

AO8846

Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor

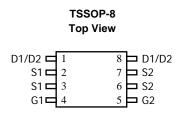
General Description

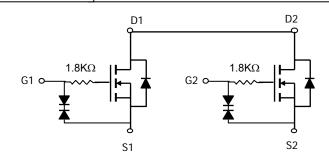
The AO8846 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. It is ESD protected. This device is suitable for use as a unidirectional or bi-directional load switch, facilitated by its common-drain configuration. Standard Product AO8846 is Pb-free (meets ROHS & Sony 259 specifications).

Features

 $V_{DS} = 20V$

 $I_D = 7.0A$ (V_{GS} = 4.5V)


 $R_{DS(ON)}$ < 20m Ω (V_{GS} = 4.5V)


 $R_{DS(ON)} < 20m\Omega (V_{GS} = 4.0V)$

 $R_{DS(ON)}$ < 21m Ω (V_{GS} = 3.1V)

 $R_{DS(ON)}$ < 22m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)} < 27m\Omega (V_{GS} = 1.8V)$

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	10 Sec	Steady State	Units		
Drain-Source Voltage		V_{DS}	20		V		
Gate-Source Voltage		V_{GS}	±8		V		
Continuous Drain	T _A =25°C		7	5.7			
Current ^A	T _A =70°C	I_D	5.7	4.8	Α		
Pulsed Drain Current ^B		I _{DM}	25				
Power Dissipation ^A	T _A =25°C	P_{D}	1.5	1.0	W		
	T _A =70°C] D	1.0	0.7	VV		
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150		°C		

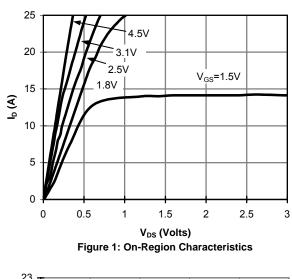
Thermal Characteristics								
Parameter	Symbol	Тур	Тур Мах					
Maximum Junction-to-Ambient A	t ≤ 10s	≤ 10s		83	°C/W			
Maximum Junction-to-Ambient A	Steady State	$R_{ hetaJA}$	89	120	°C/W			
Maximum Junction-to-Lead ^C	Steady State	$R_{\scriptscriptstyle{ hetaJL}}$	53	70	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20			V			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20V, V_{GS} = 0V$			1				
		$T_J = 55^{\circ}C$			5	μА			
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 8V$			±10	μА			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_{D} = 250 \mu A$	0.5	0.7	1	V			
$I_{D(ON)}$	On state drain current	$V_{GS} = 4.5V, V_{DS} = 5V$	25			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5V, I_D = 7.0A$	12	16	20				
		T _J =125°C	16	22	28				
		$V_{GS} = 4.0V, I_D = 7.0A$	12	16.2	20	m()			
		$V_{GS} = 3.1V, I_D = 6.5A$	13	17	21				
		$V_{GS} = 2.5V, I_D = 6.5A$	14	18	22				
		$V_{GS} = 1.8V, I_D = 6.0A$	15	21	27				
g _{FS}	Forward Transconductance	$V_{DS} = 4.5V, I_{D} = 7.0A$		34		S			
V_{SD}	Diode Forward Voltage	$I_S = 1A, V_{GS} = 0V$		0.62	1	V			
Is	Maximum Body-Diode Continuous Current				1.5	Α			
	PARAMETERS								
C _{iss}	Input Capacitance			1295	1650	pF			
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		160		pF			
C _{rss}	Reverse Transfer Capacitance			87		pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.8		kΩ			
SWITCHI	NG PARAMETERS								
Q_g	Total Gate Charge			10	13	nC			
Q_{gs}	Gate Source Charge	V_{GS} = 4.5V, V_{DS} = 10V, I_{D} = 7A		4.2		nC			
Q_{gd}	Gate Drain Charge			2.6		nC			
$t_{D(on)}$	Turn-On DelayTime			6.4		ns			
t _r	Turn-On Rise Time	V_{GS} =4.5V, V_{DS} =10V, R_{L} =1.4 Ω ,		12.4		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		42		ns			
t _f	Turn-Off Fall Time]		15		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =7A, dI/dt=100A/μs, V _{GS} =-9V		31	41	ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =7A, dI/dt=100A/μs, V _{GS} =-9V		6.8		nC			

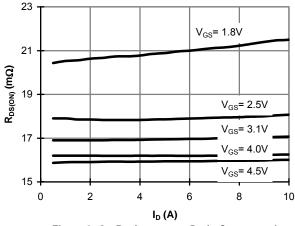
A: The value of R $_{\theta,JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ = 25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t $_{\odot}$ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

Rev0 August 2007


THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

C. The R $_{\text{0JA}}$ is the sum of the thermal impedence from junction to lead R $_{\text{0JL}}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using < $300\mu s$ pulses, duty cycle 0.5% max.


E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

25 V_{DS}= 5V 20 15 10 125°C 5 40°C 0 0 0.4 8.0 1.2 2 1.6 V_{GS}(Volts)

Figure 2: Transfer Characteristics

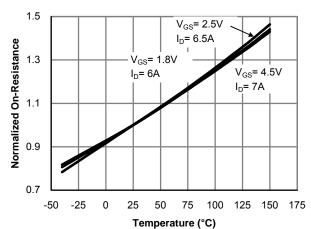
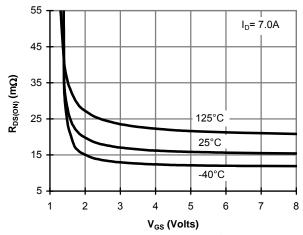



Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

Figure 4: On-Resistance vs. Junction Temperature

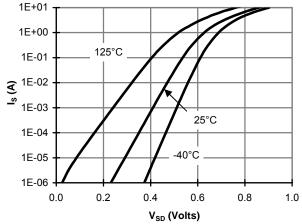


Figure 5: On-Resistance vs. Gate-Source Voltage

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

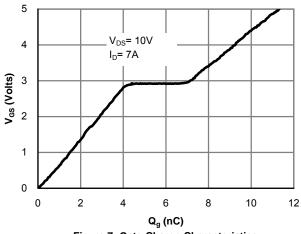


Figure 7: Gate-Charge Characteristics

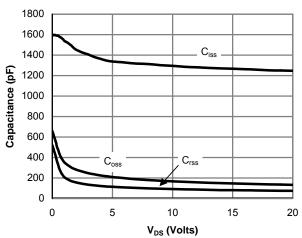


Figure 8: Capacitance Characteristics

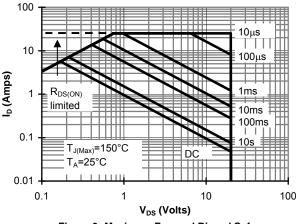


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

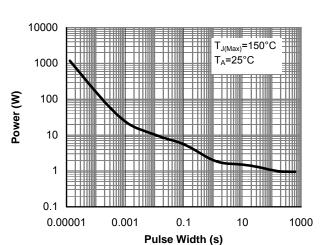
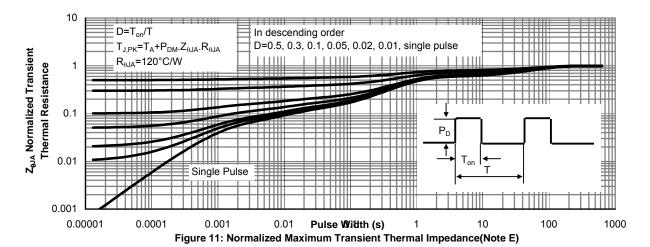



Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

