

DUAL PRECISION CMOS VOLTAGE COMPARATOR WITH PUSH-PULL DRIVER

GENERAL DESCRIPTION

The ALD2302A/ALD2302 are monolithic precision high performance dual voltage comparators built with advanced silicon gate CMOS technology. The primary features are: very high typical input impedance of $10^{12}\Omega$; low input bias current of 10pA; fast response time of 180ns; very low power dissipation of 175 μ A per comparator; and single (+5V) or dual (±5V) power supply operation.

The input voltage range includes ground, which makes these comparators ideal for single supply low level signal detection with high source impedance. The outputs can source and sink current allowing for application flexibility. They can be used in either wired-OR connection without pull-up resistor or push-pull configuration. The ALD2302A/ALD2302 can also be used in wired-OR connection with other open drain circuits such as the ALD2301/ALD2303 voltage comparators.

The ALD2302A/ALD2302 voltage comparators are ideal for a great variety of applications, especially in low level signal detection circuits which require low standby power and high output current. For quad packages, use the ALD4302 quad voltage comparator.

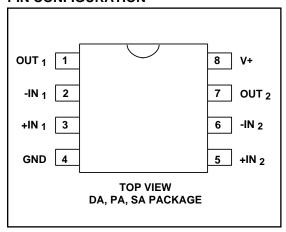
APPLICATIONS

- PCMCIA instruments
- MOSFET driver
- High source impedance voltage comparison circuits
- Multiple limit window comparator
- Power supply voltage monitor
- Photodetector sensor circuit
- High speed LED driver
- Oscillators
- Battery operated instruments
- Remote signal detection
- Multiple relay drivers

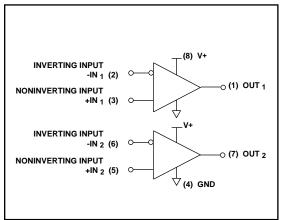
BENEFITS

- On-chip input and output buffers
- · Precision voltage comparison capability
- Eliminate need for second power supply
- · Eliminate pull-up resistor

ORDERING INFORMATION ("L" suffix for lead free version)


Operating Temperature Range *									
-55°C to +125°C	0°C to +70°C	0°C to +70°C							
8-Pin CERDIP Package	8-Pin Small Outline Package (SOIC)	8-Pin Plastic Dip Package							
ALD2302ADA ALD2302DA	ALD2302ASA ALD2302ASAL	ALD2302APA ALD2302APAL							
	ALD2302SA ALD2302SAL	ALD2302PA ALD2302PAL							

* Contact factory for industrial temperature range

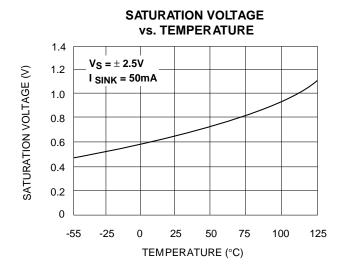

FEATURES

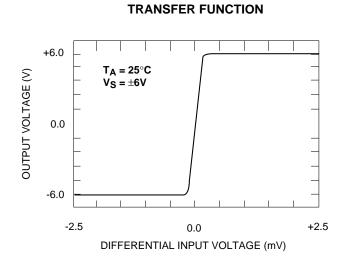
- Guaranteed to drive 200Ω loads
- Fanout of 30LS TTL loads
- Low supply current of 175µA each comparator
- Pinout of LM193 type industry standard comparators
- Extremely low input bias currents -- 10pA
- Virtually eliminates source impedance effects
- Low operating supply voltage of 4V to 12V
- Single (+5V) and dual supply (±5V) operation
- High speed for both large and small signals --180ns for TTL inputs and 400ns for 20mV overdrive
- CMOS, NMOS and TTL compatible
- Push-pull outputs-current sourcing/ sinking
- · High output sinking current -- 60mA
- Low supply current spikes

