3927 Programming Samples

A-45

#define SIO_RFIFO_4 0x00004000

#define SIO_RFIFO_8 0x00008000

#define SIO_RFIFO_12 0x00010000

#define SIO_TFIFO_1 0x00020000

#define SIO_TFIFO_4 0x00040000

#define SIO_TFIFO_8 0x00080000

extern int tx3927sio_init(int siono,int type,int baud);

extern int tx3927sio_pol_getc(int siono);

extern int tx3927sio_pol_putc(int siono, char c);

extern int tx3927sio_getc(int siono);

extern int tx3927sio_putc(int siono, char c);

extern int tx3927sio_int_getc(int siono);

extern int tx3927sio_int_putc(int siono, char c);

extern int tx3927sio_all_sent(int siono);

#endif /* __TX3927SIO_H */

Appendix A TX3927 Programming Samples

A-46

A.3.3 DMA Controller

The following sample program performs memory-to-memory transfer. It is used for an Ethernet
driver to copy the contents of a receive buffer. The sample shown in "A.3.2 SIO" contains a DMA
example using on-chip serial interface.

• File name: tx3927dma.c
/*---

 Function name: buff_copy

 Function: Copy receive data buffer

 Input:

 Output: None

---*/

typedef Uint32 unsigned int

void buff_copy(char *userbuff8, char *tc35815buff8, Uint32 recvsize)

{

 short *tc35815buff16,*userbuff16;

 Uint32 *tc35815buff32,*userbuff32,*endbuff,*endbuff1,*endbuff2;

 Uint32 *dma3_adrs,dma_status;

 register unsigned int work32,work33,short_count,char_count,i;

 dma3_adrs = (Uint32*)(0xfffeb0a4) ; /* MCR(Master Control Register) */

 dma3_adrs = 0x00000001; / MASTEN(bit0)=on */

 dma3_adrs = (Uint32*)(0xfffeb078) ; /* Channel Control Register(CCR3) */

 dma3_adrs = 0x01000000; / CHRST(bit24)=on(reset channel) */

 dma3_adrs = (Uint32*)(0xfffeb078) ; /* Channel Control Register(CCR3) */

 dma3_adrs = 0x00000000; / CHRST(bit24)=off(enable channel) */

 dma3_adrs = (Uint32*)(0xfffeb064) ; /* Source Address Register(SAR3) */

 dma3_adrs = Vadrs2Padrs(tc35815buff8); / physical address */

 dma3_adrs = (Uint32*)(0xfffeb068) ; /* Destination Address Register(DAR3) */

 dma3_adrs = Vadrs2Padrs(userbuff8+NE_ETHER_ALIGN); / physical address */

 dma3_adrs = (Uint32*)(0xfffeb06c) ; /* Count Register(CNAR3) */

 dma3_adrs = (recvsize+1) & 0xffe; / transfer size(force short

 alignment) */

 dma3_adrs = (Uint32*)(0xfffeb070) ; /* Source Address Inclement

 Register(SAI3) */

 dma3_adrs = 0x00000002; / 2byte */

 dma3_adrs = (Uint32*)(0xfffeb074) ; /* Destination Address Increment

 Register(DAI3)*/

 dma3_adrs = 0x00000002; / 2byte */

 dma3_adrs = (Uint32*)(0xfffeb078) ; /* Channel Control Register(CCR3) */

 *dma3_adrs = 0x00000104;

 /* EXTRQ=0,INTRQD=0,INTENT=0,XTACT=1,XFSZ=001,ONEAD=0 */

 do{

 for(i=0;i<125;i++); /* don't disturb DMA(memory) bus */

 dma3_adrs = (Uint32*)(0xfffeb07c); /* Channel Status Register(CSR3) */

 dma_status = *dma3_adrs; /* read status register */

 }while(dma_status != 0x60); /* NCHNC & NTRNFC(Normal Transfer

 Completion) */

 dma3_adrs = 0xffffffff; / clear CSR3 */

 return;

}

Appendix A TX3927 Programming Samples

A-47

A.3.4 PIO

This is a simple example to turn on the LEDs on the JMR-TX3927. You must set the Pin
Configuration register (PCFG), Open-Drain Control register (XPIOOD) and Direction Control register
(XPIODIR) to enable the PIO.

