ADL5542

FEATURES

Fixed gain of 20 dB
Operation up to $6 \mathbf{G H z}$
Input/output internally matched to 50Ω
Integrated bias control circuit
Output IP3
46 dBm at 500 MHz
40 dBm at 900 MHz
Output 1 dB compression: 20.6 dB at 900 MHz
Noise figure of $\mathbf{3 d B}$ at $\mathbf{9 0 0} \mathbf{~ M H z}$
Single 5 V power supply
Small footprint 8-lead LFCSP
Pin compatible with 15 dB gain ADL5541
1 kV ESD (Class 1C)

GENERAL DESCRIPTION

The ADL5542 is a broadband 20 dB linear amplifier that operates at frequencies up to 6 GHz . The device can be used in a wide variety of CATV, cellular, and instrumentation equipment.

The ADL5542 provides a gain of 20 dB that is stable over frequency, temperature, power supply, and from device to device. The device is internally matched to 50Ω with an input return loss of 10 dB or better, up to 6 GHz . Only input/output ac coupling capacitors, power supply decoupling capacitors, and an external inductor are required for operation.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADL5542 is fabricated on an InGaP HBT process and has an ESD rating of 1 kV (Class 1C). The device is packaged in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LFCSP that uses an exposed paddle for excellent thermal impedance.
The ADL5542 consumes 93 mA on a single 5 V supply and is fully specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

A fully populated RoHS-compliant evaluation board is available.

The ADL5541 is a companion part that offers a gain of 15 dB in a pin-compatible package.

Rev. A

ADL5542

TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Typical Scattering Parameters 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions 7
REVISION HISTORY
10/07—Rev. 0 to Rev. A
Changes to Figure 4 8
Change to Basic Connections Section 10
Changes to Table 5 10
Change to Table 6 11
Deleted Notes from Ordering Guide Section 12
Typical Performance Characteristics 8
Basic Connections 10
Soldering Information and Recommended PCB Land Pattern 10
Evaluation Board 11
Outline Dimensions 12
Ordering Guide 12
7/07—Revision 0: Initial Version

(07)

SPECIFICATIONS

VPOS $=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter \& Conditions \& Min \& Typ \& Max \& Unit \\
\hline \begin{tabular}{l}
OVERALL FUNCTION \\
Frequency Range Gain (S21) Input Return Loss (S11) Output Return Loss (S22) Reverse Isolation (S12)
\end{tabular} \& \begin{tabular}{l}
900 MHz \\
Frequency 500 MHz to 5 GHz Frequency 500 MHz to 5 GHz
\end{tabular} \& 50 \& \[
\begin{aligned}
\& 19.7 \\
\& -15 \\
\& -10 \\
\& -22
\end{aligned}
\] \& 6000 \& \[
\begin{aligned}
\& \mathrm{MHz} \\
\& \mathrm{~dB} \\
\& \mathrm{~dB} \\
\& \mathrm{~dB} \\
\& \mathrm{~dB}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
FREQUENCY \(=100 \mathrm{MHz}\) \\
Gain \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} \& \(\Delta \mathrm{f}=1 \mathrm{MHz}\), output power (Pout) \(=0 \mathrm{dBm}\) per tone \& \& \[
\begin{aligned}
\& 20.2 \\
\& 19.6 \\
\& 38 \\
\& 2.7
\end{aligned}
\] \& \& \begin{tabular}{l}
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=500 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} \& \[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power }(\text { Pout })=3 \mathrm{dBm} \text { per tone }
\end{aligned}
\] \& 18.4 \& \[
\begin{aligned}
\& 19.5 \\
\& \pm 0.15 \\
\& \pm 0.1 \\
\& \pm 0.02 \\
\& 20.6 \\
\& 46 \\
\& 2.8
\end{aligned}
\] \& \[
20.8
\]
\[
3.2
\] \& \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline ```
FREQUENCY = 900 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
``` \& \[
\begin{aligned}
\& \pm 50 \mathrm{MHz} \\
\& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
\& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
\& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power }(\text { Pout })=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] \& 19.2 \& \[
\begin{aligned}
\& 19.7 \\
\& \pm 0.03 \\
\& \pm 0.14 \\
\& \pm 0.02 \\
\& 20.6 \\
\& 40 \\
\& 3.0
\end{aligned}
\] \& 20.8

3.3 \& | dB |
| :--- |
| dB |
| dB |
| dB |
| dBm |
| dBm |
| dB | <br>

\hline ```
FREQUENCY = 2000 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure

``` & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power }(\text { Pout })=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 18 & \[
\begin{aligned}
& 18.7 \\
& \pm 0.05 \\
& \pm 0.23 \\
& \pm 0.04 \\
& 18 \\
& 39 \\
& 3.2
\end{aligned}
\] & 19.4

3.6 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=2400 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power }(\text { Pout })=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 17.7 & \[
\begin{aligned}
& 18.3 \\
& \pm 0.05 \\
& \pm 0.24 \\
& \pm 0.04 \\
& 16.8 \\
& 38 \\
& 3.5
\end{aligned}
\] & 18.9

3.8 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline
\end{tabular}

\section*{ADL5542}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Parameter & Conditions & Min & Typ & Max & Unit \\
\hline \begin{tabular}{l}
FREQUENCY \(=3500 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point Output Third-Order Intercept Noise Figure
\end{tabular} & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power }(\text { Pout })=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 15.9 & \[
\begin{aligned}
& 17.5 \\
& \pm 0.04 \\
& \pm 0.31 \\
& \pm 0.04 \\
& 13.7 \\
& 33 \\
& 3.7
\end{aligned}
\] & 18.8

4.3 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
FREQUENCY \(=5800 \mathrm{MHz}\) \\
Gain \\
vs. Frequency \\
vs. Temperature \\
vs. Supply \\
Output 1 dB Compression Point \\
Output Third-Order Intercept \\
Noise Figure
\end{tabular} & \[
\begin{aligned}
& \pm 50 \mathrm{MHz} \\
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& 4.75 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \\
& \Delta \mathrm{f}=1 \mathrm{MHz} \text {, output power }(\text { Pout })=0 \mathrm{dBm} \text { per tone }
\end{aligned}
\] & 11.2 & \[
\begin{aligned}
& 12.7 \\
& \pm 0.03 \\
& \pm 1.2 \\
& \pm 0.04 \\
& 6.8 \\
& 24.2 \\
& 5.7
\end{aligned}
\] & 14.4

6.3 & \begin{tabular}{l}
dB \\
dB \\
dB \\
dB \\
dBm \\
dBm \\
dB
\end{tabular} \\
\hline \begin{tabular}{l}
POWER INTERFACE \\
Supply Voltage (VPOS) \\
Supply Current vs. Temperature \\
Power Dissipation
\end{tabular} & Pin VPOS
\[
\begin{aligned}
& -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} \\
& \text { VPOS }=5 \mathrm{~V}
\end{aligned}
\] & 4.5 & \[
\begin{aligned}
& 5 \\
& 93 \\
& \pm 15 \\
& 0.5
\end{aligned}
\] & \[
\begin{aligned}
& 5.5 \\
& 115
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{V} \\
& \mathrm{~mA} \\
& \mathrm{~mA} \\
& \mathrm{~W}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{TYPICAL SCATTERING PARAMETERS}

VPOS \(=5 \mathrm{~V}\) and \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), the effects of the test fixture have been de-embedded up to the pins of the device.
Table 2.
\begin{tabular}{l|l|l|l|l|l|l|l|l}
\hline Freq. (MHz) & Magnitude (dB) & Angle (\({ }^{\circ}\)) & Magnitude (dB) & Angle (\({ }^{\circ}\)) & Magnitude (dB) & Angle (\({ }^{\circ}\)) & Magnitude (dB) & Angle (\({ }^{\circ}\)) \\
\hline 50 & -23.9427 & -127.394 & 20.77572 & +170.5022 & -23.0076 & +3.044077 & -23.9476 & -132.996 \\
100 & -29.6174 & -153.6 & 20.51771 & +170.3216 & -22.6572 & +1.38839 & -32.4194 & -124.454 \\
500 & -34.5211 & +19.99577 & 20.23355 & +152.6774 & -22.5262 & -10.9886 & -26.2358 & -129.115 \\
900 & -37.74 & +147.4543 & 20.07428 & +132.0556 & -22.4939 & -21.2573 & -20.2616 & -159.271 \\
1000 & -33.8877 & +131.3191 & 20.07369 & +127.0206 & -22.4386 & -23.7005 & -20.323 & -160.866 \\
1500 & -24.7749 & -152.311 & 19.80607 & +101.2591 & -22.3087 & -35.6482 & -16.2712 & +168.1644 \\
2000 & -17.038 & +178.4399 & 19.5708 & +76.03876 & -21.9922 & -48.9813 & -12.759 & +164.7149 \\
2500 & -9.60208 & +153.1961 & 19.26227 & +49.85321 & -21.6433 & -60.9072 & -9.74244 & +150.6577 \\
3000 & -8.00289 & +128.6464 & 18.82098 & +24.3132 & -21.0921 & -76.3162 & -8.77595 & +128.7323 \\
3500 & -7.91011 & +103.6543 & 18.18117 & -1.63173 & -21.2002 & -91.6973 & -10.5739 & +90.37487 \\
4000 & -12.816 & +96.79933 & 17.38515 & -26.2863 & -20.7711 & -103.208 & -13.1628 & +8.899607 \\
4500 & -17.625 & +156.5961 & 17.57137 & -52.0317 & -20.0291 & -120.789 & -7.31571 & -73.4032 \\
5000 & -12.8458 & +173.0378 & 16.39804 & -77.6904 & -19.9498 & -136.697 & -6.22666 & -106.102 \\
5500 & -10.9468 & -154.419 & 15.13047 & -102.402 & -19.8825 & -153.753 & -9.89228 & -111.644 \\
6000 & -5.69808 & -150.164 & 13.48849 & -125.082 & -20.3196 & -170.25 & -10.7825 & -57.0274 \\
\hline
\end{tabular}