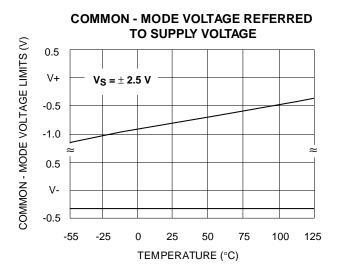
PIN CONFIGURATION

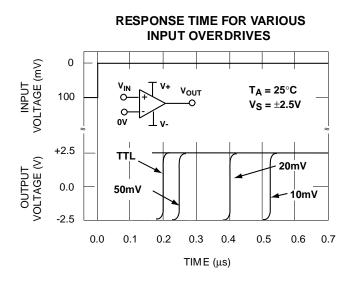
BLOCK DIAGRAM

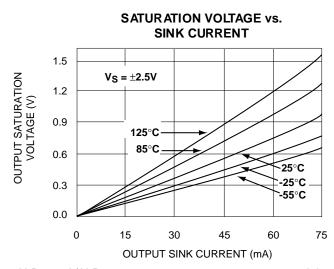
ABSOLUTE MAXIMUM RATINGS


Supply voltage, V ⁺	13.2V
Differential input voltage range	-0.3V to V ⁺ +0.3V
Power dissipation	600 mW
Operating temperature range PA, SA package	0°C to +70°C
DA package	55°C to +125°C
Storage temperature range	65°C to +150°C
Lead temperature, 10 seconds	+260°C

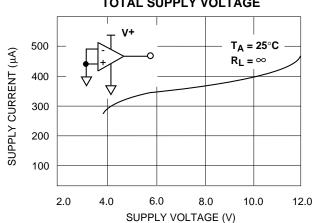

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ V+ = +5V unless otherwise specified

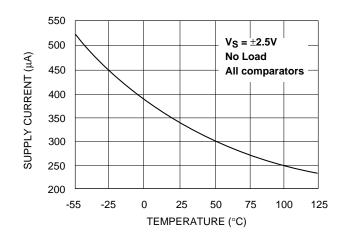

		2302A		2302			Test		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Voltage Supply	V _S V+	±2 4		±6 12	±2 4		±6 12	V V	Dual Supply Single Supply
Supply Current	I _S		350	500		350	500	μА	RLOAD = ∞
Voltage Gain	A _{VD}	10	100		10	100		V/mV	RLOAD ≥15KΩ
Input Offset Voltage	Vos		1.0	2.0		3.0	5.0	mV	RLOAD = $1.5K\Omega$ $0^{\circ}C \le T_A \le 70^{\circ}C$
Input Offset Current ¹	I _{OS}		10	200 800		10	200 800	рА	
Input Bias Current ¹	IB		10	200 1000		10	200 1000	рА	$0^{\circ}C \le T_A \le 70^{\circ}C$
Common Mode Input Voltage Range ²	V _{ICR}	-0.3		V+ -1.5	-0.3		V+ -1.5	V	$0^{\circ}C \le T_A \le 70^{\circ}C$
Low Level Output Voltage	VoL		0.18	0.4		0.18	0.4	V	I _{SINK} =12mA V _{INPUT} =1V Differential
Low Level Output Current	loL	24	60		24	60		mA	V _{OL} =1.0V
High Level Output Voltage	Vон	3.5	4.5		3.5	4.5		V	I _{OH} = -2mA
Response Time ²	tRP		400			400		ns	C _L =15pF 100mV Input Step/20mV Overdrive
			180			180		ns	C _L = 15pF TTL- Level Input Step


Notes: ¹ Consists of junction leakage currents ² Sample tested parameters

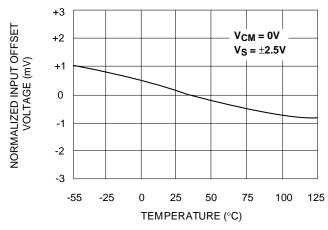

TYPICAL PERFORMANCE CHARACTERISTICS

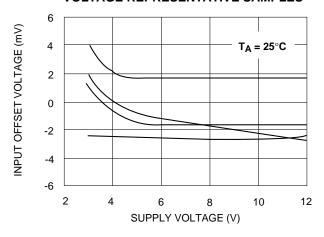


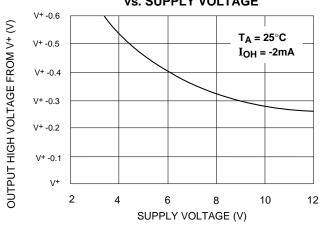


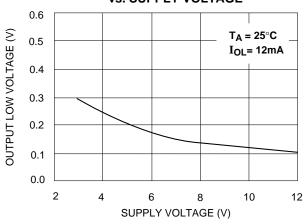

TYPICAL PERFORMANCE CHARACTERISTICS

TOTAL SUPPLY VOLTAGE $T_A = 25^{\circ}C$ $R_L = \infty$


TOTAL SUPPLY CURRENT vs.