• File name: pio.c

#include <stdio.h>

#include <setjmp.h>

#include <string.h>

#include "console.h"

#include "menu.h"

/* Example of using TX3927 PIO switch and LEDs */

/*

 PIO Direction Control register address 0xfffef508

 PIO Data Out register Address 0xfffef500

 PIO Data 15,14,13,12bit DIP Switches

 1 -> LED off

 0 -> LED on

 PIO Data 11,10bit LEDs

 Switch ON -> 0

 Switch OFF -> 1

*/

/* LED 12bit off */

int initPIO(void){

 volatile int *pcfg,*xpiood;

 pcfg = (volatile int *)0xfffee008;

 xpiood = (volatile int *)0xfffef50c;

 *pcfg = 0x08fc3131;

 *xpiood = 0x00000000;

 return 0;

}

int led1(void)

{

 volatile int *pdir,*pdo;

 pdir = (volatile int *)0xfffef508;

 pdo = (volatile int *)0xfffef500;

 *pdir = 0x0000f000;

 *pdo = 0x00001000;

 return 0;

}

Appendix A TX3927 Programming Samples

A-48

A.4 PCI Controller

A.4.1 Initializing the PCI Controller

Following is a sample for initializing the PCI Controller. The sample program performs the following
using the JMR-TX3927:

• Detects PCI devices connected to the bus.

• Sets memory addressing and interrupts.

• Sets the address space for master and slave accesses from the TX3927.

This sample code does not allow you to configure a PCI bridge device because it only supports
configuration type 0. It can detect multifunction devices, but does not perform any actual processing for
them. The JMR-TX3927 board does not have a dynamic interrupt routing function; it uses fixed
interrupt numbers that are assigned when the board is designed.

The program structure is as follows:

Init_PCI : Initialize the PCI Controller.

 +-- find_device : Detect devices connected to the TX3927 PCI bus.

 | +--- set_pci_irq : Create an interrupt table.

 | +--- get_addr_size : Detect the requested address space size.

 +-- pci_mem_space_mapping : Allocate address space.

 +--- sort_table : Sort by address size.

 +--- swap_table: Swap resource maps.

The sample also uses the following subroutines:

get_pci_config : PCI bus configuration (write access)

put_pci_config PCI : Bus configuration (read access)

master_abort_check : Master abort detection

• File name: pci3927.c

/***

 Copyright (C) 1999 TOSHIBA Corporation

 TX3927 PCI Initialize function

 module PCI3927.c

 1999.05.05 Akira.Tanaka

 1999.07.19 chenge C file

$Id: PCI3927.c 1.2 1999/07/19 01:29:45 tanaka Exp $

***/

#include <stdio.h>

#include "cosbd_27.h"

#include "intcosmp27.h"

#include "tx3927.h"