\section*{ADL5542}

\section*{ABSOLUTE MAXIMUM RATINGS}

Table 3.
\begin{tabular}{l|l}
\hline Parameter & Rating \\
\hline Supply Voltage, VPOS & 6.5 V \\
Input Power (re: \(50 \Omega\)) & 10 dBm \\
Internal Power Dissipation (Paddle Soldered) & 650 mW \\
\(\theta_{\text {c }}\) (Junction to Paddle) & \(28.5^{\circ} \mathrm{C} / \mathrm{W}\) \\
Maximum Junction Temperature & \(150^{\circ} \mathrm{C}\) \\
Operating Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) \\
Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

\section*{ESD CAUTION}
\begin{tabular}{l|l}
\hline ESD (electrostatic discharge) sensitive device. \\
Charged devices and circuit boards can discharge \\
without detection. Although this product features \\
patented or proprietary protection circuitry, damage \\
may occur on devices subjected to high energy ESD. \\
Therefore, proper ESD precautions should be taken to \\
avoid performance degradation or loss of functionality.
\end{tabular}

\section*{PIN CONFIGURATION AND FUNCTION DESCRIPTIONS}

Figure 2. Pin Configuration

Table 4. Pin Function Descriptions
\begin{tabular}{l|l|l}
\hline Pin No. & Mnemonic & Description \\
\hline 1 & RFIN & RF Input. Requires a dc blocking capacitor. \\
\(2,3,6,7\) & GND & Ground. Connect these pins to a low impedance ground plane. \\
4 & CB & Low Frequency Bypass. A \(1 \mu\) F capacitor should be connected between this pin and ground. \\
5 & VPOS & Power Supply for Bias Controller. Connect directly to external power supply. \\
8 & RFOUT & \begin{tabular}{l}
RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is tied to the \\
external power supply. RF path requires a dc blocking capacitor.
\end{tabular} \\
Exposed Paddle & & Exposed Paddle. Internally connected to GND. Solder to a low impedance ground plane.
\end{tabular}

\section*{ADL5542}

\section*{TYPICAL PERFORMANCE CHARACTERISTICS}

Figure 3. Gain, P1dB, OIP3, and Noise Figure vs. Frequency

Figure 4. Gain vs. Frequency and Temperature

Figure 5. Input Return Loss (S11), Output Return Loss (S22), and Reverse Isolation (S12) vs. Frequency

Figure 6. OIP3 and P1dB vs. Frequency and Temperature

Figure 7. OIP3 vs. Output Power (Pout) and Frequency

Figure 8. Noise Figure vs. Frequency and Temperature

Figure 9. OIP3 Distribution at 900 MHz

Figure 10. P1dB Distribution at 900 MHz

Figure 11. Gain Distribution at 900 MHz

Figure 12. Noise Figure Distribution at 900 MHz

\section*{ADL5542}

\section*{BASIC CONNECTIONS}

The basic connections for operating the ADL5542 are shown in Figure 13. Recommended components are listed in Table 5. The input and output should be ac-coupled with appropriately sized capacitors (device characterization was performed with 33 pF capacitors). A 5 V dc bias is supplied to the amplifier via VPOS (Pin 5) and through a biasing inductor connected to RFOUT (Pin 8). The bias voltage should be decoupled using a \(1 \mu \mathrm{~F}\) capacitor, a 1.2 nF capacitor, and two 68 pF capacitors.