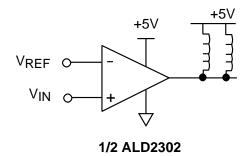

SUPPLY CURRENT vs. TEMPERATURE


NORMALIZED INPUT OFFSET VOLTAGE vs. TEMPERATURE

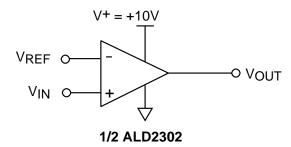

INPUT OFFSET VOLTAGE vs. SUPPLY VOLTAGE REPRESENTATIVE SAMPLES

OUTPUT HIGH VOLTAGE vs. SUPPLY VOLTAGE

OUTPUT LOW VOLTAGE vs. SUPPLY VOLTAGE

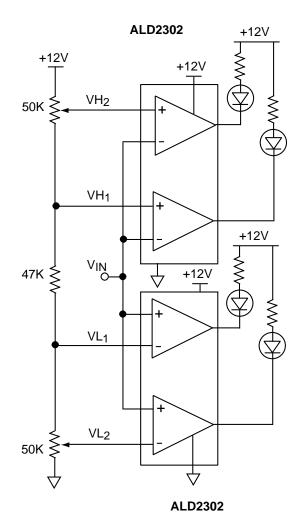


TYPICAL APPLICATIONS


ZERO CROSSING DETECTOR

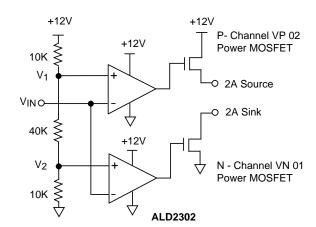
VIN +3V 50K VOUT 1/2 ALD2302

MULTIPLE RELAY DRIVE

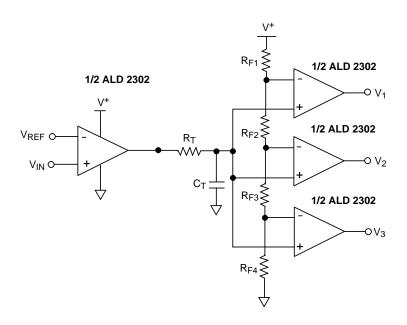


VOLTAGE LEVEL TRANSLATOR

 $V_{REF} = 1.4V$ for TTL input $V_{REF} = \frac{V^{+}}{2}$ for CMOS input Output V_{OLIT} swings from rail-to-rail


DOUBLE DUAL LIMIT WINDOW COMPARATOR

 VL_1 and VH_1 first limit window send warning VL_2 and VH_2 second limit window execute system cutoff


TYPICAL APPLICATIONS

PUSH-PULL COMPLEMENTARY POWER MOSFET DRIVER

This circuit eliminates crossover current in the complementary power transistors. The outputs can be used to source and sink different loads or tied together to provide push-pull drive of the same load.

TIME DELAY GENERATOR

Design & Operating Notes:

- As each output sources up to 10mA in the output high state, the output stage of a wired OR low output circuit must be able to sink this current and still
 provide desired output voltage levels. For TTL output levels, this consideration limits the number to a maximum of three ALD2302 outputs wired-OR
 together.
- 2. In order to minimize stray oscillation, all unused inputs must be tied to ground.
- 3. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 1 pA at room temperature. The currents are a function of ambient temperature, and would have to be considered in applications where very high source impedance or high accuracy are involved.
- 4. The high output sinking current of 60mA for each output offers flexibility in many applications, as a separate buffer or driver would not be necessary to drive the intended load. However, as the circuit normally operates close to ambient temperature due to its very low power consumption, thermal effects caused by large output current transients must be considered in certain applications.