/**/

#define TC35815 0xd

#define max_device 22

#define TX3927_IO_PA 0x08000000 /* G-Bus I/O Base Address */

#define TX3927_MEM_PA 0x04000000 /* G-Bus Memory Base Address */

#define TX3927_END_PA 0x03FFFFFF /* 64MB space */

#define PCI_IO_PA 0x08000000 /* PCI I/O Base Address */

#define PCI_MEM_PA 0x04000000 /* PCI Memory Base Address */

Appendix A TX3927 Programming Samples

A-49

#define PCI_END_PA 0x03FFFFFF /* 64MB space */

#define TX3927_VA 0xa0000000 /* Virtual Address Offset */

#define START_PA 0x00000000 /* target start address */

#define MEM_OFFSET 0x02000000 /* target space offset(4 i/o) */

/* Address Mapping Image with Above Definitions */

/* */

/* TX3927 p-address PCI Bus */

/* v-address MEMORY (GBus addr) p-address */

/* ac00_0000 |---------| 0c00_0000 |---------| */

/* | pcic | | PCI bus | */

/* <64MB> | IO space| --------------> <64MB> | IO space| */

/* a800_0000 |---------| 0800_0000 0800_0000|---------| */

/* | pcic |<TX3927_IO_PA> <PCI_IO_PA> | PCI bus | */

/* <64MB> |MEM space| --------------> <64MB> |MEM space| */

/* a400_0000 |---------| 0400_0000 0400_0000|_________| */

/* | |<TX3927_MEM_PA><PCI_MEM_PA>| | */

/* | | | | */

/* | | | | */

/* a200_0000 |---------| 0200_0000 0200_0000|---------| */

/* | SDRAM | <MEM_OFFSET> | PCI | */

/* <32MB> | space | <--------------- <32MB> | Target | */

/* a000_0000 | | 0000_0000 0000_0000| Space | */

/* ~~~~~~~~~~ <START_PA> ~~~~~~~~~~ */

/**/

/* TX3927 PCIC (Internal) Interrupt Signal (Fixed) */

/**/

#define PCI_INT10 0xa

/**/

/* TX3927 PCI Resource Table Definitions */

/* Declare a Structure of type device */

/**/

struct device {

 int id; /* Equal to IDSEL */

 int bus_num; /* Bus Number, 0 Only */

 unsigned short vender_id; /* Vendor ID */

 unsigned short device_id; /* Device ID */

 unsigned short subsvid; /* Subsystem Vendor ID */

 unsigned short subsid; /* Subsystem ID */

 int io_addr_size; /* I/O Request Address Size */

 int mem_addr_size; /* Memory Request Address Size */

 int io_base_addr; /* Assigned I/O Base Address */

 int mem_base_addr; /* Assigned Memory Base Address */

 int int_num; /* Interrupt Signal Number (INT of TX3927) */

 int flg; /* Used Flag ("1" = Used) */

};

/**/

/**/

struct IRQtable {

 int bus_num; /* Bus Number */

 int dev_num; /* Device Number */

 int int_pin; /* Interrupt Pin 0=INTA..3=INTD */

 int int_line; /* Interrupt Line 0x0=INT0..0xF=INT15 */

 int slot_num; /* Slot Number */

};

/**/

/* TX3927 board PCI Interrupt Resouce Table */

/**/

struct IntResTbl {

 int INTR_NUM; /* Interrupt Signal Number (TX3927) */

 int DEV_ID; /* Device Number Connected to This Interrupt

 Signal */

Appendix A TX3927 Programming Samples

A-50

 int SLOT_NUM; /* Slot Number (0 = Platform) */

};

struct device sd[max_device]; /* Declare Global Variables */

struct device tmp_sd[max_device]; /* Sort Resource Table */

struct IRQtable irq[max_device]; /* IRQ Resource Table */

/* TX3927 board PCI Interrupt Resource Table */

/* Set 0xff to ID in Last Table as Identifier */

struct IntResTbl inttbl[8] = {

 {0, 0x0f, 0},/* INT[0] PCI Card CN (INTA) or PCI Card Edge (INTC) *

 {1, 0x12, 3},

 {1, 0x13, 2},

 {1, 0x14, 1},

 {3, 0x0d, 0},/* INT[3] TC35815 or 10M Ether(from I/O board) */

 {0, 0xff, 0}

};

 /* Set Interrupt Connection Information for TX3927 Board */

 /* Connection of TX3927 External Interrupt int[3:0] */

 /* TX3927 Connected Device */

 /* INT[0] PCI Card CN (INTA) or PCI Card Edge (INTC) */

 /* INT[1] IO-C */

 /* INT[2] ISA-C (from I/O board) */

 /* INT[3] TC35815 or 10M Ether(from I/O board) */

 /* INT[10]TX3927 PCIC (INTA<- Mistake 05/11/99) */

 /* With TX3927, set interrupt pins that do not have INTA to 0 */

 /* INT[2:0] need not be set */

 /* INT[3] setting */

/**/

/* TX3927 PCIC Initialization */

/**/

void

Init_PCI(int mode)