Figure 13. Basic Connections
For operation between 50 MHz and 500 MHz , a larger biasing choke and ac coupling capacitors are necessary (see Table 5). Figure 14 shows a plot of the input return loss, the output return loss, and the gain with these components. At 100 MHz , the ADL5542 achieves an OIP3 of 38 dBm (Pout \(=0 \mathrm{dBm}\) per tone). The noise figure performance for operation from 50 MHz to 500 MHz is shown in Figure 15. When operating below 50 MHz , the ADL5542 exhibits gain peaking, and the input and output match degrade significantly.

Figure 14. Input Return Loss (S11), Output Return Loss (S22), and Gain (S21) vs. Frequency

Figure 15. Noise Figure vs. Frequency

\section*{SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN}

Figure 16 shows the recommended land pattern for the ADL5542. To minimize thermal impedance, the exposed paddle on the package underside should be soldered down to a ground plane along with Pin 2, Pin 3, Pin 6, and Pin 7. If multiple ground layers exist, they should be stitched together using vias (a minimum of five vias is recommended). For more information on land pattern design and layout, refer to Application Note AN-772, A Design and Manufacturing Guide for the Lead Frame Chip Scale Package (LFCSP).

Figure 16. Recommended Land Pattern

Table 5. Recommended Components for Basic Connections
\begin{tabular}{l|l|l|l|l|l|l|l|l}
\hline Frequency & C1 & C2 & C3 & L1 & C4 & C5 & C6 & C7 \\
\hline 50 MHz to 500 MHz & \(0.1 \mu \mathrm{~F}\) & \(0.1 \mu \mathrm{~F}\) & \(1 \mu \mathrm{~F}\) & 470 nH (Coilcraft 0603LS-471NXJL_or equivalent) & 68 pF & 1.2 nF & \(1 \mu \mathrm{~F}\) & 68 pF \\
500 MHz to 6000 MHz & 33 pF & 33 pF & \(1 \mu \mathrm{~F}\) & 47 nH (Coilcraft 0603CS-47NXJ_ or equivalent) & 68 pF & 1.2 nF & \(1 \mu \mathrm{~F}\) & 68 pF \\
\hline
\end{tabular}

\section*{EVALUATION BOARD}

Figure 19 shows the schematic for the ADL5542 evaluation board. The board is powered by a single 5 V supply.
The components used on the board are listed in Table 6. Power can be applied to the board through clip-on leads (VCC and GND) or through a 2 -pin header (W1).

Figure 17. Evaluation Board Layout (Bottom)

Figure 18. Evaluation Board Layout (Top)

Table 6. Evaluation Board Configuration Options
\begin{tabular}{l|l|l}
\hline Component & Function & Default Value \\
\hline DUT1 & Gain block & ADL5542 \\
C1, C2 & AC coupling capacitors & \(33 \mathrm{pF}, 0402\) \\
C3 & Low frequency bypass capacitor & \(1 \mu \mathrm{~F}, 0805\) \\
C4, C5, C6, C7, C8, C9 & Power supply decoupling capacitors & \(\mathrm{C4,C7=68pF,0603}\) \\
& & \(\mathrm{C} 5=1.2 \mathrm{nF}, 0603\) \\
& & \(\mathrm{C} 6=1 \mu \mathrm{~F}, 0805\) \\
L1 & DC bias inductor & \(47 \mathrm{nH}, 0603\) (Coilcraft 0603CS-47NXJL_ or equivalent) \\
VCC and GND & Clip-on terminals for power supply & \\
W1 & 2-pin header for connection of ground and supply via cable & \\
\hline
\end{tabular}

\section*{ADL5542}

\section*{OUTLINE DIMENSIONS}

ORDERING GUIDE
\begin{tabular}{l|l|l|l|l}
\hline Model & Temperature Range & Package Description & Package Option & Branding \\
\hline ADL5542ACPZ-R7 \({ }^{1}\) & \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\) & \begin{tabular}{l}
\(8-\) Lead LFCSP_VD, Tape and Reel \\
Evaluation Board
\end{tabular} & CP-8-2 & Q15 \\
\hline ADL5542-EVALZ \({ }^{1}\) & & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1} \mathrm{Z}=\) RoHS Compliant Part.
}```