{

 /* TX3927 PCIC Initialization */

 CPUReg->pci_conf.PCISTAT = MEN; /* Master Enable */

 CPUReg->pci_lsp.IOMAS = 0xfc000000; /* PCI I/O Size 64MB */

 CPUReg->pci_lsp.MMAS = 0xfc000000; /* PCI Memory Size 64MB */

 CPUReg->pci_lsp.LBC = EPCAD; /* Disable TX3927 Target Configuration */

 /* INT[10] setting (TX3927 as a target, set separately from PCI device) */

 CPUReg->pci_conf.ML = 0xffff010a;

 /* Detect Devices Connected to PCI */

 find_device(mode);

 CPUReg->pci_iconf.IPBMMAR = PCI_MEM_PA; /* PCI Memory Base Address */

 CPUReg->pci_iconf.ILBMMAR = TX3927_MEM_PA; /* G-Bus Memory Base Address */

 CPUReg->pci_iconf.IPBIOMAR = PCI_IO_PA; /* PCI I/O Base Address */

 CPUReg->pci_iconf.ILBIOMAR = TX3927_IO_PA; /* G-Bus I/O Base Address */

 /* Assignment of TX3927 target devices requires a consideration */

 /* I/O space is 256 bytes (from 0200_0000) */

 /* Note that this is set outside TX3927 board memory space */

 CPUReg->pci_lsp.MBAS = 0xfe000000; /* Target Memory Size 32MB */

 CPUReg->pci_lsp.IOBAS = 0xffffff00; /* Target I/O Size 256 bytes */

 CPUReg->pci_conf.MBA = START_PA; /* Target Memory Base Address */

 CPUReg->pci_conf.IOBA = START_PA + MEM_OFFSET; /* Target I/O Base Address */

 CPUReg->pci_tconf.TLBMMA = START_PA; /* Target G-Bus Memory Address*/

 CPUReg->pci_tconf.TLBIOMA = START_PA + MEM_OFFSET; /* Target G-Bus I/O Address */

 /* Enable PCIC Memory and I/O Access, Disable Configuration */

 CPUReg->pci_lsp.LBC = EPCAD | ILMDE | ILIDE;

Appendix A TX3927 Programming Samples

A-51

 /* Assign Addresses to Detected Devices */

 pci_mem_space_mapping();

 if (master_abort_check() != 0) {

 printf("\n Config Register Access Error!! after mapping");

 CPUReg->pci_conf.PCISTAT = RECMA | MEN;

 }

 /* Arbiter Settings */

 /* CPUReg->pci_ext.REQ_TRACE = 0x73737373; */

 CPUReg->pci_ext.REQ_TRACE = 0x73210731;

 CPUReg->pci_ext.BM = 0x00000000; /* clear */

 /* Enable Arbiter */

 CPUReg->pci_ext.PBAPMC = 0x00000002;

}

/**/

/* Detecting devices connected to TX3927 PCI bus */

/* If no device detected, set sd[idsel].id to 0xff. */

/* If device detected, perform multifunction device detection. */

/* If multifunction device is detected, do nothing. */

/* Collect interrupt information. Add INT number to */

/* resource table sd. */

/* Information table entries created when devices are */

/* detected should be arranged sequentially without any gap */

/* (not necessary to match IDSEL number). */

/* Add SubsystemVenderID and Subsystem ID. */

/**/

int

find_device(int mode)

{

 int idsel, i;

 int vid, htype;

 int intp, intl;

 int num;

 int base_addr;

 num = 0;

 for (i = 0; i < max_device; i++) {

 idsel = i;

 /* read vender ID */

 vid = 0xffff & get_pci_config(idsel, 0, 0x00);

 if ((vid != 0xffff) && (master_abort_check() == 0)) {

 sd[num].id = idsel;

 sd[num].vender_id = 0xffff & get_pci_config(idsel, 0, 0x00);

 sd[num].device_id = 0xffff & (get_pci_config(idsel, 0, 0x00) >> 16);

 sd[num].subsvid = 0xffff & get_pci_config(idsel, 0, 0x2c);

 sd[num].subsid = 0xffff & (get_pci_config(idsel, 0, 0x2c) >> 16);

 sd[num].bus_num = 0;

 sd[num].flg = 0;

 /* read header type */

 htype = 0x80 & (get_pci_config(idsel, 0, 0x08) >> 16);

 if (htype != 0)

 printf("\n this device is multi device ");

 /* Read Interrupt Pin. Set INT Number Which Matched ID

 (*InterruptLine) */

 /* Read int_num */

 set_pci_irq(num, mode);

 /* read Interrupt line */

 intl = 0x0f & get_pci_config(idsel, 0, 0x3c);

 sd[num].int_num = intl;

Appendix A TX3927 Programming Samples

A-52

 /* base address size check */

 /* check 0x10 may be I/O base address register */

 base_addr = get_addr_size(idsel, 0x10);

 if ((base_addr & 0x00000001) && (base_addr != 0))

 sd[num].io_addr_size = base_addr;

 else {

 if (base_addr != 0)

 sd[num].mem_addr_size = base_addr;

 else {

 sd[num].mem_addr_size = 0xffffffff;

 sd[num].io_addr_size = 0xffffffff;

 }

 }

 /* check 0x14 may be memory base address register */

 base_addr = get_addr_size(idsel, 0x14);

 if ((base_addr & 0x00000001) && (base_addr != 0))

 sd[num].io_addr_size = base_addr;

 else {

 if (base_addr != 0)

 sd[num].mem_addr_size = base_addr;

 else {

 sd[num].mem_addr_size = 0xffffffff;

 sd[num].io_addr_size = 0xffffffff;

 }

 }

 num = num + 1;

 } else {

 /* Restore Status If No Device Found */

 CPUReg->pci_conf.PCISTAT = RECMA | MEN;

 if (master_abort_check() != 0) /* Recheck */

 printf("\n Ireagal status !!");

 }

 }

 /* Assign 0xff to ID of Last Table (Identifier) */

 sd[num].id = 0xff;

}

/**

 * Definition of Interrupt Resource Table */ *

 **/

void

set_pci_irq(int num, int mode)

{

 int i;

 int past_data; /* Status Before Change */

 int undef; /* When Interrupt Resource Cannot Be Defined: 1 */

 i = 0;

 undef = 0;

 while (inttbl[i].DEV_ID != sd[num].id) { /* Search Table for Matching Device Number

 */

 if (inttbl[i].DEV_ID == 0xff) { /* End Search at End of Table */

 undef = 1;

 if (mode != 0)

 printf("\n %02x is not defined! please check Interrupt

Resource Table ", sd[num].id);

 break; /* Warning if No Match Was Found in Resource Table */

 }

 i++;

 }

Appendix A TX3927 Programming Samples

A-53

 /* Set Interrupt Resource Table with Relevant Device Number */

 if (undef == 0) {

 irq[i].bus_num = 0;

 irq[i].dev_num = inttbl[i].DEV_ID;

 irq[i].int_pin = (get_pci_config(irq[i].dev_num, 0, 0x3c) >> 8) & 0x07;

 irq[i].int_line = 0x0f & inttbl[i].INTR_NUM;

 irq[i].slot_num = inttbl[i].SLOT_NUM;

 /* Write Interrupt Signal to Interrupt_Line Register */

 /* Word Write: Mask Other Registers (Read and Write) */

 past_data = get_pci_config(irq[i].dev_num, 0, 0x3c) | (0x000000ff &

 irq[i].int_line);

 /* printf("\n put_pci_config reg03h"); */

 put_pci_config(irq[i].dev_num, 0, 0x3c, past_data);

 }

}

/**/

/* Detect requested size for address space using base address register. */

/* Write 0xffffffff to base address register. Detect requested size */

/* according to successfully written bits. If all zeros, reserved register. */

/* If bit 0 is 1, I/O base register. If bit 0 is 0, memory base register. */

/* xx Search registers for 10h, 14h, 18h, 1ch, 20h, and 24h xx */

/* Return value is size. */

/**/

int

get_addr_size(int idsel, int reg)

{

 int ret;

 /* int reg[6]={0x10,0x14,0x18,0x1c,0x20,0x24}; */

 put_pci_config(idsel, 0, reg, 0xffffffff);

 ret = get_pci_config(idsel, 0, reg);

 return ret;

}

/**/

/* Allocate Address Space According to Requested Space Size */

/**/

int

pci_mem_space_mapping(void)

{

 int mem_space; /* Required Memory Space */

 int io_space; /* Required for I/O Space */

 int next_io_addr; /* Lowest I/O Address Available After Mapping */

 int next_mem_addr; /* Lowest Memory Address Available After Mapping */

 int i;

 int ret;

 i = 0;

 next_io_addr = PCI_IO_PA;

 next_mem_addr = PCI_MEM_PA;

 /* Preprocessing for Mapping: Sort Table */

 /* IO space size sort */

 sort_table(0); /* Sort Completed */

 /* IO space mapping */

 while (sd[i].id != 0xff) {

 if (sd[i].io_addr_size != 0xffffffff)

 io_space = ~(0xfffffffc & sd[i].io_addr_size) + 1;

 sd[i].io_base_addr = next_io_addr;

 next_io_addr = next_io_addr + io_space;

 if (next_io_addr > PCI_END_PA + PCI_IO_PA)

 printf("\n IO mapping failed!! ");

 i++;

Appendix A TX3927 Programming Samples

A-54

 }

 /* MEM space size sort */

 sort_table(1); /* Sort Completed */

 i = 0;

 /* MEM space mapping */

 while (sd[i].id != 0xff) {

 if (sd[i].mem_addr_size != 0xffffffff)

 mem_space = ~(0xfffffff0 & sd[i].mem_addr_size) + 1;

 sd[i].mem_base_addr = next_mem_addr;

 next_mem_addr = next_mem_addr + mem_space;

 if (next_mem_addr > PCI_END_PA + PCI_MEM_PA)

 printf("\n memory mapping failed!! ");

 i++;

 }

}

/***/

/* Sort by resource information address size in descending order */

/* Toggle between memory and I/O using switch */

/***/

int

sort_table(int sw)

{

 int i, j;

 i = 0;

 if (sw == 0) { /* IO space */

 while (sd[i].id != 0xff) {

 if (i != 0) {

 j = 0;

 while (j < i) {

 if (~sd[i].io_addr_size > ~sd[j].io_addr_size) {

 swap_table(j, i);

 } else

 j++;

 }

 }

 i++;

 }

 } else { /* MEM space */

 while (sd[i].id != 0xff) {

 if (i != 0) {

 j = 0;

 while (j < i) {

 if (~sd[i].mem_addr_size > ~sd[j].mem_addr_size)

{

 swap_table(j, i);

 } else

 j++;

 }

 } i++;

 }

 }

}

/**/

/* Swap resource maps */

/**/

void

swap_table(int p, int c)

{

Appendix A TX3927 Programming Samples

A-55

 struct device tmp;

 tmp = sd[p];

 sd[p] = sd[c];

 sd[c] = tmp;

}

/***/

/* PCI bus configuration (write access) */

/* Device number, function number, register number, write data */

/***/

int

put_pci_config(int id, int func, int reg, int buf)

{

 int confreg;

 confreg = 0x00000000 | ((id & 0x1f) << 11) | ((func & 0x7) << 8) | reg;

 CPUReg->pci_lsp.ICAR = confreg;

 CPUReg->pci_lsp.ICDR = buf;

}

/**/

/* PCI bus configuration (read access) */

/* Device number , function number, register number */

/* Return value: read data */

/**/

int

get_pci_config(int id, int func, int reg)

{

 int ret, confreg;

 confreg = 0x00000000 | ((id & 0x1f) << 11) | ((func & 0x7) << 8) | reg;

 CPUReg->pci_lsp.ICAR = confreg;

 ret = CPUReg->pci_lsp.ICDR;

 return ret;

}

/***/

/* Detect master abort caused by access to nonexistent addres */

/***/

int

master_abort_check(void)

{

 int ret;

 ret = CPUReg->pci_conf.PCISTAT & RECMA;

 return ret;

}

Appendix A TX3927 Programming Samples

A-56

Appendix B Thermal Characteristics

B-1

Appendix B. Thermal Characteristics

B.1 Outline of Thermal Resistance of Packages with Fins
The thermal resistance of a package having fins is generally defined as:

θja = θjc + θcf + θfa

where:

θja: Thermal resistance between the junction and the ambient

θjc: Thermal resistance between the junction and the package case surface

θjf: Thermal resistance between the package case surface and the fin surface

θfa: Thermal resistance between the fin surface and the ambient

Package thermal resistance is calculated as follows:

θja: (Tj − Ta)/P
Ta

Tc

Tj

θ fa

θ jc

Tf

θ cf

Figure B.1.1 Package with Fins

Appendix B Thermal Characteristics

B-2

B.2 Outline of Thermal Resistance Measurement
Thermal resistance is the ability of the package to dissipate internally generated heat out of the package.

Lower thermal resistance indicates better heat removal performance; i.e., packages with lower thermal
resistance permits higher die power dissipation. The unit of measure for thermal resistance is usually °C/W.

Three thermal resistances are used: θja, θjc and θca. Historically, the junction-to-ambient thermal
resistance (θja) is expressed as the sum of a junction-to-case thermal resistance (θjc) and a case-to-ambient
(θca) thermal resistance.

θ ja = θ jc + θ ca ... (1)
Ta

Tc

Tj

θca

θjc

Figure B.2.1 Package Thermal Resistance

To obtain θja and θjc characteristics of a package, the chip’s junction temperature (Tj) must be
determined. It is impossible, however, to directly measure the junction temperature. The simplest and most
common parameter used for temperature sensing within a device is the junction voltage across a forward-
biased temperature-sensitive diode. Figure B.2.2 shows the slope of a typical calibration line for such a
diode. [Refer to SEMI G46-88]

Ambient Temperature (Ta) [oC]

KVf

Vf

D
io

de
 F

or
w

ar
d

Vo
lta

ge
 (V

f)[
m

V]

Figure B.2.2 Temperature-Sensing Diode Calibration Line

Appendix B Thermal Characteristics

B-3

To create a calibration line, the device is put in a constant temperature bath and heated for a specified
period of time. Then a fixed forward current (Im) is applied to the diode, and the diode forward voltage (Vf)
is measured. This voltage usually varies linearly with temperature over a range suitable for making thermal
measurements. The device is initially heated to ensure that a steady-state condition is produced in which Ta
equals Tj. After measurements are taken at several (at least two) temperatures, a relational constant (Kvf) is
calculated which defines the temperature dependency of the sensing diode forward voltage (∆v/∆t). Once
Kvf is known, the chip’s junction temperature (Tj) can be easily determined by making Vf measurements.

Junction-to-ambient thermal resistance (θja) is calculated by dividing the difference in temperature
between the junction (Tj) and the ambient atomosphere (Ta) by the chip’s power dissipation: (P)

θ ja ✝
P

TaTj −(2)

Likewise junction-to-case thermal resistance (θjc) is calculated y dividing the difference in temperature
between the junction, and the case (package) top surface (Tc) by the chip’s power dissipation (P).

When making thermal measurements on active devices (as opposed to specially designed thermal test die),
input protection diodes are used both as heating source and temperature sensor. Thermal measurements
consist of three steps: 1) Heating power (P) is applied to the diode under test (DUT); 2) a fixed Measurement
Current (Im) is applied to the DUT; and 3) the forward-biased voltage across the diode connection (Vf) is
measured as the temperature-sensitive parameter. The use of electronic switching allows the power-turn-off-
to-measurement completion time to be very short. See Figure B.2.3 and Figure B.2.4. [Refer to SEMI G46-
88.]

The TH-256 ∆mV tester, manufactured by Kuwano Denki, is used for measurements.

Figure B.2.3 Measuring circuit

V

VDD

VSS

PIm

Heating Power CircuitTemperature Sensing Circuit

Vf

Switching Pulse

Appendix B Thermal Characteristics

B-4

Figure B.2.4 Switching Timing

Thermal measurements are based on the change in Vf; thus the initial temperature-sensing diode junction
voltage must be determined, with no heating power applied (i.e., at room temperature). Since this is used as a
reference point, it is important to wait for an appropriate amount of time for a steady-state condition (Vf0 =
Ta) to occur before taking measurements.

Next, power is applied to the DUT. Thermal measurements require careful attention to the amount of time
that power is applied with heating pulses, because the heat generated at the junction takes a finite amount of
time to propagate outward to the surrounding environment and Vf1 = Tj is reached. The temperature change
is calculated from the difference between the initial voltage (Vf0) and the value after heating, using the
diode’s Kvf constant. Thermal resistance is defined as the change in temperature divided by the power
dissipation (P) that caused the temperature change.

θ ja ✝
()

P
KVfVf

P
TaTj Vf01 −

=− (3)

Figure B.2.5 shows an outline of the apparatus used to make junction-to-case thermal resistance (θjc)
measurements using a fluid bath. A thermocouple is attached to the package surface. The package is
submerged in the fluid bath, which is stirred constantly in order to keep the fluid temperature uniform. The
fluid temperature is also kept constant while heating power is applied. Other measuring methods and
equipment, including application of heating power, are the same as for θja measurements. [Refer to SEMI
G30-88 and G43-87.]

Because θjc measurements require a large-sized apparatus including a fluid bath, thermal measurements
may be performed in the air, with a thermocouple attached to the package surface. The resulting thermal
resistance may loosely be referred to as θjc, although it is not actually θjc. SEMI defines it as ϕjt. Toshiba
measures the thermal resistance in the air, that is, only measures ϕjt. [Refer to SEMI G69-96.]

P

Im

Vf1

Drive Heating Power Circuit

Drive Temperature Sensing Circuit

Temperature Sensing Pulse Timing

Heating Power Circuit

Temperature
Sensing
Circuit

Appendix B Thermal Characteristics

B-5

Figure B.2.5 Fluid Bath Testing Environment for Junction-to-Case Thermal Resistance (θjc) Measurements

Temperature Controller

Fluid Circulator

Fluid Bath

Appendix B Thermal Characteristics

B-6

B.3 Example Calculations for Designing Fins
The following formulas are used to select fins for a given chip, package, ambient temperature, and power

dissipation:

Package temperature (Tc): 70 oC

Ambient temperature (Ta): 60 oC

Power dissipation (P): 1 W

θca = (Tc – Ta) / P

= (70 – 60) / 1

= 10 oC/W

Fin thermal resistance:

θcf = 0.17oC/W (from a catalog of Mizutani Denki Kogyo)

θfa = θca – θc – θcf

= ✑✐ – 0.17

= 9.83 oC/W

Hence, you can use fins having thermal resistance of 9.83°C/W or less.

* Toshiba cannot attach fins to devices for you because reliability issues are involved.

